51
|
The Unique Molecular Signatures of Contact Dermatitis and Implications for Treatment. Clin Rev Allergy Immunol 2018; 56:1-8. [DOI: 10.1007/s12016-018-8685-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
52
|
Ezerskaia A, Uzunbajakava NE, Puppels GJ, de Sterke J, Caspers PJ, Urbach HP, Varghese B. Potential of short-wave infrared spectroscopy for quantitative depth profiling of stratum corneum lipids and water in dermatology. BIOMEDICAL OPTICS EXPRESS 2018; 9:2436-2450. [PMID: 29760999 PMCID: PMC5946800 DOI: 10.1364/boe.9.002436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
We demonstrate the feasibility of short wave infrared (SWIR) spectroscopy combined with tape stripping for depth profiling of lipids and water in the stratum corneum of human skin. The proposed spectroscopic technique relies on differential detection at three wavelengths of 1720, 1750, and 1770 nm, with varying ratio of the lipid-to-water absorption coefficient and an 'isosbestic point'. Comparison of the data acquired using SWIR spectroscopy with that obtained by a gold standard for non-invasive quantitative molecular-specific skin measurements, namely confocal Raman spectroscopy (CRS), revealed specificity of the proposed modality for water and lipid quantification. At the same time, we provide evidence showing aberrant sensitivity of Corneometer hydration read-outs to the presence of skin surface lipids, and a lack of sensitivity of the Sebumeter when attempting to measure the lipids of the cornified lipid envelope and intracellular lipid layers. We conclude that a spectroscopic SWIR-based spectroscopic method combined with tape stripping has the potential for depth profiling of the stratum corneum water and lipids, due to superior measurement sensitivity and specificity compared to the Corneometer and Sebumeter.
Collapse
Affiliation(s)
- Anna Ezerskaia
- Department of Personal Care and Wellness, Philips Research, 5656AE, Eindhoven, The Netherlands
- Optics Research Group, ImPhys Department, Delft University of Technology, 2628CH, Delft, The Netherlands
| | | | - Gerwin J. Puppels
- RiverD International B.V., Rotterdam Science Tower, 3029AK, Rotterdam, The Netherlands
| | - Johanna de Sterke
- RiverD International B.V., Rotterdam Science Tower, 3029AK, Rotterdam, The Netherlands
| | - Peter J. Caspers
- RiverD International B.V., Rotterdam Science Tower, 3029AK, Rotterdam, The Netherlands
| | - H. Paul Urbach
- Optics Research Group, ImPhys Department, Delft University of Technology, 2628CH, Delft, The Netherlands
| | - Babu Varghese
- Department of Personal Care and Wellness, Philips Research, 5656AE, Eindhoven, The Netherlands
| |
Collapse
|
53
|
Soltanipoor M, Stilla T, Riethmüller C, Thyssen JP, Sluiter JK, Rustemeyer T, Fischer TW, Kezic S, Angelova-Fischer I. Specific barrier response profiles after experimentally induced skin irritation in vivo. Contact Dermatitis 2018; 79:59-66. [PMID: 29607504 PMCID: PMC6099430 DOI: 10.1111/cod.12981] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/25/2022]
Abstract
Background Recently, natural moisturizing factors (NMFs) and corneocyte surface topography were suggested as biomarkers for irritant dermatitis. Objectives To investigate how exposure to different irritants influences corneocyte surface topography, NMF levels and the barrier function of human skin in vivo. Methods Eight healthy adult volunteers were exposed to aqueous solutions of 60% n‐propanol, 0.5% sodium lauryl sulfate (SLS), 0.15% sodium hydroxide, and 2.0% acetic acid, and distilled water, in a repeated irritation test over a period of 96 hours. Erythema, transepidermal water loss (TEWL), skin hydration, the dermal texture index (DTI) and NMF levels were measured at baseline, and after 24 and 96 hours. Results SLS and sodium hydroxide had the most pronounced effects on erythema and TEWL. Although n‐propanol caused only slight changes in TEWL and erythema, it showed pronounced effects on skin hydration, NMF levels, and the DTI. NMF was the only parameter that was significantly altered by all investigated irritants. The changes in the DTI were inversely associated with NMF levels and skin hydration. Conclusion Skin barrier impairment and the inflammatory response are irritant‐specific, emphasizing the need for a multiparametric approach to the study of skin irritation. NMF levels seem to be the most sensitive parameter in detecting irritant‐induced skin barrier alterations.
Collapse
Affiliation(s)
- Maryam Soltanipoor
- Coronel Institute of Occupational Health, Academic Medical Centre, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, The Netherlands.,Department of Dermatology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Tasja Stilla
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Christoph Riethmüller
- Centre for Nanotechnology, Serend-ip GmbH, Centre for Nanotechnology, Münster, Germany
| | - Jacob P Thyssen
- National Allergy Research Centre, Department of Dermatology and Allergy, Copenhagen University Hospital Herlev-Gentofte, University of Copenhagen, Hellerup, Denmark
| | - Judith K Sluiter
- Coronel Institute of Occupational Health, Academic Medical Centre, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas Rustemeyer
- Department of Dermatology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Tobias W Fischer
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Sanja Kezic
- Coronel Institute of Occupational Health, Academic Medical Centre, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
54
|
Parkinson E, Aleksic M, Cubberley R, Kaur-Atwal G, Vissers JPC, Skipp P. Determination of Protein Haptenation by Chemical Sensitizers Within the Complexity of the Human Skin Proteome. Toxicol Sci 2018; 162:429-438. [PMID: 29267982 PMCID: PMC5889026 DOI: 10.1093/toxsci/kfx265] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Skin sensitization associated with the development of allergic contact dermatitis occurs via a number of specific key events at the cellular level. The molecular initiating event (MIE), the first in the sequence of these events, occurs after exposure of the skin to an electrophilic chemical, causing the irreversible haptenation of proteins within skin. Characterization of this MIE is a key step in elucidating the skin sensitization adverse outcome pathway and is essential to providing parameters for mathematical models to predict the capacity of a chemical to cause sensitization. As a first step to addressing this challenge, we have exposed complex protein lysates from a keratinocyte cell line and human skin tissue with a range of well characterized sensitizers, including dinitrochlorobenzene, 5-chloro-2-methylisothiazol-3-one, cinnamaldehyde, and the non (or weak) sensitizer 6-methyl coumarin. Using a novel stable isotope labeling approach combined with ion mobility-assisted data independent mass spectrometry (HDMSE), we have characterized the haptenome for these sensitizers. Although a significant proportion of highly abundant proteins were haptenated, we also observed the haptenation of low abundant proteins by all 3 of the chemical sensitizers tested, indicating that within a complex protein background, protein abundance is not the sole determinant driving haptenation, highlighting a relationship to tertiary protein structure and the amino acid specificity of these chemical sensitizers and sensitizer potency.
Collapse
Affiliation(s)
- Erika Parkinson
- Centre for Biological Sciences
- Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Maja Aleksic
- Safety & Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Richard Cubberley
- Safety & Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | | | | | - Paul Skipp
- Centre for Biological Sciences
- Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
55
|
Karlsson I, Samuelsson K, Simonsson C, Stenfeldt AL, Nilsson U, Ilag LL, Jonsson C, Karlberg AT. The Fate of a Hapten - From the Skin to Modification of Macrophage Migration Inhibitory Factor (MIF) in Lymph Nodes. Sci Rep 2018; 8:2895. [PMID: 29440696 PMCID: PMC5811565 DOI: 10.1038/s41598-018-21327-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/31/2018] [Indexed: 12/02/2022] Open
Abstract
Skin (contact) allergy, the most prevalent form of immunotoxicity in humans, is caused by low molecular weight chemicals (haptens) that penetrate stratum corneum and modify endogenous proteins. The fate of haptens after cutaneous absorption, especially what protein(s) they react with, is largely unknown. In this study the fluorescent hapten tetramethylrhodamine isothiocyanate (TRITC) was used to identify hapten-protein conjugates in the local lymph nodes after topical application, as they play a key role in activation of the adaptive immune system. TRITC interacted with dendritic cells but also with T and B cells in the lymph nodes as shown by flow cytometry. Identification of the most abundant TRITC-modified protein in lymph nodes by tandem mass spectrometry revealed TRITC-modification of the N-terminal proline of macrophage migration inhibitory factor (MIF) – an evolutionary well-conserved protein involved in cell-mediated immunity and inflammation. This is the first time a hapten-modified protein has been identified in lymph nodes after topical administration of the hapten. Most haptens are electrophiles and can therefore modify the N-terminal proline of MIF, which has an unusually reactive amino group under physiological conditions; thus, modification of MIF by haptens may have an immunomodulating role in contact allergy as well as in other immunotoxicity reactions.
Collapse
Affiliation(s)
- Isabella Karlsson
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden.
| | - Kristin Samuelsson
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Carl Simonsson
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Anna-Lena Stenfeldt
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Nilsson
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Leopold L Ilag
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Charlotte Jonsson
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Ann-Therese Karlberg
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
56
|
Höper T, Mussotter F, Haase A, Luch A, Tralau T. Application of proteomics in the elucidation of chemical-mediated allergic contact dermatitis. Toxicol Res (Camb) 2017; 6:595-610. [PMID: 30090528 PMCID: PMC6062186 DOI: 10.1039/c7tx00058h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/07/2017] [Indexed: 12/23/2022] Open
Abstract
Allergic contact dermatitis (ACD) is a widespread hypersensitivity reaction of the skin. The cellular mechanisms underlying its development are complex and involve close interaction of different cell types of the immune system. It is this very complexity which has long prevented straightforward replacement of the corresponding regulatory in vivo tests. Recent efforts have already resulted in the development of several in vitro testing alternatives that address key steps of ACD. Yet identification of suitable biomarkers is still a subject of intense research. Search strategies for the latter encompass transcriptomics, proteomics as well as metabolomics approaches. The scope of this review shall be the application and use of proteomics in the context of ACD. This includes highlighting relevant aspects of the molecular and cellular mechanisms underlying ACD, the exploitation of these mechanisms for testing and biomarkers (e.g., in the context of the OECD's adverse outcome pathway initiative) as well as an outlook on emerging proteome targets, for example during the allergen-induced activation of dendritic cells (DCs).
Collapse
Affiliation(s)
- Tessa Höper
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| | - Franz Mussotter
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| | - Andrea Haase
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| | - Andreas Luch
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| | - Tewes Tralau
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| |
Collapse
|