51
|
Bakshi A, Savithri HS. Functional insights into the role of C-terminal disordered domain of Sesbania mosaic virus RNA-dependent RNA polymerase and the coat protein in viral replication in vivo. Virus Res 2019; 267:26-35. [PMID: 31054934 DOI: 10.1016/j.virusres.2019.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
Abstract
The C-terminal disordered domain of sesbania mosaic virus (SeMV) RNA-dependent RNA polymerase (RdRp) interacts with the viral protein P10. The functional significance of this interaction in viral replication was examined by a comparative analysis of genomic and sub-genomic RNA levels (obtained by quantitative real time PCR) in the total RNA extracted from Cyamopsis plants agro-infiltrated with wild-type or mutant forms of SeMV infectious cDNA (icDNA). The sgRNA copy numbers were found to be significantly higher than those of gRNA in the wild-type icDNA transfected plants. Transfection of a mutant icDNA expressing an RdRp lacking the C-terminal disordered domain led to a drastic reduction in the copy numbers of both forms of viral RNA. This could be due to the loss of interaction between the disordered domain of RdRp and P10 and possibly other viral/host proteins that might be required for the assembly of viral replicase. The C-terminal disordered domain also harbours the motif E which is essential for the catalytic function of RdRp. Mutation of the conserved tyrosine within this motif in the full length icDNA resulted in complete inhibition of progeny RNA synthesis in the transfected plants confirming the importance of motif E in the polymerase function in vivo. The role of coat protein (CP) in viral infection was also investigated by agro-infiltration of a CP start codon mutant icDNA which suggested that CP is essential for the encapsidation of viral progeny RNAs at later stages of infection.
Collapse
Affiliation(s)
- Arindam Bakshi
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | | |
Collapse
|
52
|
Complex Membrane Remodeling during Virion Assembly of the 30,000-Year-Old Mollivirus Sibericum. J Virol 2019; 93:JVI.00388-19. [PMID: 30996095 DOI: 10.1128/jvi.00388-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/11/2019] [Indexed: 01/14/2023] Open
Abstract
Cellular membranes ensure functional compartmentalization by dynamic fusion-fission remodeling and are often targeted by viruses during entry, replication, assembly, and egress. Nucleocytoplasmic large DNA viruses (NCLDVs) can recruit host-derived open membrane precursors to form their inner viral membrane. Using complementary three-dimensional (3D)-electron microscopy techniques, including focused-ion beam scanning electron microscopy and electron tomography, we show that the giant Mollivirus sibericum utilizes the same strategy but also displays unique features. Indeed, assembly is specifically triggered by an open cisterna with a flat pole in its center and open curling ends that grow by recruitment of vesicles never reported for NCLDVs. These vesicles, abundant in the viral factory (VF), are initially closed but open once in close proximity to the open curling ends of the growing viral membrane. The flat pole appears to play a central role during the entire virus assembly process. While additional capsid layers are assembled from it, it also shapes the growing cisterna into immature crescent-like virions and is located opposite to the membrane elongation and closure sites, thereby providing virions with a polarity. In the VF, DNA-associated filaments are abundant, and DNA is packed within virions prior to particle closure. Altogether, our results highlight the complexity of the interaction between giant viruses and their host. Mollivirus assembly relies on the general strategy of vesicle recruitment, opening, and shaping by capsid layers similar to all NCLDVs studied until now. However, the specific features of its assembly suggest that the molecular mechanisms for cellular membrane remodeling and persistence are unique.IMPORTANCE Since the first giant virus Mimivirus was identified, other giant representatives are isolated regularly around the world and appear to be unique in several aspects. They belong to at least four viral families, and the ways they interact with their hosts remain poorly understood. We focused on Mollivirus sibericum, the sole representative of "Molliviridae," which was isolated from a 30,000-year-old permafrost sample and exhibits spherical virions of complex composition. In particular, we show that (i) assembly is initiated by a unique structure containing a flat pole positioned at the center of an open cisterna, (ii) core packing involves another cisterna-like element seemingly pushing core proteins into particles being assembled, and (iii) specific filamentous structures contain the viral genome before packaging. Altogether, our findings increase our understanding of how complex giant viruses interact with their host and provide the foundation for future studies to elucidate the molecular mechanisms of Mollivirus assembly.
Collapse
|
53
|
Virus capsid assembly across different length scales inspire the development of virus-based biomaterials. Curr Opin Virol 2019; 36:38-46. [PMID: 31071601 DOI: 10.1016/j.coviro.2019.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 01/26/2023]
Abstract
In biology, there are an abundant number of self-assembled structures organized according to hierarchical levels of complexity. In some examples, the assemblies formed at each level exhibit unique properties and behaviors not present in individual components. Viruses are an example of such where first individual subunits come together to form a capsid structure, some utilizing a scaffolding protein to template or catalyze the capsid formation. Increasing the level of complexity, the viral capsids can then be used as building blocks of higher-level assemblies. This has inspired scientists to design and construct virus capsid-based functional nano-materials. This review provides some insight into the assembly of virus capsids across several length scales, and certain properties that arise at different levels, providing examples found in naturally occurring systems and those that are synthetically designed.
Collapse
|
54
|
Seligmann H. Giant viruses: spore‐like missing links betweenRickettsiaand mitochondria? Ann N Y Acad Sci 2019; 1447:69-79. [DOI: 10.1111/nyas.14022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Hervé Seligmann
- The National Natural History Collectionsthe Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
55
|
Tenorio R, Fernández de Castro I, Knowlton JJ, Zamora PF, Sutherland DM, Risco C, Dermody TS. Function, Architecture, and Biogenesis of Reovirus Replication Neoorganelles. Viruses 2019; 11:v11030288. [PMID: 30901959 PMCID: PMC6466366 DOI: 10.3390/v11030288] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Most viruses that replicate in the cytoplasm of host cells form neoorganelles that serve as sites of viral genome replication and particle assembly. These highly specialized structures concentrate viral proteins and nucleic acids, prevent the activation of cell-intrinsic defenses, and coordinate the release of progeny particles. Reoviruses are common pathogens of mammals that have been linked to celiac disease and show promise for oncolytic applications. These viruses form nonenveloped, double-shelled virions that contain ten segments of double-stranded RNA. Replication organelles in reovirus-infected cells are nucleated by viral nonstructural proteins µNS and σNS. Both proteins partition the endoplasmic reticulum to form the matrix of these structures. The resultant membranous webs likely serve to anchor viral RNA⁻protein complexes for the replication of the reovirus genome and the assembly of progeny virions. Ongoing studies of reovirus replication organelles will advance our knowledge about the strategies used by viruses to commandeer host biosynthetic pathways and may expose new targets for therapeutic intervention against diverse families of pathogenic viruses.
Collapse
Affiliation(s)
- Raquel Tenorio
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, Cantoblanco Campus, 28049 Madrid, Spain.
| | - Isabel Fernández de Castro
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, Cantoblanco Campus, 28049 Madrid, Spain.
| | - Jonathan J Knowlton
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Paula F Zamora
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - Danica M Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
- Center for Microbial Pathogenesis, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, Cantoblanco Campus, 28049 Madrid, Spain.
| | - Terence S Dermody
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
- Center for Microbial Pathogenesis, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| |
Collapse
|
56
|
Feng Z, Xu K, Kovalev N, Nagy PD. Recruitment of Vps34 PI3K and enrichment of PI3P phosphoinositide in the viral replication compartment is crucial for replication of a positive-strand RNA virus. PLoS Pathog 2019; 15:e1007530. [PMID: 30625229 PMCID: PMC6342326 DOI: 10.1371/journal.ppat.1007530] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/22/2019] [Accepted: 12/16/2018] [Indexed: 12/12/2022] Open
Abstract
Tombusviruses depend on subversions of multiple host factors and retarget cellular pathways to support viral replication. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely-related carnation Italian ringspot virus (CIRV) recruit the cellular Vps34 phosphatidylinositol 3-kinase (PI3K) into the large viral replication compartment. The kinase function of Vps34 is critical for TBSV replication, suggesting that PI(3)P phosphoinositide is utilized by TBSV for building of the replication compartment. We also observed increased expression of Vps34 and the higher abundance of PI(3)P in the presence of the tombusviral replication proteins, which likely leads to more efficient tombusvirus replication. Accordingly, overexpression of PI(3)P phosphatase in yeast or plants inhibited TBSV replication on the peroxisomal membranes and CIRV replication on the mitochondrial membranes. Moreover, the purified PI(3)P phosphatase reduced TBSV replicase assembly in a cell-free system. Detection of PI(3)P with antibody or a bioprobe revealed the enrichment of PI(3)P in the replication compartment. Vps34 is directly recruited into the replication compartment through interaction with p33 replication protein. Gene deletion analysis in surrogate yeast host unraveled that TBSV replication requires the vesicle transport function of Vps34. In the absence of Vps34, TBSV cannot efficiently recruit the Rab5-positive early endosomes, which provide PE-rich membranes for membrane biogenesis of the TBSV replication compartment. We found that Vps34 and PI(3)P needed for the stability of the p33 replication protein, which is degraded by the 26S proteasome when PI(3)P abundance was decreased by an inhibitor of Vps34. In summary, Vps34 and PI(3)P are needed for providing the optimal microenvironment for the replication of the peroxisomal TBSV and the mitochondrial CIRV. Replication of RNA viruses infecting various eukaryotic organisms is the central step in the infection process that leads to generation of progeny viruses. The replication process requires the assembly of numerous viral replicase complexes within the large replication compartment, whose formation is not well understood. Using tombusviruses and the model host yeast, the authors discovered that a highly conserved cellular lipid kinase, Vps34 phosphatidylinositol 3-kinase (PI3K), is critical for the formation of the viral replication compartment. Expression of PI3K mutants and the PI(3)P phosphatase revealed that the PI(3)P phosphoinositide produced by Vps34 is crucial for tombusvirus replication. Tombusviruses co-opt Vps34 through interaction with the viral replication protein into the replication compartment. In vitro reconstitution of the tombusvirus replicase revealed the need for Vps34 and PI(3)P for the full-activity of the viral replicase. Chemical inhibition of Vps34 in yeast or plants showed that PI(3)P is important for the replication of several plant viruses within the Tombusviridae family and the insect-infecting Nodamuravirus. These results open up the possibility that the cellular Vps34 PI3K could be a target for new antiviral strategies.
Collapse
Affiliation(s)
- Zhike Feng
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kai Xu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
- * E-mail: (KX); (PDN)
| | - Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (KX); (PDN)
| |
Collapse
|
57
|
Richert-Pöggeler KR, Franzke K, Hipp K, Kleespies RG. Electron Microscopy Methods for Virus Diagnosis and High Resolution Analysis of Viruses. Front Microbiol 2019; 9:3255. [PMID: 30666247 PMCID: PMC6330349 DOI: 10.3389/fmicb.2018.03255] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/14/2018] [Indexed: 01/29/2023] Open
Abstract
The term "virosphere" describes both the space where viruses are found and the space they influence, and can extend to their impact on the environment, highlighting the complexity of the interactions involved. Studying the biology of viruses and the etiology of virus disease is crucial to the prevention of viral disease, efficient and reliable virus diagnosis, and virus control. Electron microscopy (EM) is an essential tool in the detection and analysis of virus replication. New EM methods and ongoing technical improvements offer a broad spectrum of applications, allowing in-depth investigation of viral impact on not only the host but also the environment. Indeed, using the most up-to-date electron cryomicroscopy methods, such investigations are now close to atomic resolution. In combination with bioinformatics, the transition from 2D imaging to 3D remodeling allows structural and functional analyses that extend and augment our knowledge of the astonishing diversity in virus structure and lifestyle. In combination with confocal laser scanning microscopy, EM enables live imaging of cells and tissues with high-resolution analysis. Here, we describe the pivotal role played by EM in the study of viruses, from structural analysis to the biological relevance of the viral metagenome (virome).
Collapse
Affiliation(s)
- Katja R. Richert-Pöggeler
- Federal Research Center for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute, Braunschweig, Germany
| | - Kati Franzke
- Institute of Infectiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Regina G. Kleespies
- Federal Research Centre for Cultivated Plants, Institute for Biological Control, Julius Kühn Institute, Darmstadt, Germany
| |
Collapse
|
58
|
IC-Tagging methodology applied to the expression of viral glycoproteins and the difficult-to-express membrane-bound IGRP autoantigen. Sci Rep 2018; 8:16286. [PMID: 30390011 PMCID: PMC6214907 DOI: 10.1038/s41598-018-34488-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/19/2018] [Indexed: 12/17/2022] Open
Abstract
We have previously developed a methodology to produce protein microspheres (MS) that can be loaded with proteins of interest in living cells through their C or N-terminal tagging with the so-called IC-Tag. The IC-Tagging method has many applications ranging from the production of immobilized enzymes for industrial use to the production of subunit vaccines due to its intrinsic adjuvancy. Here we show the adaptation of the IC-Tagging to work inside the endoplasmic reticulum and bacteria, allowing us to produce properly modified viral glycoproteins. Additionally, we were able to express the Islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP), whose expression remained elusive to date possibly due to its toxicity when over-expressed. IGRP is an antigen of enormous pharmaceutical interest as it is specifically targeted during the autoimmune response taking place in both the Non-Obese Diabetic (NOD) mice and type 1 diabetes (T1D) patients leading to the destruction of insulin-producing beta cells.
Collapse
|
59
|
Cuartas-López AM, Hernández-Cuellar CE, Gallego-Gómez JC. Disentangling the role of PI3K/Akt, Rho GTPase and the actin cytoskeleton on dengue virus infection. Virus Res 2018; 256:153-165. [DOI: 10.1016/j.virusres.2018.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022]
|
60
|
Quemin ER, Corroyer-Dulmont S, Krijnse-Locker J. Entry and Disassembly of Large DNA Viruses: Electron Microscopy Leads the Way. J Mol Biol 2018; 430:1714-1724. [DOI: 10.1016/j.jmb.2018.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022]
|
61
|
Assembly-hub function of ER-localized SNARE proteins in biogenesis of tombusvirus replication compartment. PLoS Pathog 2018; 14:e1007028. [PMID: 29746582 PMCID: PMC5963807 DOI: 10.1371/journal.ppat.1007028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 05/22/2018] [Accepted: 04/13/2018] [Indexed: 01/28/2023] Open
Abstract
Positive-strand RNA viruses assemble numerous membrane-bound viral replicase complexes within large replication compartments to support their replication in infected cells. Yet the detailed mechanism of how given subcellular compartments are subverted by viruses is incompletely understood. Although, Tomato bushy stunt virus (TBSV) uses peroxisomal membranes for replication, in this paper, we show evidence that the ER-resident SNARE (soluble NSF attachment protein receptor) proteins play critical roles in the formation of active replicase complexes in yeast model host and in plants. Depletion of the syntaxin 18-like Ufe1 and Use1, which are components of the ER SNARE complex in the ERAS (ER arrival site) subdomain, in yeast resulted in greatly reduced tombusvirus accumulation. Over-expression of a dominant-negative mutant of either the yeast Ufe1 or the orthologous plant Syp81 syntaxin greatly interferes with tombusvirus replication in yeast and plants, thus further supporting the role of this host protein in tombusvirus replication. Moreover, tombusvirus RNA replication was low in cell-free extracts from yeast with repressed Ufe1 or Use1 expression. We also present evidence for the mislocalization of the tombusviral p33 replication protein to the ER membrane in Ufe1p-depleted yeast cells. The viral p33 replication protein interacts with both Ufe1p and Use1p and co-opts them into the TBSV replication compartment in yeast and plant cells. The co-opted Ufe1 affects the virus-driven membrane contact site formation, sterol-enrichment at replication sites, recruitment of several pro-viral host factors and subversion of the Rab5-positive PE-rich endosomes needed for robust TBSV replication. In summary, we demonstrate a critical role for Ufe1 and Use1 SNARE proteins in TBSV replication and propose that the pro-viral functions of Ufe1 and Use1 are to serve as assembly hubs for the formation of the extensive TBSV replication compartments in cells. Altogether, these findings point clearly at the ERAS subdomain of ER as a critical site for the biogenesis of the TBSV replication compartment. Viral replication organelles are formed in subcellular compartments during positive-strand RNA virus infections to support robust virus replication. TBSV induces multivesicular body-like structures consisting of aggregated peroxisomes. However, endoplasmic reticulum (ER) and early endosomal proteins and membranes also contribute to the biogenesis of the replication compartment. The authors show that the syntaxin 18-like Ufe1 and Use1 ER SNARE proteins, which are present in ER subdomains called ERAS (ER arrival site), are necessary for the formation of the viral replication organelles. By binding to the p33 replication protein of TBSV, Ufe1 and Use1 serve as an assembly hub for biogenesis of the replication compartment and facilitating the transfer of phospholipids and sterols to the growing sites of viral replication. The advantage of co-opting ER resident SNAREs could be that these proteins constitute very active ER subdomains (ERAS), which might be especially suitable for generation of the extensive membranous viral replication compartment.
Collapse
|
62
|
Tarquini G, Ermacora P, Bianchi GL, De Amicis F, Pagliari L, Martini M, Loschi A, Saldarelli P, Loi N, Musetti R. Localization and subcellular association of Grapevine Pinot Gris Virus in grapevine leaf tissues. PROTOPLASMA 2018; 255:923-935. [PMID: 29273825 PMCID: PMC5904240 DOI: 10.1007/s00709-017-1198-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
Despite the increasing impact of Grapevine Pinot gris disease (GPG-disease) worldwide, etiology about this disorder is still uncertain. The presence of the putative causal agent, the Grapevine Pinot Gris Virus (GPGV), has been reported in symptomatic grapevines (presenting stunting, chlorotic mottling, and leaf deformation) as well as in symptom-free plants. Moreover, information on virus localization in grapevine tissues and virus-plant interactions at the cytological level is missing at all. Ultrastructural and cytochemical investigations were undertaken to detect virus particles and the associated cytopathic effects in field-grown grapevine showing different symptom severity. Asymptomatic greenhouse-grown grapevines, which tested negative for GPGV by real time RT-PCR, were sampled as controls. Multiplex real-time RT-PCR and ELISA tests excluded the presence of viruses included in the Italian certification program both in field-grown and greenhouse-grown grapevines. Conversely, evidence was found for ubiquitous presence of Grapevine Rupestris Stem Pitting-associated Virus (GRSPaV), Hop Stunt Viroid (HSVd), and Grapevine Yellow Speckle Viroid 1 (GYSVd-1) in both plant groups. Moreover, in every field-grown grapevine, GPGV was detected by real-time RT-PCR. Ultrastructural observations and immunogold labelling assays showed filamentous flexuous viruses in the bundle sheath cells, often located inside membrane-bound organelles. No cytological differences were observed among field-grown grapevine samples showing different symptom severity. GPGV localization and associated ultrastructural modifications are reported and discussed, in the perspective of assisting management and control of the disease.
Collapse
Affiliation(s)
- Giulia Tarquini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, 206, 33100, Udine, Italy
| | - Paolo Ermacora
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, 206, 33100, Udine, Italy
| | - Gian Luca Bianchi
- ERSA, Servizio fitosanitario e chimico, ricerca, sperimentazione ed assistenza tecnica, via Sabbatini, 5, Pozzuolo del Friuli, 33050, Udine, Italy
| | - Francesca De Amicis
- ERSA, Servizio fitosanitario e chimico, ricerca, sperimentazione ed assistenza tecnica, via Sabbatini, 5, Pozzuolo del Friuli, 33050, Udine, Italy
| | - Laura Pagliari
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, 206, 33100, Udine, Italy
| | - Marta Martini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, 206, 33100, Udine, Italy
| | - Alberto Loschi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, 206, 33100, Udine, Italy
| | - Pasquale Saldarelli
- CNR-Institute for Sustainable Plant Protection, via Amendola, 165/A, 70126, Bari, Italy
| | - Nazia Loi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, 206, 33100, Udine, Italy
| | - Rita Musetti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, 206, 33100, Udine, Italy.
| |
Collapse
|
63
|
De Castro IF, Risco C. Metal-tagging Transmission Electron Microscopy for Localisation of Tombusvirus Replication Compartments in Yeast. Bio Protoc 2018; 8:e2822. [PMID: 34286032 PMCID: PMC8275224 DOI: 10.21769/bioprotoc.2822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 11/02/2022] Open
Abstract
Positive-stranded (+) RNA viruses are intracellular pathogens in humans, animals and plants. To build viral replicase complexes (VRCs) viruses manipulate lipid flows and reorganize subcellular membranes. Redesigned membranes concentrate viral and host factors and create an environment that facilitates the formation of VRCs within replication organelles. Therefore, efficient virus replication depends on the assembly of specialized membranes where viral macromolecular complexes are turned on and hold a variety of functions. Detailed characterization of viral replication platforms in cells requires sophisticated imaging approaches. Here we present a protocol to visualize the three-dimensional organization of the tombusvirus replicase complex in yeast with MEtal-Tagging Transmission Electron Microscopy (METTEM). This protocol allowed us to image the intracellular distribution of the viral replicase molecules in three-dimensions with METTEM and electron tomography. Our study showed how viral replicase molecules build replication complexes within specialized cell membranes.
Collapse
Affiliation(s)
- Isabel Fernández De Castro
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| |
Collapse
|
64
|
Cedratvirus getuliensis replication cycle: an in-depth morphological analysis. Sci Rep 2018; 8:4000. [PMID: 29507337 PMCID: PMC5838162 DOI: 10.1038/s41598-018-22398-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/22/2018] [Indexed: 01/30/2023] Open
Abstract
The giant viruses are the largest and most complex viruses in the virosphere. In the last decade, new members have constantly been added to this group. Here, we provide an in-depth descriptive analysis of the replication cycle of Cedratvirus getuliensis, one of the largest viruses known to date. We tracked the virion entry, the early steps of virus factory and particles morphogenesis, and during this phase, we observed a complex and unique sequential organization of immature particle elements, including horseshoe and rectangular compartments, revealed by transverse and longitudinal sections, respectively, until the formation of the final ovoid-shaped striped virion. The genome and virion proteins are incorporated through a longitudinal opening in the immature virion, followed by the incorporation of the second cork and thickening of the capsid well. Moreover, many cell modifications occur during viral infection, including intense membrane trafficking important to viral morphogenesis and release, as evidenced by treatment using brefeldin A. Finally, we observed that Cedratvirus getuliensis particles are released after cellular lysis, although we obtained microscopic evidence that some particles are released by exocytosis. The present study provides new information on the unexplored steps in the life cycle of cedratviruses.
Collapse
|
65
|
Budziszewska M, Obrępalska-Stęplowska A. The Role of the Chloroplast in the Replication of Positive-Sense Single-Stranded Plant RNA Viruses. FRONTIERS IN PLANT SCIENCE 2018; 9:1776. [PMID: 30542365 PMCID: PMC6278097 DOI: 10.3389/fpls.2018.01776] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/15/2018] [Indexed: 05/20/2023]
Abstract
Positive-sense single-stranded plant RNA viruses are obligate intracellular parasites that infect many agriculturally important crops. Most known plant RNA viruses are characterized by small genomes encoding a limited number of multifunctional viral proteins. Viral pathogens are considered to be absolutely dependent on their hosts, and viruses must recruit numerous host proteins and other factors for genomic RNA replication. Overall, the replication process depends on virus-plant protein-protein, RNA-protein and protein-lipid interactions. Recent publications provide strong evidence for the important role of chloroplasts in viral RNA synthesis. The chloroplast is considered to be a multifunctional organelle responsible for photosynthesis and for the generation of plant defense signaling molecules. High-throughput technologies (genomics and proteomics), and electron microscopy, including three-dimensional tomography, have revealed that several groups of plant RNA viruses utilize chloroplast membranes to assemble viral replication complexes (VRCs). Moreover, some chloroplast-related proteins reportedly interact with both viral proteins and their genomic RNAs and participate in trafficking these molecules to the chloroplast, where replication occurs. Here, we present the current knowledge on the important role of chloroplasts in the viral replication process.
Collapse
|
66
|
Richert-Pöggeler KR, Franzke K, Hipp K, Kleespies RG. Electron Microscopy Methods for Virus Diagnosis and High Resolution Analysis of Viruses. Front Microbiol 2018. [PMID: 30666247 DOI: 10.3389/fmicb.2018.03255.ecollection] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
The term "virosphere" describes both the space where viruses are found and the space they influence, and can extend to their impact on the environment, highlighting the complexity of the interactions involved. Studying the biology of viruses and the etiology of virus disease is crucial to the prevention of viral disease, efficient and reliable virus diagnosis, and virus control. Electron microscopy (EM) is an essential tool in the detection and analysis of virus replication. New EM methods and ongoing technical improvements offer a broad spectrum of applications, allowing in-depth investigation of viral impact on not only the host but also the environment. Indeed, using the most up-to-date electron cryomicroscopy methods, such investigations are now close to atomic resolution. In combination with bioinformatics, the transition from 2D imaging to 3D remodeling allows structural and functional analyses that extend and augment our knowledge of the astonishing diversity in virus structure and lifestyle. In combination with confocal laser scanning microscopy, EM enables live imaging of cells and tissues with high-resolution analysis. Here, we describe the pivotal role played by EM in the study of viruses, from structural analysis to the biological relevance of the viral metagenome (virome).
Collapse
Affiliation(s)
- Katja R Richert-Pöggeler
- Federal Research Center for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute, Braunschweig, Germany
| | - Kati Franzke
- Institute of Infectiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Regina G Kleespies
- Federal Research Centre for Cultivated Plants, Institute for Biological Control, Julius Kühn Institute, Darmstadt, Germany
| |
Collapse
|
67
|
Pitzalis N, Heinlein M. The roles of membranes and associated cytoskeleton in plant virus replication and cell-to-cell movement. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:117-132. [PMID: 29036578 DOI: 10.1093/jxb/erx334] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The infection of plants by viruses depends on cellular mechanisms that support the replication of the viral genomes, and the cell-to-cell and systemic movement of the virus via plasmodesmata (PD) and the connected phloem. While the propagation of some viruses requires the conventional endoplasmic reticulum (ER)-Golgi pathway, others replicate and spread between cells in association with the ER and are independent of this pathway. Using selected viruses as examples, this review re-examines the involvement of membranes and the cytoskeleton during virus infection and proposes potential roles of class VIII myosins and membrane-tethering proteins in controlling viral functions at specific ER subdomains, such as cortical microtubule-associated ER sites, ER-plasma membrane contact sites, and PD.
Collapse
|
68
|
Schoelz JE, Leisner S. Setting Up Shop: The Formation and Function of the Viral Factories of Cauliflower mosaic virus. FRONTIERS IN PLANT SCIENCE 2017; 8:1832. [PMID: 29163571 PMCID: PMC5670102 DOI: 10.3389/fpls.2017.01832] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/10/2017] [Indexed: 05/23/2023]
Abstract
Similar to cells, viruses often compartmentalize specific functions such as genome replication or particle assembly. Viral compartments may contain host organelle membranes or they may be mainly composed of viral proteins. These compartments are often termed: inclusion bodies (IBs), viroplasms or viral factories. The same virus may form more than one type of IB, each with different functions, as illustrated by the plant pararetrovirus, Cauliflower mosaic virus (CaMV). CaMV forms two distinct types of IBs in infected plant cells, those composed mainly of the viral proteins P2 (which are responsible for transmission of CaMV by insect vectors) and P6 (required for viral intra-and inter-cellular infection), respectively. P6 IBs are the major focus of this review. Much of our understanding of the formation and function of P6 IBs comes from the analyses of their major protein component, P6. Over time, the interactions and functions of P6 have been gradually elucidated. Coupled with new technologies, such as fluorescence microscopy with fluorophore-tagged viral proteins, these data complement earlier work and provide a clearer picture of P6 IB formation. As the activities and interactions of the viral proteins have gradually been determined, the functions of P6 IBs have become clearer. This review integrates the current state of knowledge on the formation and function of P6 IBs to produce a coherent model for the activities mediated by these sophisticated virus-manufacturing machines.
Collapse
Affiliation(s)
- James E. Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Scott Leisner
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
69
|
Milrot E, Shimoni E, Dadosh T, Rechav K, Unger T, Van Etten JL, Minsky A. Structural studies demonstrating a bacteriophage-like replication cycle of the eukaryote-infecting Paramecium bursaria chlorella virus-1. PLoS Pathog 2017; 13:e1006562. [PMID: 28850602 PMCID: PMC5593192 DOI: 10.1371/journal.ppat.1006562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 09/11/2017] [Accepted: 07/31/2017] [Indexed: 11/18/2022] Open
Abstract
A fundamental stage in viral infection is the internalization of viral genomes in host cells. Although extensively studied, the mechanisms and factors responsible for the genome internalization process remain poorly understood. Here we report our observations, derived from diverse imaging methods on genome internalization of the large dsDNA Paramecium bursaria chlorella virus-1 (PBCV-1). Our studies reveal that early infection stages of this eukaryotic-infecting virus occurs by a bacteriophage-like pathway, whereby PBCV-1 generates a hole in the host cell wall and ejects its dsDNA genome in a linear, base-pair-by-base-pair process, through a membrane tunnel generated by the fusion of the virus internal membrane with the host membrane. Furthermore, our results imply that PBCV-1 DNA condensation that occurs shortly after infection probably plays a role in genome internalization, as hypothesized for the infection of some bacteriophages. The subsequent perforation of the host photosynthetic membranes presumably enables trafficking of viral genomes towards host nuclei. Previous studies established that at late infection stages PBCV-1 generates cytoplasmic organelles, termed viral factories, where viral assembly takes place, a feature characteristic of many large dsDNA viruses that infect eukaryotic organisms. PBCV-1 thus appears to combine a bacteriophage-like mechanism during early infection stages with a eukaryotic-like infection pathway in its late replication cycle. Although extensively studied, the mechanisms responsible for internalization of viral genomes into their host cells remain unclear. A particularly interesting case of genome release and internalization is provided by the large Paramecium bursaria chlorella virus-1 (PBCV-1), which infects unicellular eukaryotic photosynthetic chlorella cells. In order to release its long dsDNA genome and to enable its translocation to the host nucleus, PBCV-1 must overcome multiple hurdles, including a thick host cell wall and multilayered chloroplast membranes that surround the host cytoplasm. Our observations indicate that these obstacles are dealt with perforations of the host wall, the host cellular membrane, and the host photosynthetic membranes by viral-encoded proteins. Furthermore, our results highlight a bacteriophage-like nature of early PBCV-1 infection stages, thus implying that this virus uniquely combines bacteriophage-like and eukaryotic-like pathways to accomplish its replication cycle.
Collapse
Affiliation(s)
- Elad Milrot
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (EM); (AM)
| | - Eyal Shimoni
- Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Tali Dadosh
- Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Katya Rechav
- Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Unger
- Proteomics, The Weizmann Institute of Science, Rehovot, Israel
| | - James L. Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE, United States of America
| | - Abraham Minsky
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (EM); (AM)
| |
Collapse
|
70
|
Kovalev N, Inaba JI, Li Z, Nagy PD. The role of co-opted ESCRT proteins and lipid factors in protection of tombusviral double-stranded RNA replication intermediate against reconstituted RNAi in yeast. PLoS Pathog 2017; 13:e1006520. [PMID: 28759634 PMCID: PMC5552349 DOI: 10.1371/journal.ppat.1006520] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 08/10/2017] [Accepted: 07/07/2017] [Indexed: 01/28/2023] Open
Abstract
Reconstituted antiviral defense pathway in surrogate host yeast is used as an intracellular probe to further our understanding of virus-host interactions and the role of co-opted host factors in formation of membrane-bound viral replicase complexes in protection of the viral RNA against ribonucleases. The inhibitory effect of the RNA interference (RNAi) machinery of S. castellii, which only consists of the two-component DCR1 and AGO1 genes, was measured against tomato bushy stunt virus (TBSV) in wild type and mutant yeasts. We show that deletion of the co-opted ESCRT-I (endosomal sorting complexes required for transport I) or ESCRT-III factors makes TBSV replication more sensitive to the RNAi machinery in yeast. Moreover, the lack of these pro-viral cellular factors in cell-free extracts (CFEs) used for in vitro assembly of the TBSV replicase results in destruction of dsRNA replication intermediate by a ribonuclease at the 60 min time point when the CFE from wt yeast has provided protection for dsRNA. In addition, we demonstrate that co-opted oxysterol-binding proteins and membrane contact sites, which are involved in enrichment of sterols within the tombusvirus replication compartment, are required for protection of viral dsRNA. We also show that phosphatidylethanolamine level influences the formation of RNAi-resistant replication compartment. In the absence of peroxisomes in pex3Δ yeast, TBSV subverts the ER membranes, which provide as good protection for TBSV dsRNA against RNAi or ribonucleases as the peroxisomal membranes in wt yeast. Altogether, these results demonstrate that co-opted protein factors and usurped lipids are exploited by tombusviruses to build protective subcellular environment against the RNAi machinery and possibly other cellular ribonucleases. Positive-strand RNA viruses build membranous replication compartment to support their replication in the infected hosts. One of the proposed functions of the usurped subcellular membranes is to protect the viral RNA from recognition and destruction by various cellular RNA sensors and ribonucleases. To answer this fundamental question on the putative role of co-opted host factors and membranes in protecting the viral double-stranded RNA replication intermediate during replication, the authors took advantage of yeast (Saccharomyces cerevisiae), which lacks the conserved RNAi machinery, as a surrogate host for TBSV. The reconstituted RNAi machinery from S. castellii in S. cerevisiae was used as an intracellular probe to study the effect of various co-opted cellular proteins and lipids on the formation of RNAi-insensitive replication compartment. Overall, the authors demonstrate the interaction between the RNAi machinery and the viral replicase complex, and the essential roles of usurped host factors in protecting the viral dsRNA replication intermediate from RNAi-based degradation.
Collapse
Affiliation(s)
- Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jun-ichi Inaba
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhenghe Li
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
- Institute of Biotechnology, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, P. R. China
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
71
|
Shah PNM, Stanifer ML, Höhn K, Engel U, Haselmann U, Bartenschlager R, Kräusslich HG, Krijnse-Locker J, Boulant S. Genome packaging of reovirus is mediated by the scaffolding property of the microtubule network. Cell Microbiol 2017; 19. [PMID: 28672089 DOI: 10.1111/cmi.12765] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/19/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022]
Abstract
Reovirus replication occurs in the cytoplasm of the host cell, in virally induced mini-organelles called virus factories. On the basis of the serotype of the virus, the virus factories can manifest as filamentous (type 1 Lang strain) or globular structures (type 3 Dearing strain). The filamentous factories morphology is dependent on the microtubule cytoskeleton; however, the exact function of the microtubule network in virus replication remains unknown. Using a combination of fluorescent microscopy, electron microscopy, and tomography of high-pressure frozen and freeze-substituted cells, we determined the ultrastructural organisation of reovirus factories. Cells infected with the reovirus microtubule-dependent strain display paracrystalline arrays of progeny virions resulting from their tiered organisation around microtubule filaments. On the contrary, in cells infected with the microtubule-independent strain, progeny virions lacked organisation. Conversely to the microtubule-dependent strain, around half of the viral particles present in these viral factories did not contain genomes (genome-less particles). Complementarily, interference with the microtubule filaments in cells infected with the microtubule-dependent strain resulted in a significant increase of genome-less particle number. This decrease of genome packaging efficiency could be rescued by rerouting viral factories on the actin cytoskeleton. These findings demonstrate that the scaffolding properties of the microtubule, and not biochemical nature of tubulin, are critical determinants for reovirus efficient genome packaging. This work establishes, for the first time, a functional correlation between ultrastructural organisation of reovirus factories with genome packaging efficiency and provides novel information on how viruses coordinate assembly of progeny particles.
Collapse
Affiliation(s)
- Pranav N M Shah
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,Schaller Research Group at CellNetworks and DKFZ, Heidelberg, Germany
| | - Megan L Stanifer
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,Schaller Research Group at CellNetworks and DKFZ, Heidelberg, Germany
| | - Katharina Höhn
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ulrike Engel
- Nikon Imaging Center, Heidelberg University, Heidelberg, Germany
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jacomine Krijnse-Locker
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,Ultrapole, Ultrastructural Bio-imaging, Center for Innovation and Technological Research, Institut Pasteur, Paris, France
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,Schaller Research Group at CellNetworks and DKFZ, Heidelberg, Germany
| |
Collapse
|
72
|
Hong JS, Ju HJ. The Plant Cellular Systems for Plant Virus Movement. THE PLANT PATHOLOGY JOURNAL 2017; 33:213-228. [PMID: 28592941 PMCID: PMC5461041 DOI: 10.5423/ppj.rw.09.2016.0198] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/05/2016] [Accepted: 11/13/2016] [Indexed: 05/24/2023]
Abstract
Plasmodesmata (PDs) are specialized intercellular channels that facilitate the exchange of various molecules, including sugars, ribonucleoprotein complexes, transcription factors, and mRNA. Their diameters, estimated to be 2.5 nm in the neck region, are too small to transfer viruses or viral genomes. Tobacco mosaic virus and Potexviruses are the most extensively studied viruses. In viruses, the movement protein (MP) is responsible for the PD gating that allows the intercellular movement of viral genomes. Various host factors interact with MP to regulate complicated mechanisms related to PD gating. Virus replication and assembly occur in viral replication complex (VRC) with membrane association, especially in the endoplasmic reticulum. VRC have a highly organized structure and are highly regulated by interactions among the various host factors, proteins encoded by the viral genome, and the viral genome. Virus trafficking requires host machineries, such as the cytoskeleton and the secretory systems. MP facilitates the virus replication and movement process. Despite the current level of understanding of virus movement, there are still many unknown and complex interactions between virus replication and virus movement. While numerous studies have been conducted to understand plant viruses with regards to cell-to-cell movement and replication, there are still many knowledge gaps. To study these interactions, adequate research tools must be used such as molecular, and biochemical techniques. Without such tools, virologists will not be able to gain an accurate or detailed understanding of the virus infection process.
Collapse
Affiliation(s)
- Jin-Sung Hong
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Ho-Jong Ju
- Department of Agricultural Biology, College of Agricultural Life Science, Chonbuk National University, Jeonju 54896, Korea
- Plant Medicinal Research Center, College of Agricultural Life Science, Chonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
73
|
Xu K, Nagy PD. Sterol Binding by the Tombusviral Replication Proteins Is Essential for Replication in Yeast and Plants. J Virol 2017; 91:e01984-16. [PMID: 28100609 PMCID: PMC5355592 DOI: 10.1128/jvi.01984-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/10/2017] [Indexed: 12/24/2022] Open
Abstract
Membranous structures derived from various organelles are important for replication of plus-stranded RNA viruses. Although the important roles of co-opted host proteins in RNA virus replication have been appreciated for a decade, the equally important functions of cellular lipids in virus replication have been gaining full attention only recently. Previous work with Tomato bushy stunt tombusvirus (TBSV) in model host yeast has revealed essential roles for phosphatidylethanolamine and sterols in viral replication. To further our understanding of the role of sterols in tombusvirus replication, in this work we showed that the TBSV p33 and p92 replication proteins could bind to sterols in vitro The sterol binding by p33 is supported by cholesterol recognition/interaction amino acid consensus (CRAC) and CARC-like sequences within the two transmembrane domains of p33. Mutagenesis of the critical Y amino acids within the CRAC and CARC sequences blocked TBSV replication in yeast and plant cells. We also showed the enrichment of sterols in the detergent-resistant membrane (DRM) fractions obtained from yeast and plant cells replicating TBSV. The DRMs could support viral RNA synthesis on both the endogenous and exogenous templates. A lipidomic approach showed the lack of enhancement of sterol levels in yeast and plant cells replicating TBSV. The data support the notion that the TBSV replication proteins are associated with sterol-rich detergent-resistant membranes in yeast and plant cells. Together, the results obtained in this study and the previously published results support the local enrichment of sterols around the viral replication proteins that is critical for TBSV replication.IMPORTANCE One intriguing aspect of viral infections is their dependence on efficient subcellular assembly platforms serving replication, virion assembly, or virus egress via budding out of infected cells. These assembly platforms might involve sterol-rich membrane microdomains, which are heterogeneous and highly dynamic nanoscale structures usurped by various viruses. Here, we demonstrate that TBSV p33 and p92 replication proteins can bind to sterol in vitro Mutagenesis analysis of p33 within the CRAC and CARC sequences involved in sterol binding shows the important connection between the abilities of p33 to bind to sterol and to support TBSV replication in yeast and plant cells. Together, the results further strengthen the model that cellular sterols are essential as proviral lipids during viral replication.
Collapse
Affiliation(s)
- Kai Xu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
74
|
Geng C, Yan ZY, Cheng DJ, Liu J, Tian YP, Zhu CX, Wang HY, Li XD. Tobacco vein banding mosaic virus 6K2 Protein Hijacks NbPsbO1 for Virus Replication. Sci Rep 2017; 7:43455. [PMID: 28230184 PMCID: PMC5322494 DOI: 10.1038/srep43455] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/23/2017] [Indexed: 01/18/2023] Open
Abstract
Chloroplast-bound vesicles are key components in viral replication complexes (VRCs) of potyviruses. The potyviral VRCs are induced by the second 6 kDa protein (6K2) and contain at least viral RNA and nuclear inclusion protein b. To date, no chloroplast protein has been identified to interact with 6K2 and involve in potyvirus replication. In this paper, we showed that the Photosystem II oxygen evolution complex protein of Nicotiana benthamiana (NbPsbO1) was a chloroplast protein interacting with 6K2 of Tobacco vein banding mosaic virus (TVBMV; genus Potyvirus) and present in the VRCs. The first 6 kDa protein (6K1) was recruited to VRCs by 6K2 but had no interaction with NbPSbO1. Knockdown of NbPsbO1 gene expression in N. benthamiana plants through virus-induced gene silencing significantly decreased the accumulation levels of TVBMV and another potyvirus Potato virus Y, but not Potato virus X of genus Potexvirus. Amino acid substitutions in 6K2 that disrupted its interaction with NbPsbO1 also affected the replication of TVBMV. NbPsbP1 and NbPsbQ1, two other components of the Photosystem II oxygen evolution complex had no interaction with 6K2 and no effect on TVBMV replication. To conclude, 6K2 recruits 6K1 to VRCs and hijacks chloroplast protein NbPsbO1 to regulate potyvirus replication.
Collapse
Affiliation(s)
- Chao Geng
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Zhi-Yong Yan
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - De-Jie Cheng
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Jin Liu
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yan-Ping Tian
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Chang-Xiang Zhu
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
- Shandong Provincial Key laboratory for Agricultural Microbiology, Tai’an, Shandong, 271018, China
| | - Hong-Yan Wang
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xiang-Dong Li
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
- Shandong Provincial Key laboratory for Agricultural Microbiology, Tai’an, Shandong, 271018, China
| |
Collapse
|
75
|
Moriceau L, Jomat L, Bressanelli S, Alcaide-Loridan C, Jupin I. Identification and Molecular Characterization of the Chloroplast Targeting Domain of Turnip yellow mosaic virus Replication Proteins. FRONTIERS IN PLANT SCIENCE 2017; 8:2138. [PMID: 29312393 PMCID: PMC5742235 DOI: 10.3389/fpls.2017.02138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/04/2017] [Indexed: 05/20/2023]
Abstract
Turnip yellow mosaic virus (TYMV) is a positive-strand RNA virus infecting plants. The TYMV 140K replication protein is a key organizer of viral replication complex (VRC) assembly, being responsible for recruitment of the viral polymerase and for targeting the VRCs to the chloroplast envelope where viral replication takes place. However, the structural requirements determining the subcellular localization and membrane association of this essential viral protein have not yet been defined. In this study, we investigated determinants for the in vivo chloroplast targeting of the TYMV 140K replication protein. Subcellular localization studies of deletion mutants identified a 41-residue internal sequence as the chloroplast targeting domain (CTD) of TYMV 140K; this sequence is sufficient to target GFP to the chloroplast envelope. The CTD appears to be located in the C-terminal extension of the methyltransferase domain-a region shared by 140K and its mature cleavage product 98K, which behaves as an integral membrane protein during infection. We predicted the CTD to fold into two amphipathic α-helices-a folding that was confirmed in vitro by circular dichroism spectroscopy analyses of a synthetic peptide. The importance for subcellular localization of the integrity of these amphipathic helices, and the function of 140K/98K, was demonstrated by performing amino acid substitutions that affected chloroplast targeting, membrane association and viral replication. These results establish a short internal α-helical peptide as an unusual signal for targeting proteins to the chloroplast envelope membrane, and provide new insights into membrane targeting of viral replication proteins-a universal feature of positive-strand RNA viruses.
Collapse
Affiliation(s)
- Lucille Moriceau
- Laboratory of Molecular Virology, Institut Jacques Monod, CNRS, Université Paris-Diderot, Paris, France
- Université Paris-Sud – Université Paris-Saclay, Orsay, France
| | - Lucile Jomat
- Laboratory of Molecular Virology, Institut Jacques Monod, CNRS, Université Paris-Diderot, Paris, France
| | - Stéphane Bressanelli
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud – Université Paris-Saclay, Gif-sur-Yvette, France
| | - Catherine Alcaide-Loridan
- Laboratory of Molecular Virology, Institut Jacques Monod, CNRS, Université Paris-Diderot, Paris, France
| | - Isabelle Jupin
- Laboratory of Molecular Virology, Institut Jacques Monod, CNRS, Université Paris-Diderot, Paris, France
- *Correspondence: Isabelle Jupin,
| |
Collapse
|
76
|
Abstract
Replication of positive-strand RNA viruses occurs in tight association with reorganized host cell membranes. In a concerted fashion, viral and cellular factors generate distinct organelle-like structures, designated viral replication factories. These virus-induced compartments promote highly efficient genome replication, allow spatiotemporal coordination of the different steps of the viral replication cycle, and protect viral RNA from the hostile cytoplasmic environment. The combined use of ultrastructural and functional studies has greatly increased our understanding of the architecture and biogenesis of viral replication factories. Here, we review common concepts and distinct differences in replication organelle morphology and biogenesis within the Flaviviridae family, exemplified by dengue virus and hepatitis C virus. We discuss recent progress made in our understanding of the complex interplay between viral determinants and subverted cellular membrane homeostasis in biogenesis and maintenance of replication factories of this virus family.
Collapse
Affiliation(s)
- David Paul
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany; ,
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany; , .,Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
77
|
Xu K, Nagy PD. Enrichment of Phosphatidylethanolamine in Viral Replication Compartments via Co-opting the Endosomal Rab5 Small GTPase by a Positive-Strand RNA Virus. PLoS Biol 2016; 14:e2000128. [PMID: 27760128 PMCID: PMC5070881 DOI: 10.1371/journal.pbio.2000128] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/19/2016] [Indexed: 12/28/2022] Open
Abstract
Positive-strand RNA viruses build extensive membranous replication compartments to support replication and protect the virus from antiviral responses by the host. These viruses require host factors and various lipids to form viral replication complexes (VRCs). The VRCs built by Tomato bushy stunt virus (TBSV) are enriched with phosphatidylethanolamine (PE) through a previously unknown pathway. To unravel the mechanism of PE enrichment within the TBSV replication compartment, in this paper, the authors demonstrate that TBSV co-opts the guanosine triphosphate (GTP)-bound active form of the endosomal Rab5 small GTPase via direct interaction with the viral replication protein. Deletion of Rab5 orthologs in a yeast model host or expression of dominant negative mutants of plant Rab5 greatly decreases TBSV replication and prevents the redistribution of PE to the sites of viral replication. We also show that enrichment of PE in the viral replication compartment is assisted by actin filaments. Interestingly, the closely related Carnation Italian ringspot virus, which replicates on the boundary membrane of mitochondria, uses a similar strategy to the peroxisomal TBSV to hijack the Rab5-positive endosomes into the viral replication compartments. Altogether, usurping the GTP-Rab5–positive endosomes allows TBSV to build a PE-enriched viral replication compartment, which is needed to support peak-level replication. Thus, the Rab family of small GTPases includes critical host factors assisting VRC assembly and genesis of the viral replication compartment. Plants, animals, and humans are threatened by positive-stranded RNA viruses, which are one of the major groups of intracellular pathogens. To support robust virus replication, these viruses subvert intracellular membranes and co-opt host proteins into virus-induced replication compartments. Tomato bushy stunt virus (TBSV) is a model virus used in yeast to dissect the roles of lipids and proteins in virus replication. In this work, the authors show that one of the two TBSV replication proteins interacts with the guanosine triphosphate (GTP)-bound Rab5 small GTPase, which allows the virus to take advantage of phosphatidylethanolamine (PE)-rich endosomes to build viral replication compartments consisting of peroxisomes. Peak level of TBSV replication depends on the co-opted abundant PE-rich Rab5-positive membranes in plants, too.
Collapse
Affiliation(s)
- Kai Xu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
78
|
Efficiency in Complexity: Composition and Dynamic Nature of Mimivirus Replication Factories. J Virol 2016; 90:10039-10047. [PMID: 27581975 DOI: 10.1128/jvi.01319-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/18/2016] [Indexed: 11/20/2022] Open
Abstract
The recent discovery of multiple giant double-stranded DNA (dsDNA) viruses blurred the consensual distinction between viruses and cells due to their size, as well as to their structural and genetic complexity. A dramatic feature revealed by these viruses as well as by many positive-strand RNA viruses is their ability to rapidly form elaborate intracellular organelles, termed "viral factories," where viral progeny are continuously generated. Here we report the first isolation of viral factories at progressive postinfection time points. The isolated factories were subjected to mass spectrometry-based proteomics, bioinformatics, and imaging analyses. These analyses revealed that numerous viral proteins are present in the factories but not in mature virions, thus implying that multiple and diverse proteins are required to promote the efficiency of viral factories as "production lines" of viral progeny. Moreover, our results highlight the dynamic and highly complex nature of viral factories, provide new and general insights into viral infection, and substantiate the intriguing notion that viral factories may represent the living state of viruses. IMPORTANCE Large dsDNA viruses such as vaccinia virus and the giant mimivirus, as well as many positive-strand RNA viruses, generate elaborate cytoplasmic organelles in which the multiple and diverse transactions required for viral replication and assembly occur. These organelles, which were termed "viral factories," are attracting much interest due to the increasing realization that the rapid and continuous production of viral progeny is a direct outcome of the elaborate structure and composition of the factories, which act as efficient production lines. To get new insights into the nature and function of viral factories, we devised a method that allows, for the first time, the isolation of these organelles. Analyses of the isolated factories generated at different times postinfection by mass spectrometry-based proteomics provide new perceptions of their role and reveal the highly dynamic nature of these organelles.
Collapse
|
79
|
Nagy PD. Tombusvirus-Host Interactions: Co-Opted Evolutionarily Conserved Host Factors Take Center Court. Annu Rev Virol 2016; 3:491-515. [PMID: 27578441 DOI: 10.1146/annurev-virology-110615-042312] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant positive-strand (+)RNA viruses are intracellular infectious agents that reorganize subcellular membranes and rewire the cellular metabolism of host cells to achieve viral replication in elaborate replication compartments. This review describes the viral replication process based on tombusviruses, highlighting common strategies with other plant and animal viruses. Overall, the works on Tomato bushy stunt virus (TBSV) have revealed intriguing and complex functions of co-opted cellular translation factors, heat shock proteins, DEAD-box helicases, lipid transfer proteins, and membrane-deforming proteins in virus replication. The emerging picture is that many of the co-opted host factors are from highly expressed and conserved protein families. By hijacking host proteins, phospholipids, sterols, and the actin network, TBSV exerts supremacy over the host cell to support viral replication in large replication compartments. Altogether, these advances in our understanding of tombusvirus-host interactions are broadly applicable to many other viruses, which also usurp conserved host factors for various viral processes.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546;
| |
Collapse
|
80
|
Nee S. The evolutionary ecology of molecular replicators. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160235. [PMID: 27853598 PMCID: PMC5108948 DOI: 10.1098/rsos.160235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/01/2016] [Indexed: 05/12/2023]
Abstract
By reasonable criteria, life on the Earth consists mainly of molecular replicators. These include viruses, transposons, transpovirons, coviruses and many more, with continuous new discoveries like Sputnik Virophage. Their study is inherently multidisciplinary, spanning microbiology, genetics, immunology and evolutionary theory, and the current view is that taking a unified approach has great power and promise. We support this with a new, unified, model of their evolutionary ecology, using contemporary evolutionary theory coupling the Price equation with game theory, studying the consequences of the molecular replicators' promiscuous use of each others' gene products for their natural history and evolutionary ecology. Even at this simple expository level, we can make a firm prediction of a new class of replicators exploiting viruses such as lentiviruses like SIVs, a family which includes HIV: these have been explicitly stated in the primary literature to be non-existent. Closely connected to this departure is the view that multicellular organism immunology is more about the management of chronic infections rather than the elimination of acute ones and new understandings emerging are changing our view of the kind of theatre we ourselves provide for the evolutionary play of molecular replicators. This study adds molecular replicators to bacteria in the emerging field of sociomicrobiology.
Collapse
Affiliation(s)
- Sean Nee
- Author for correspondence: Sean Nee e-mail:
| |
Collapse
|
81
|
Triyatni M, Berger EA, Saunier B. Assembly and release of infectious hepatitis C virus involving unusual organization of the secretory pathway. World J Hepatol 2016; 8:796-814. [PMID: 27429716 PMCID: PMC4937168 DOI: 10.4254/wjh.v8.i19.796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/30/2016] [Accepted: 06/03/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine if calnexin (CANX), RAB1 and alpha-tubulin were involved in the production of hepatitis C virus (HCV) particles by baby hamster kidney-West Nile virus (BHK-WNV) cells.
METHODS: Using a siRNA-based approach complemented with immuno-fluorescence confocal microscope and Western blot studies, we examined the roles of CANX, RAB1 and alpha-tubulin in the production of HCV particles by permissive BHK-WNV cells expressing HCV structural proteins or the full-length genome of HCV genotype 1a. Immuno-fluorescence studies in producer cells were performed with monoclonal antibodies against HCV structural proteins, as well as immunoglobulin from the serum of a patient recently cured from an HCV infection of same genotype. The cellular compartment stained by the serum immunoglobulin was also observed in thin section transmission electron microscopy. These findings were compared with the JFH-1 strain/Huh-7.5 cell model.
RESULTS: We found that CANX was necessary for the production of HCV particles by BHK-WNV cells. This process involved the recruitment of a subset of HCV proteins, detected by immunoglobulin of an HCV-cured patient, in a compartment of rearranged membranes bypassing the endoplasmic reticulum-Golgi intermediary compartment and surrounded by mitochondria. It also involved the maturation of N-linked glycans on HCV envelope proteins, which was required for assembly and/or secretion of HCV particles. The formation of this specialized compartment required RAB1; upon expression of HCV structural genes, this compartment developed large vesicles with viral particles. RAB1 and alpha-tubulin were required for the release of HCV particles. These cellular factors were also involved in the production of HCVcc in the JFH-1 strain/Huh-7.5 cell system, which involves HCV RNA replication. The secretion of HCV particles by BHK-WNV cells presents similarities with a pathway involving caspase-1; a caspase-1 inhibitor was found to suppress the production of HCV particles from a full-length genome.
CONCLUSION: Prior activity of the WNV subgenomic replicon in BHK-21 cells promoted re-wiring of host factors for the assembly and release of infectious HCV in a caspase-1-dependent mechanism.
Collapse
|
82
|
Abstract
In all organisms, DNA molecules are tightly compacted into a dynamic 3D nucleoprotein complex. In bacteria, this compaction is governed by the family of nucleoid-associated proteins (NAPs). Under conditions of stress and starvation, an NAP called Dps (DNA-binding protein from starved cells) becomes highly up-regulated and can massively reorganize the bacterial chromosome. Although static structures of Dps-DNA complexes have been documented, little is known about the dynamics of their assembly. Here, we use fluorescence microscopy and magnetic-tweezers measurements to resolve the process of DNA compaction by Dps. Real-time in vitro studies demonstrated a highly cooperative process of Dps binding characterized by an abrupt collapse of the DNA extension, even under applied tension. Surprisingly, we also discovered a reproducible hysteresis in the process of compaction and decompaction of the Dps-DNA complex. This hysteresis is extremely stable over hour-long timescales despite the rapid binding and dissociation rates of Dps. A modified Ising model is successfully applied to fit these kinetic features. We find that long-lived hysteresis arises naturally as a consequence of protein cooperativity in large complexes and provides a useful mechanism for cells to adopt unique epigenetic states.
Collapse
|
83
|
Giant viruses at the core of microscopic wars with global impacts. Curr Opin Virol 2016; 17:130-137. [DOI: 10.1016/j.coviro.2016.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/21/2022]
|
84
|
Fernández de Castro I, Fernández JJ, Barajas D, Nagy PD, Risco C. Three-dimensional imaging of the intracellular assembly of a functional viral RNA replicase complex. J Cell Sci 2016; 130:260-268. [PMID: 27026525 DOI: 10.1242/jcs.181586] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/18/2016] [Indexed: 01/30/2023] Open
Abstract
Positive-strand RNA viruses, which can be devastating pathogens in humans, animals and plants, replicate their genomes on intracellular membranes. Here, we describe the three-dimensional ultrastructural organization of a tombusvirus replicase in yeast, a valuable model for exploring virus-host interactions. We visualized the intracellular distribution of a viral replicase protein using metal-tagging transmission electron microscopy, a highly sensitive nanotechnology whose full potential remains to be developed. These three-dimensional images show how viral replicase molecules are organized when they are incorporated into the active domains of the intracellular replication compartment. Our approach provides a means to study protein activation mechanisms in cells and to identify targets for new antiviral compounds.
Collapse
Affiliation(s)
- Isabel Fernández de Castro
- Cell Structure Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid 28049, Spain
| | - José J Fernández
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid 28049, Spain
| | - Daniel Barajas
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, KY 40546, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, KY 40546, USA
| | - Cristina Risco
- Cell Structure Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
85
|
Fernández de Castro I, Tenorio R, Risco C. Virus assembly factories in a lipid world. Curr Opin Virol 2016; 18:20-6. [PMID: 26985879 DOI: 10.1016/j.coviro.2016.02.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/11/2016] [Accepted: 02/19/2016] [Indexed: 12/15/2022]
Abstract
Many viruses build specialized structures known as viral factories, a protected environment in which viral genome replication and morphogenesis take place. Recent findings show that viruses manipulate lipid flows to assemble these replication platforms. Viruses are thus able to create new membranes by interfering with lipid metabolism, targeting and transport; they make use of specific lipid transfer proteins (LTP) at membrane contact sites, and frequently recruit endoplasmic reticulum (ER), ER export sites, and mitochondria. Some factories, such as those built by plant and certain animal viruses, are motile membranous structures involved in intracellular or intercellular transport of the replicated viral genome. The identification of lipids and LTP subverted by viruses might lead to better understand and fight viral infections.
Collapse
Affiliation(s)
- Isabel Fernández de Castro
- Cell Structure Laboratory, Centro Nacional de Biotecnología, CNB-CSIC, UAM, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Raquel Tenorio
- Cell Structure Laboratory, Centro Nacional de Biotecnología, CNB-CSIC, UAM, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, Centro Nacional de Biotecnología, CNB-CSIC, UAM, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
86
|
Schoelz JE, Angel CA, Nelson RS, Leisner SM. A model for intracellular movement of Cauliflower mosaic virus: the concept of the mobile virion factory. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2039-48. [PMID: 26687180 DOI: 10.1093/jxb/erv520] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The genomes of many plant viruses have a coding capacity limited to <10 proteins, yet it is becoming increasingly clear that individual plant virus proteins may interact with several targets in the host for establishment of infection. As new functions are uncovered for individual viral proteins, virologists have realized that the apparent simplicity of the virus genome is an illusion that belies the true impact that plant viruses have on host physiology. In this review, we discuss our evolving understanding of the function of the P6 protein of Cauliflower mosaic virus (CaMV), a process that was initiated nearly 35 years ago when the CaMV P6 protein was first described as the 'major inclusion body protein' (IB) present in infected plants. P6 is now referred to in most articles as the transactivator (TAV)/viroplasmin protein, because the first viral function to be characterized for the Caulimovirus P6 protein beyond its role as an inclusion body protein (the viroplasmin) was its role in translational transactivation (the TAV function). This review will discuss the currently accepted functions for P6 and then present the evidence for an entirely new function for P6 in intracellular movement.
Collapse
Affiliation(s)
- James E Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Carlos A Angel
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Richard S Nelson
- The Division of Plant Biology, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Scott M Leisner
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
87
|
Nawaz-ul-Rehman MS, Prasanth KR, Xu K, Sasvari Z, Kovalev N, de Castro Martín IF, Barajas D, Risco C, Nagy PD. Viral Replication Protein Inhibits Cellular Cofilin Actin Depolymerization Factor to Regulate the Actin Network and Promote Viral Replicase Assembly. PLoS Pathog 2016; 12:e1005440. [PMID: 26863541 PMCID: PMC4749184 DOI: 10.1371/journal.ppat.1005440] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/15/2016] [Indexed: 01/28/2023] Open
Abstract
RNA viruses exploit host cells by co-opting host factors and lipids and escaping host antiviral responses. Previous genome-wide screens with Tomato bushy stunt virus (TBSV) in the model host yeast have identified 18 cellular genes that are part of the actin network. In this paper, we show that the p33 viral replication factor interacts with the cellular cofilin (Cof1p), which is an actin depolymerization factor. Using temperature-sensitive (ts) Cof1p or actin (Act1p) mutants at a semi-permissive temperature, we find an increased level of TBSV RNA accumulation in yeast cells and elevated in vitro activity of the tombusvirus replicase. We show that the large p33 containing replication organelle-like structures are located in the close vicinity of actin patches in yeast cells or around actin cable hubs in infected plant cells. Therefore, the actin filaments could be involved in VRC assembly and the formation of large viral replication compartments containing many individual VRCs. Moreover, we show that the actin network affects the recruitment of viral and cellular components, including oxysterol binding proteins and VAP proteins to form membrane contact sites for efficient transfer of sterols to the sites of replication. Altogether, the emerging picture is that TBSV, via direct interaction between the p33 replication protein and Cof1p, controls cofilin activities to obstruct the dynamic actin network that leads to efficient subversion of cellular factors for pro-viral functions. In summary, the discovery that TBSV interacts with cellular cofilin and blocks the severing of existing filaments and the formation of new actin filaments in infected cells opens a new window to unravel the way by which viruses could subvert/co-opt cellular proteins and lipids. By regulating the functions of cofilin and the actin network, which are central nodes in cellular pathways, viruses could gain supremacy in subversion of cellular factors for pro-viral functions.
Collapse
Affiliation(s)
| | - K. Reddisiva Prasanth
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kai Xu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zsuzsanna Sasvari
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | | | - Daniel Barajas
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Cristina Risco
- Cell Structure Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
88
|
Kovalev N, de Castro Martín IF, Pogany J, Barajas D, Pathak K, Risco C, Nagy PD. Role of Viral RNA and Co-opted Cellular ESCRT-I and ESCRT-III Factors in Formation of Tombusvirus Spherules Harboring the Tombusvirus Replicase. J Virol 2016; 90:3611-26. [PMID: 26792735 PMCID: PMC4794697 DOI: 10.1128/jvi.02775-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/12/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Plus-stranded RNA viruses induce membrane deformations in infected cells in order to build viral replication complexes (VRCs). Tomato bushy stunt virus (TBSV) co-opts cellular ESCRT (endosomal sorting complexes required for transport) proteins to induce the formation of vesicle (spherule)-like structures in the peroxisomal membrane with tight openings toward the cytosol. In this study, using a yeast (Saccharomyces cerevisiae) vps23Δ bro1Δ double-deletion mutant, we showed that the Vps23p ESCRT-I protein (Tsg101 in mammals) and Bro1p (ALIX) ESCRT-associated protein, both of which bind to the viral p33 replication protein, play partially complementary roles in TBSV replication in cells and in cell extracts. Dual expression of dominant-negative versions of Arabidopsis homologs of Vps23p and Bro1p inhibited tombusvirus replication to greater extent than individual expression in Nicotiana benthamiana leaves. We also demonstrated the critical role of Snf7p (CHMP4), Vps20p, and Vps24p ESCRT-III proteins in tombusvirus replication in yeast and in vitro. Electron microscopic imaging of vps23Δ yeast revealed the lack of tombusvirus-induced spherule-like structures, while crescent-like structures are formed in ESCRT-III deletion yeasts replicating TBSV RNA. In addition, we also showed that the length of the viral RNA affects the sizes of spherules formed in N. benthamiana cells. The 4.8-kb genomic RNA is needed for the formation of spherules 66 nm in diameter, while spherules formed during the replication of the ∼600-nucleotide (nt)-long defective interfering RNA in the presence of p33 and p92 replication proteins are 42 nm. We propose that the viral RNA serves as a "measuring string" during VRC assembly and spherule formation. IMPORTANCE Plant positive-strand RNA viruses, similarly to animal positive-strand RNA viruses, replicate in membrane-bound viral replicase complexes in the cytoplasm of infected cells. Identification of cellular and viral factors affecting the formation of the membrane-bound viral replication complex is a major frontier in current virology research. In this study, we dissected the functions of co-opted cellular ESCRT-I (endosomal sorting complexes required for transport I) and ESCRT-III proteins and the viral RNA in tombusvirus replicase complex formation using in vitro, yeast-based, and plant-based approaches. Electron microscopic imaging revealed the lack of tombusvirus-induced spherule-like structures in ESCRT-I or ESCRT-III deletion yeasts replicating TBSV RNA, demonstrating the requirement for these co-opted cellular factors in tombusvirus replicase formation. The work could be of broad interest in virology and beyond.
Collapse
Affiliation(s)
- Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | | | - Judit Pogany
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Daniel Barajas
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Kunj Pathak
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Cristina Risco
- Cell Structure Laboratory, Centro Nacional de Biotecnología, Madrid, Spain
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
89
|
The non-structural protein μNS of piscine orthoreovirus (PRV) forms viral factory-like structures. Vet Res 2016; 47:5. [PMID: 26743679 PMCID: PMC4705589 DOI: 10.1186/s13567-015-0302-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 09/04/2015] [Indexed: 01/15/2023] Open
Abstract
Piscine orthoreovirus (PRV) is associated with heart- and skeletal muscle inflammation in farmed Atlantic salmon. The virus is ubiquitous and found in both farmed and wild salmonid fish. It belongs to the family Reoviridae, closely related to the genus Orthoreovirus. The PRV genome comprises ten double-stranded RNA segments encoding at least eight structural and two non-structural proteins. Erythrocytes are the major target cells for PRV. Infected erythrocytes contain globular inclusions resembling viral factories; the putative site of viral replication. For the mammalian reovirus (MRV), the non-structural protein μNS is the primary organizer in factory formation. The analogous PRV protein was the focus of the present study. The subcellular location of PRV μNS and its co-localization with the PRV σNS, µ2 and λ1 proteins was investigated. We demonstrated that PRV μNS forms dense globular cytoplasmic inclusions in transfected fish cells, resembling the viral factories of MRV. In co-transfection experiments with μNS, the σNS, μ2 and λ1 proteins were recruited to the globular structures. The ability of μNS to recruit other PRV proteins into globular inclusions indicates that it is the main viral protein involved in viral factory formation and pivotal in early steps of viral assembly.
Collapse
|
90
|
Abstract
Many viruses replicate and assemble in subcellular microenvironments called virus factories or ‘viroplasm.’ Virus factories increase the efficiency of replication and at the same time protect viruses from antiviral defenses. We describe how viruses reorganize cellular membrane compartments and cytoskeleton to generate these ‘mini-organelles’ and how these rearrangements parallel cellular responses to stress such as protein aggregation and DNA damage.
Collapse
|
91
|
Imura Y, Molho M, Chuang C, Nagy PD. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants. Virology 2015; 484:265-275. [DOI: 10.1016/j.virol.2015.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/10/2015] [Accepted: 05/15/2015] [Indexed: 10/23/2022]
|
92
|
Bocan TM, Panchal RG, Bavari S. Applications of in vivo imaging in the evaluation of the pathophysiology of viral and bacterial infections and in development of countermeasures to BSL3/4 pathogens. Mol Imaging Biol 2015; 17:4-17. [PMID: 25008802 PMCID: PMC4544652 DOI: 10.1007/s11307-014-0759-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
While preclinical and clinical imaging have been applied to drug discovery/development and characterization of disease pathology, few examples exist where imaging has been used to evaluate infectious agents or countermeasures to biosafety level (BSL)3/4 threat agents. Viruses engineered with reporter constructs, i.e., enzymes and receptors, which are amenable to detection by positron emission tomography (PET), single photon emission tomography (SPECT), or magnetic resonance imaging (MRI) have been used to evaluate the biodistribution of viruses containing specific therapeutic or gene transfer payloads. Bioluminescence and nuclear approaches involving engineered reporters, direct labeling of bacteria with radiotracers, or tracking bacteria through their constitutively expressed thymidine kinase have been utilized to characterize viral and bacterial pathogens post-infection. Most PET, SPECT, CT, or MRI approaches have focused on evaluating host responses to the pathogens such as inflammation, brain neurochemistry, and structural changes and on assessing the biodistribution of radiolabeled drugs. Imaging has the potential when applied preclinically to the development of countermeasures against BSL3/4 threat agents to address the following: (1) presence, biodistribution, and time course of infection in the presence or absence of drug; (2) binding of the therapeutic to the target; and (3) expression of a pharmacologic effect either related to drug mechanism, efficacy, or safety. Preclinical imaging could potentially provide real-time dynamic tools to characterize the pathogen and animal model and for developing countermeasures under the U.S. FDA Animal Rule provision with high confidence of success and clinical benefit.
Collapse
Affiliation(s)
- Thomas M Bocan
- Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Ft. Detrick, MD, 21702, USA,
| | | | | |
Collapse
|
93
|
Milrot E, Mutsafi Y, Fridmann-Sirkis Y, Shimoni E, Rechav K, Gurnon JR, Van Etten JL, Minsky A. Virus-host interactions: insights from the replication cycle of the large Paramecium bursaria chlorella virus. Cell Microbiol 2015; 18:3-16. [PMID: 26248343 DOI: 10.1111/cmi.12486] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/09/2015] [Accepted: 07/15/2015] [Indexed: 12/20/2022]
Abstract
The increasing interest in cytoplasmic factories generated by eukaryotic-infecting viruses stems from the realization that these highly ordered assemblies may contribute fundamental novel insights to the functional significance of order in cellular biology. Here, we report the formation process and structural features of the cytoplasmic factories of the large dsDNA virus Paramecium bursaria chlorella virus 1 (PBCV-1). By combining diverse imaging techniques, including scanning transmission electron microscopy tomography and focused ion beam technologies, we show that the architecture and mode of formation of PBCV-1 factories are significantly different from those generated by their evolutionary relatives Vaccinia and Mimivirus. Specifically, PBCV-1 factories consist of a network of single membrane bilayers acting as capsid templates in the central region, and viral genomes spread throughout the host cytoplasm but excluded from the membrane-containing sites. In sharp contrast, factories generated by Mimivirus have viral genomes in their core, with membrane biogenesis region located at their periphery. Yet, all viral factories appear to share structural features that are essential for their function. In addition, our studies support the notion that PBCV-1 infection, which was recently reported to result in significant pathological outcomes in humans and mice, proceeds through a bacteriophage-like infection pathway.
Collapse
Affiliation(s)
- Elad Milrot
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yael Mutsafi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yael Fridmann-Sirkis
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - James R Gurnon
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE, 68583-0900, USA
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE, 68583-0900, USA
| | - Abraham Minsky
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
94
|
Xu K, Nagy PD. RNA virus replication depends on enrichment of phosphatidylethanolamine at replication sites in subcellular membranes. Proc Natl Acad Sci U S A 2015; 112:E1782-91. [PMID: 25810252 PMCID: PMC4394249 DOI: 10.1073/pnas.1418971112] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intracellular membranes are critical for replication of positive-strand RNA viruses. To dissect the roles of various lipids, we have developed an artificial phosphatidylethanolamine (PE) vesicle-based Tomato bushy stunt virus (TBSV) replication assay. We demonstrate that the in vitro assembled viral replicase complexes (VRCs) in artificial PE vesicles can support a complete cycle of replication and asymmetrical RNA synthesis, which is a hallmark of (+)-strand RNA viruses. Vesicles containing ∼85% PE and ∼15% additional phospholipids are the most efficient, suggesting that TBSV replicates within membrane microdomains enriched for PE. Accordingly, lipidomics analyses show increased PE levels in yeast surrogate host and plant leaves replicating TBSV. In addition, efficient redistribution of PE leads to enrichment of PE at viral replication sites. Expression of the tombusvirus p33 replication protein in the absence of other viral compounds is sufficient to promote intracellular redistribution of PE. Increased PE level due to deletion of PE methyltransferase in yeast enhances replication of TBSV and other viruses, suggesting that abundant PE in subcellular membranes has a proviral function. In summary, various (+)RNA viruses might subvert PE to build membrane-bound VRCs for robust replication in PE-enriched membrane microdomains.
Collapse
Affiliation(s)
- Kai Xu
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546
| |
Collapse
|
95
|
Gómez-Aix C, García-García M, Aranda MA, Sánchez-Pina MA. Melon necrotic spot virus Replication Occurs in Association with Altered Mitochondria. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:387-97. [PMID: 25372121 DOI: 10.1094/mpmi-09-14-0274-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Melon necrotic spot virus (MNSV) (genus Carmovirus, family Tombusviridae) is a single-stranded, positive-sense RNA virus that has become an experimental model for the analysis of cell-to-cell virus movement and translation of uncapped viral RNAs, whereas little is known about its replication. Analysis of the cytopathology after MNSV infection showed the specific presence of modified organelles that resemble mitochondria. Immunolocalization of the glycine decarboxylase complex (GDC) P protein in these organelles confirmed their mitochondrial origin. In situ hybridization and immunolocalization experiments showed the specific localization of positive-sense viral RNA, capsid protein (CP), and double-stranded (ds)RNA in these organelles meaning that replication of the virus takes place in association with them. The three-dimensional reconstructions of the altered mitochondria showed the presence of large, interconnected, internal dilations which appeared to be linked to the outside cytoplasmic environment through pores and/or complex structures, and with lipid bodies. Transient expression of MNSV p29 revealed that its specific target is mitochondria. Our data document the extensive reorganization of host mitochondria induced by MNSV, which provides a protected environment to viral replication, and show that the MNSV p29 protein is the primary determinant of this effect in the host.
Collapse
Affiliation(s)
- Cristina Gómez-Aix
- 1 Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, P.O. Box 164, 30100 Espinardo, Murcia, Spain
| | | | | | | |
Collapse
|
96
|
Activation of Tomato Bushy Stunt Virus RNA-Dependent RNA Polymerase by Cellular Heat Shock Protein 70 Is Enhanced by Phospholipids In Vitro. J Virol 2015; 89:5714-23. [PMID: 25762742 DOI: 10.1128/jvi.03711-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/08/2015] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Similar to other positive-strand RNA viruses, tombusviruses are replicated by the membrane-bound viral replicase complex (VRC). The VRC consists of the p92 virus-coded RNA-dependent RNA polymerase (RdRp), the viral p33 RNA chaperone, and several co-opted host proteins. In order to become a functional RdRp after its translation, the p92 replication protein should be incorporated into the VRC, followed by its activation. We have previously shown in a cell-free yeast extract-based assay that the activation of the Tomato bushy stunt virus (TBSV) RdRp requires a soluble host factor(s). In this article, we identify the cellular heat shock protein 70 (Hsp70) as the co-opted host factor required for the activation of an N-terminally truncated recombinant TBSV RdRp. In addition, small-molecule-based blocking of Hsp70 function inhibits RNA synthesis by the tombusvirus RdRp in vitro. Furthermore, we show that neutral phospholipids, namely, phosphatidylethanolamine (PE) and phosphatidylcholine (PC), enhance RdRp activation in vitro. In contrast, phosphatidylglycerol (PG) shows a strong and dominant inhibitory effect on in vitro RdRp activation. We also demonstrate that PE and PC stimulate RdRp-viral plus-strand RNA [(+)RNA] interaction, while PG inhibits the binding of the viral RNA to the RdRp. Based on the stimulatory versus inhibitory roles of various phospholipids in tombusvirus RdRp activation, we propose that the lipid composition of targeted subcellular membranes might be utilized by tombusviruses to regulate new VRC assembly during the course of infection. IMPORTANCE The virus-coded RNA-dependent RNA polymerase (RdRp), which is responsible for synthesizing the viral RNA progeny in infected cells of several positive-strand RNA viruses, is initially inactive. This strategy is likely to avoid viral RNA synthesis in the cytosol that would rapidly lead to induction of RNA-triggered cellular antiviral responses. During the assembly of the membrane-bound replicase complex, the viral RdRp becomes activated through an incompletely understood process that makes the RdRp capable of RNA synthesis. By using TBSV RdRp, we show that the co-opted cellular Hsp70 chaperone and neutral phospholipids facilitate RdRp activation in vitro. In contrast, phosphatidylglycerol (PG) has a dominant inhibitory effect on in vitro RdRp activation and RdRp-viral RNA interaction, suggesting that the membranous microdomain surrounding the RdRp greatly affects its ability for RNA synthesis. Thus, the activation of the viral RdRp likely depends on multiple host components in infected cells.
Collapse
|
97
|
Viral sensing of the subcellular environment regulates the assembly of new viral replicase complexes during the course of infection. J Virol 2015; 89:5196-9. [PMID: 25741009 DOI: 10.1128/jvi.02973-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Replication of plus-stranded RNA [(+)RNA] viruses depends on the availability of coopted host proteins and lipids. But, how could viruses sense the accessibility of cellular resources? An emerging concept based on tombusviruses, small plant viruses, is that viruses might regulate viral replication at several steps depending on what cellular factors are available at a given time point. I discuss the role of phospholipids, sterols, and cellular WW domain proteins and eukaryotic elongation factor 1A (eEF1A) in control of activation of the viral RNA-dependent RNA polymerase (RdRp) and regulation of the assembly of viral replicase complexes (VRCs). These regulatory mechanisms might explain how tombusviruses could adjust the efficiency of RNA replication and new VRC assembly to the limiting resources of the host cells during infections.
Collapse
|
98
|
Novel mechanism of regulation of tomato bushy stunt virus replication by cellular WW-domain proteins. J Virol 2014; 89:2064-79. [PMID: 25473045 DOI: 10.1128/jvi.02719-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED Replication of (+)RNA viruses depends on several co-opted host proteins but is also under the control of cell-intrinsic restriction factors (CIRFs). By using tombusviruses, small model viruses of plants, we dissect the mechanism of inhibition of viral replication by cellular WW-domain-containing proteins, which act as CIRFs. By using fusion proteins between the WW domain and the p33 replication protein, we show that the WW domain inhibits the ability of p33 to bind to the viral RNA and to other p33 and p92 replication proteins leading to inhibition of viral replication in yeast and in a cell extract. Overexpression of WW-domain protein in yeast also leads to reduction of several co-opted host factors in the viral replicase complex (VRC). These host proteins, such as eEF1A, Cdc34 E2 ubiquitin-conjugating enzyme, and ESCRT proteins (Bro1p and Vps4p), are known to be involved in VRC assembly. Simultaneous coexpression of proviral cellular factors with WW-domain protein partly neutralizes the inhibitory effect of the WW-domain protein. We propose that cellular WW-domain proteins act as CIRFs and also as regulators of tombusvirus replication by inhibiting the assembly of new membrane-bound VRCs at the late stage of infection. We suggest that tombusviruses could sense the status of the infected cells via the availability of cellular susceptibility factors versus WW-domain proteins for binding to p33 replication protein that ultimately controls the formation of new VRCs. This regulatory mechanism might explain how tombusviruses could adjust the efficiency of RNA replication to the limiting resources of the host cells during infections. IMPORTANCE Replication of positive-stranded RNA viruses, which are major pathogens of plants, animals, and humans, is inhibited by several cell-intrinsic restriction factors (CIRFs) in infected cells. We define here the inhibitory roles of the cellular Rsp5 ubiquitin ligase and its WW domain in plant-infecting tombusvirus replication in yeast cells and in vitro using purified components. The WW domain of Rsp5 binds to the viral RNA-binding sites of p33 and p92 replication proteins and blocks the ability of these viral proteins to use the viral RNA for replication. The WW domain also interferes with the interaction (oligomerization) of p33 and p92 that is needed for the assembly of the viral replicase. Moreover, WW domain also inhibits the subversion of several cellular proteins into the viral replicase, which otherwise play proviral roles in replication. Altogether, Rsp5 is a CIRF against a tombusvirus, and it possibly has a regulatory function during viral replication in infected cells.
Collapse
|
99
|
Tian L, Okita TW. mRNA-based protein targeting to the endoplasmic reticulum and chloroplasts in plant cells. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:77-85. [PMID: 25282588 DOI: 10.1016/j.pbi.2014.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/06/2014] [Accepted: 09/15/2014] [Indexed: 05/12/2023]
Abstract
The targeting of proteins to subcellular organelles is specified by the presence of signal/leader peptide sequences normally located on the N-terminus. In the past two decades, messenger RNA (mRNA) localization, a pathway driven by cis-acting localization elements within the RNA sequence, has emerged as an alternative mechanism for protein targeting to specific locations in the cytoplasm, on the endoplasmic reticulum or to mitochondria and chloroplasts. In this review, we will summarize studies on mRNA-based protein targeting to the endoplasmic reticulum and chloroplast within plant cells.
Collapse
Affiliation(s)
- Li Tian
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
100
|
Fernández-de-Castro I, Risco C. Imaging RNA virus replication assemblies: bunyaviruses and reoviruses. Future Virol 2014. [DOI: 10.2217/fvl.14.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ABSTRACT RNA viruses replicate in the cytoplasm in close association with host cell membranes. Both viral and cellular factors generate organelle-like structures termed viral factories, viral inclusions or viroplasms. Biochemical, light and electron microscopy analyses, including 3D models, have improved our understanding of the architecture and function of RNA virus replication factories. In these structures, the virus compartmentalizes genome replication and transcription, thus enhancing replication efficiency and protection from host defenses. Recent studies with diverse RNA viruses have elucidated the ultrastructure of replication organelles and shown how these structures act in close coordination with virion assembly. This review focuses on a general description of RNA virus factories and summarizes recent progress in the characterization of those assembled by bunyaviruses and reoviruses. We describe how these viruses modify intracellular membranes; we highlight similarities with the structures induced by viruses of other families, and discuss how these structures might be formed.
Collapse
Affiliation(s)
| | - Cristina Risco
- Cell Structure Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|