51
|
Elmakky A, Stanghellini I, Landi A, Percesepe A. Role of Genetic Factors in the Pathogenesis of Radial Deficiencies in Humans. Curr Genomics 2016; 16:264-78. [PMID: 26962299 PMCID: PMC4765521 DOI: 10.2174/1389202916666150528000412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/20/2015] [Accepted: 05/27/2015] [Indexed: 01/09/2023] Open
Abstract
Radial deficiencies (RDs), defined as under/abnormal development or absence of any of the
structures of the forearm, radial carpal bones and thumb, occur with a live birth incidence ranging
from 1 out of 30,000 to 1 out 6,000 newborns and represent about one third/one fourth of all the congenital
upper limb anomalies. About half of radial disorders have a mendelian cause and pattern of
inheritance, whereas the remaining half appears sporadic with no known gene involved. In sporadic
forms certain anomalies, such as thumb or radial hypoplasia, may occur either alone or in association
with systemic conditions, like vertebral abnormalities or renal defects. All the cases with a mendelian inheritance are syndromic
forms, which include cardiac defects (in Holt-Oram syndrome), bone marrow failure (in Fanconi anemia), platelet
deficiency (in thrombocytopenia-absent-radius syndrome), ocular motility impairment (in Okihiro syndrome). The
genetics of radial deficiencies is complex, characterized by genetic heterogeneity and high inter- and intra-familial clinical
variability: this review will analyze the etiopathogenesis and the genotype/phenotype correlations of the main radial deficiency
disorders in humans.
Collapse
Affiliation(s)
- Amira Elmakky
- Medical Genetics, Department of Medical and Surgical Sciences, University Hospital of Modena, Italy
| | - Ilaria Stanghellini
- Medical Genetics, Department of Medical and Surgical Sciences, University Hospital of Modena, Italy
| | - Antonio Landi
- Hand Surgery and Microsurgery, Department of Locomotor System Diseases, University Hospital of Modena, Modena, Italy
| | - Antonio Percesepe
- Medical Genetics, Department of Medical and Surgical Sciences, University Hospital of Modena, Italy
| |
Collapse
|
52
|
Sopik V, Foulkes WD. Risky business: getting a grip on BRIP. J Med Genet 2016; 53:296-7. [PMID: 26921361 DOI: 10.1136/jmedgenet-2015-103648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 11/04/2022]
Affiliation(s)
- Victoria Sopik
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
53
|
Dong H, Nebert DW, Bruford EA, Thompson DC, Joenje H, Vasiliou V. Update of the human and mouse Fanconi anemia genes. Hum Genomics 2015; 9:32. [PMID: 26596371 PMCID: PMC4657327 DOI: 10.1186/s40246-015-0054-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 11/10/2015] [Indexed: 12/24/2022] Open
Abstract
Fanconi anemia (FA) is a recessively inherited disease manifesting developmental abnormalities, bone marrow failure, and increased risk of malignancies. Whereas FA has been studied for nearly 90 years, only in the last 20 years have increasing numbers of genes been implicated in the pathogenesis associated with this genetic disease. To date, 19 genes have been identified that encode Fanconi anemia complementation group proteins, all of which are named or aliased, using the root symbol “FANC.” Fanconi anemia subtype (FANC) proteins function in a common DNA repair pathway called “the FA pathway,” which is essential for maintaining genomic integrity. The various FANC mutant proteins contribute to distinct steps associated with FA pathogenesis. Herein, we provide a review update of the 19 human FANC and their mouse orthologs, an evolutionary perspective on the FANC genes, and the functional significance of the FA DNA repair pathway in association with clinical disorders. This is an example of a set of genes––known to exist in vertebrates, invertebrates, plants, and yeast––that are grouped together on the basis of shared biochemical and physiological functions, rather than evolutionary phylogeny, and have been named on this basis by the HUGO Gene Nomenclature Committee (HGNC).
Collapse
Affiliation(s)
- Hongbin Dong
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06250, USA
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, University Cincinnati Medical Center, Cincinnati, OH, 45267-0056, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee (HGNC), European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, CB10 1SD, UK
| | - David C Thompson
- Department of Clinical Practice, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Hans Joenje
- Department of Clinical Genetics and the Cancer Center Amsterdam/VUmc Institute for Cancer and Immunology, VU University Medical Center, NL-1081 BT, Amsterdam, The Netherlands
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06250, USA.
| |
Collapse
|
54
|
Magron A, Elowe S, Carreau M. The Fanconi Anemia C Protein Binds to and Regulates Stathmin-1 Phosphorylation. PLoS One 2015; 10:e0140612. [PMID: 26466335 PMCID: PMC4605623 DOI: 10.1371/journal.pone.0140612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/27/2015] [Indexed: 11/18/2022] Open
Abstract
The Fanconi anemia (FA) proteins are involved in a signaling network that assures the safeguard of chromosomes. To understand the function of FA proteins in cellular division events, we investigated the interaction between Stathmin-1 (STMN1) and the FA group C (FANCC) protein. STMN1 is a ubiquitous cytosolic protein that regulates microtubule dynamics. STMN1 activities are regulated through phosphorylation-dephosphorylation mechanisms that control assembly of the mitotic spindle, and dysregulation of STMN1 phosphorylation is associated with mitotic aberrancies leading to chromosome instability and cancer progression. Using different biochemical approaches, we showed that FANCC interacts and co-localizes with STMN1 at centrosomes during mitosis. We also showed that FANCC is required for STMN1 phosphorylation, as mutations in FANCC reduced serine 16- and 38-phosphorylated forms of STMN1. Phosphorylation of STMN1 at serine 16 is likely an event dependent on a functional FA pathway, as it is reduced in FANCA- and FANCD2-mutant cells. Furthermore, FA-mutant cells exhibited mitotic spindle anomalies such as supernumerary centrosomes and shorter mitotic spindles. These results suggest that FA proteins participate in the regulation of cellular division via the microtubule-associated protein STMN1.
Collapse
Affiliation(s)
- Audrey Magron
- CHU de Québec, CHUL Research Center, Québec, QC, Canada
| | - Sabine Elowe
- Department of Pediatrics, Université Laval, Québec, QC, Canada
- CHU de Québec, CHUL Research Center, Québec, QC, Canada
| | - Madeleine Carreau
- Department of Pediatrics, Université Laval, Québec, QC, Canada
- CHU de Québec, CHUL Research Center, Québec, QC, Canada
- * E-mail:
| |
Collapse
|
55
|
Impaired immune response to Candida albicans in cells from Fanconi anemia patients. Cytokine 2015; 73:203-7. [DOI: 10.1016/j.cyto.2015.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/25/2022]
|
56
|
Karastaneva A, Lanz S, Wawer A, Behrends U, Schindler D, Dietrich R, Burdach S, Urban C, Benesch M, Seidel MG. Immune Thrombocytopenia in Two Unrelated Fanconi Anemia Patients - A Mere Coincidence? Front Pediatr 2015; 3:50. [PMID: 26106590 PMCID: PMC4459098 DOI: 10.3389/fped.2015.00050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 05/15/2015] [Indexed: 11/13/2022] Open
Abstract
Thrombocytopenia and pancytopenia, occurring in patients with Fanconi anemia (FA), are interpreted either as progression to bone marrow failure or as developing myelodysplasia. On the other hand, immune thrombocytopenia (ITP) represents an acquired and often self-limiting benign hematologic disorder, associated with peripheral, immune-mediated, platelet destruction requiring different management modalities than those used in congenital bone marrow failure syndromes, including FA. Here, we describe the clinical course of two independent FA patients with atypical - namely immune - thrombocytopenia. While in one patient belonging to complementation group FA-A, the ITP started at 17 months of age and showed a chronically persisting course with severe purpura, responding well to intravenous immunoglobulins (IVIG) and later also danazol, a synthetic androgen, the other patient (of complementation group FA-D2) had a self-limiting course that resolved after one administration of IVIG. No cytogenetic aberrations or bone marrow abnormalities other than FA-typical mild dysplasia were detected. Our data show that acute and chronic ITP may occur in FA patients and impose individual diagnostic and therapeutic challenges in this rare congenital bone marrow failure/tumor predisposition syndrome. The management and a potential context of immune pathogenesis with the underlying marrow disorder are discussed.
Collapse
Affiliation(s)
- Anna Karastaneva
- Division of Pediatric Hematology/Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz , Graz , Austria
| | - Sofia Lanz
- Division of Pediatric Hematology/Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz , Graz , Austria
| | - Angela Wawer
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Technische Universität München , Munich , Germany
| | - Uta Behrends
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Technische Universität München , Munich , Germany
| | - Detlev Schindler
- Institute of Human Genetics, Biozentrum, University of Würzburg , Würzburg , Germany
| | - Ralf Dietrich
- German Fanconi Anemia Support Group , Unna , Germany
| | - Stefan Burdach
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Technische Universität München , Munich , Germany
| | - Christian Urban
- Division of Pediatric Hematology/Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz , Graz , Austria
| | - Martin Benesch
- Division of Pediatric Hematology/Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz , Graz , Austria
| | - Markus G Seidel
- Division of Pediatric Hematology/Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz , Graz , Austria
| |
Collapse
|