51
|
Kale V, Friðjónsson Ó, Jónsson JÓ, Kristinsson HG, Ómarsdóttir S, Hreggviðsson GÓ. Chondroitin Lyase from a Marine Arthrobacter sp. MAT3885 for the Production of Chondroitin Sulfate Disaccharides. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:479-492. [PMID: 25912370 DOI: 10.1007/s10126-015-9629-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 04/01/2015] [Indexed: 06/04/2023]
Abstract
Chondroitin sulfate (CS) saccharides from cartilage tissues have potential application in medicine or as dietary supplements due to their therapeutic bioactivities. Studies have shown that depolymerized CS saccharides may display enhanced bioactivity. The objective of this study was to isolate a CS-degrading enzyme for an efficient production of CS oligo- or disaccharides. CS-degrading bacteria from marine environments were enriched using in situ artificial support colonization containing CS from shark cartilage as substrate. Subsequently, an Arthrobacter species (strain MAT3885) efficiently degrading CS was isolated from a CS enrichment culture. The genomic DNA from strain MAT3885 was pyro-sequenced by using the 454 FLX sequencing technology. Following assembly and annotation, an orf, annotated as family 8 polysaccharide lyase genes, was identified, encoding an amino acid sequence with a similarity to CS lyases according to NCBI blastX. The gene, designated choA1, was cloned in Escherichia coli and expressed downstream of and in frame with the E. coli malE gene for obtaining a high yield of soluble recombinant protein. Applying a dual-tag system (MalE-Smt3-ChoA1), the MalE domain was separated from ChoA1 with proteolytic cleavage using Ulp1 protease. ChoA1 was defined as an AC-type enzyme as it degraded chondroitin sulfate A, C, and hyaluronic acid. The optimum activity of the enzyme was at pH 5.5-7.5 and 40 °C, running a 10-min reaction. The native enzyme was estimated to be a monomer. As the recombinant chondroitin sulfate lyase (designated as ChoA1R) degraded chondroitin sulfate efficiently compared to a benchmark enzyme, it may be used for the production of chondroitin sulfate disaccharides for the food industry or health-promoting products.
Collapse
Affiliation(s)
- Varsha Kale
- Matís, Vínlandsleið 12, 113, Reykjavík, Iceland
| | | | | | | | | | | |
Collapse
|
52
|
Abstract
Axons in the adult CNS have poor ability to grow after injury, impeding functional recovery in patients of spinal cord injury. This has been attributed to both a developmental decline in neuron-intrinsic growth ability and the presence of extrinsic growth inhibitors. We previously showed that genetic deletion of Nogo, an extrinsic inhibitor, promoted axonal sprouting from uninjured corticospinal tract (CST) neurons but not regeneration from injured CST neurons, whereas genetic deletion of PTEN, an intrinsic inhibitor, promoted both CST sprouting and regeneration. Here we test the hypothesis that combining an elevation of neuron-intrinsic growth ability and a reduction of extrinsic growth inhibition by genetic codeletion of PTEN and Nogo may further improve injury-induced axonal growth. In an apparent paradox, additionally deleting Nogo further enhanced CST regeneration but not sprouting in PTEN-deleted mice. Enhanced CST regeneration and sprouting in PTEN and PTEN/Nogo-deleted mice were associated with no or only temporary improvement in functional recovery. Our data illustrate that neuron-intrinsic and -extrinsic factors regulate axon regeneration and sprouting in complex ways and provide proof-of-principle evidence that targeting both can further improve regeneration. Neuron-intrinsic growth ability is an important determinant of neuronal responsiveness to changes in extrinsic growth inhibition, such that an elevated intrinsic growth state is a prerequisite for reducing extrinsic inhibition to take effect on CST regeneration. Meanwhile, additional strategies are required to unleash the full potential for functional recovery with enhanced axon regeneration and/or sprouting.
Collapse
|
53
|
Deng YP, Sun Y, Hu L, Li ZH, Xu QM, Pei YL, Huang ZH, Yang ZG, Chen C. Chondroitin sulfate proteoglycans impede myelination by oligodendrocytes after perinatal white matter injury. Exp Neurol 2015; 269:213-23. [PMID: 25862289 DOI: 10.1016/j.expneurol.2015.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 03/09/2015] [Accepted: 03/31/2015] [Indexed: 01/22/2023]
Abstract
Hypomyelination is the major cause of neurodevelopmental deficits that are associated with perinatal white matter injury. Chondroitin sulfate proteoglycans (CSPGs) are known to exert inhibitory effects on the migration and differentiation of oligodendrocytes (OLs). However, few studies describe the roles of CSPGs in myelination by OLs and the cognitive dysfunction that follows perinatal white matter injury. Here, we examined the alterations in the expression of CSPGs and their functional impact on the maturation of OLs and myelination in a neonatal rat model of hypoxic-ischemic (HI) brain injury. Three-day-old Sprague-Dawley rats underwent a right common carotid artery ligation and were exposed to hypoxia (6% oxygen for 2.5h). Rats were given chondroitinase ABC (cABC) via an intracerebroventricular injection to digest CSPGs. Animals were sacrificed at 7, 14, 28 and 56days after HI injury and the accompanying surgical procedure. We found that the expression of CSPGs was significantly up-regulated in the cortical regions surrounding the white matter after HI injury. cABC successfully degraded CSPGs in the rats that received cABC. Immunostaining showed decreased expression of the pre-oligodendrocyte marker O4 in the cingulum, external capsule and corpus callosum in HI+cABC rats compared to HI rats. However HI+cABC rats exhibited greater maturation of OLs than did HI rats, with increased expression of O1 and myelin basic protein in the white matter. Furthermore, using electron microscopy, we demonstrated that myelin formation was enhanced in HI+cABC rats, which had an increased number of myelinated axons and decreased G-ratios of myelin compared to HI rats. Finally, HI+cABC rats performed better in the Morris water maze task than HI rats, which indicates an improvement in cognitive ability. Our results suggest that CSPGs inhibit both the maturation of OLs and the process of myelination after neonatal HI brain injury. The data also raise the possibility that modifying CSPGs may repair this type of lesion associated with demyelination.
Collapse
Affiliation(s)
- Ying-Ping Deng
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Yi Sun
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Lan Hu
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Zhi-Hua Li
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Quan-Mei Xu
- Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Yi-Ling Pei
- School of Public Health, Fudan University, Shanghai, China
| | - Zhi-Heng Huang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Zhen-Gang Yang
- Institute of Brain Science, Fudan University, Shanghai, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China.
| |
Collapse
|
54
|
Plasticity of intact rubral projections mediates spontaneous recovery of function after corticospinal tract injury. J Neurosci 2015; 35:1443-57. [PMID: 25632122 DOI: 10.1523/jneurosci.3713-14.2015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axons in the adult CNS fail to regenerate after injury, and therefore recovery from spinal cord injury (SCI) is limited. Although full recovery is rare, a modest degree of spontaneous recovery is observed consistently in a broad range of clinical and nonclinical situations. To define the mechanisms mediating spontaneous recovery of function after incomplete SCI, we created bilaterally complete medullary corticospinal tract lesions in adult mice, eliminating a crucial pathway for voluntary skilled movement. Anatomic and pharmacogenetic tools were used to identify the pathways driving spontaneous functional recovery in wild-type and plasticity-sensitized mice lacking Nogo receptor 1. We found that plasticity-sensitized mice recovered 50% of normal skilled locomotor function within 5 weeks of lesion. This significant, yet incomplete, spontaneous recovery was accompanied by extensive sprouting of intact rubrofugal and rubrospinal projections with the emergence of a de novo circuit between the red nucleus and the nucleus raphe magnus. Transient silencing of this rubro-raphe circuit in vivo via activation of the inhibitory DREADD (designer receptor exclusively activated by designer drugs) receptor hM4di abrogated spontaneous functional recovery. These data highlight the pivotal role of uninjured motor circuit plasticity in supporting functional recovery after trauma, and support a focus of experimental strategies on enhancing intact circuit rearrangement to promote functional recovery after SCI.
Collapse
|
55
|
Impact of treatment duration and lesion size on effectiveness of chondroitinase treatment post-SCI. Exp Neurol 2015; 267:64-77. [PMID: 25725355 DOI: 10.1016/j.expneurol.2015.02.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/30/2022]
Abstract
The effects of 2weeks of intralesional chondroitinase abc (ch'abc) treatment on anatomical plasticity and behavioral recovery are examined in adult cats and compared to results achieved with 4weeks of treatment following tightly controlled lateral hemisection injuries. Analyses also were completed using 35 cats with a range of hemisection magnitudes to assess relationships between treatment duration, lesion size and functional recovery. Results indicate that both 2 and 4weeks of treatment significantly increased the number of rubrospinal tract (RuST) neurons with axons below the lesion, but neither affected the number of corticospinal tract neurons. Similarly, both treatment periods also accelerated recovery of select motor tasks, which carries considerable importance with respect to human health care and rehabilitation. Four weeks of treatment promoted recovery beyond that seen with 2weeks in its significant impact on accuracy of movement critical for placement of the ipsilateral hindlimb onto small support surfaces during the most challenging locomotor tasks. Analyses, which extended to a larger group of cats with a range of lesion magnitudes, indicate that 4weeks of ch'abc treatment promoted earlier recovery as well as significantly greater targeting accuracy even in cats with larger lesions. Together, these results support the potential for ch'abc to promote anatomical and behavioral recovery and suggest that intraspinal treatment with ch'abc continues to enhance motor recovery and performance beyond the subacute injury period and diminishes the impact of lesion size.
Collapse
|
56
|
Mammalian target of rapamycin's distinct roles and effectiveness in promoting compensatory axonal sprouting in the injured CNS. J Neurosci 2015; 34:15347-55. [PMID: 25392502 DOI: 10.1523/jneurosci.1935-14.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) functions as a master sensor of nutrients and energy, and controls protein translation and cell growth. Deletion of phosphatase and tensin homolog (PTEN) in adult CNS neurons promotes regeneration of injured axons in an mTOR-dependent manner. However, others have demonstrated mTOR-independent axon regeneration in different cell types, raising the question of how broadly mTOR regulates axonal regrowth across different systems. Here we define the role of mTOR in promoting collateral sprouting of spared axons, a key axonal remodeling mechanism by which functions are recovered after CNS injury. Using pharmacological inhibition, we demonstrate that mTOR is dispensable for the robust spontaneous sprouting of corticospinal tract axons seen after pyramidotomy in postnatal mice. In contrast, moderate spontaneous axonal sprouting and induced-sprouting seen under different conditions in young adult mice (i.e., PTEN deletion or degradation of chondroitin proteoglycans; CSPGs) are both reduced upon mTOR inhibition. In addition, to further determine the potency of mTOR in promoting sprouting responses, we coinactivate PTEN and CSPGs, and demonstrate that this combination leads to an additive increase in axonal sprouting compared with single treatments. Our findings reveal a developmental switch in mTOR dependency for inducing axonal sprouting, and indicate that PTEN deletion in adult neurons neither recapitulates the regrowth program of postnatal animals, nor is sufficient to completely overcome an inhibitory environment. Accordingly, exploiting mTOR levels by targeting PTEN combined with CSPG degradation represents a promising strategy to promote extensive axonal plasticity in adult mammals.
Collapse
|
57
|
Mallory GW, Grahn PJ, Hachmann JT, Lujan JL, Lee KH. Optical stimulation for restoration of motor function after spinal cord injury. Mayo Clin Proc 2015; 90:300-7. [PMID: 25659246 PMCID: PMC4339262 DOI: 10.1016/j.mayocp.2014.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/31/2022]
Abstract
Spinal cord injury can be defined as a loss of communication between the brain and the body due to disrupted pathways within the spinal cord. Although many promising molecular strategies have emerged to reduce secondary injury and promote axonal regrowth, there is still no effective cure, and recovery of function remains limited. Functional electrical stimulation (FES) represents a strategy developed to restore motor function without the need for regenerating severed spinal pathways. Despite its technological success, however, FES has not been widely integrated into the lives of spinal cord injury survivors. In this review, we briefly discuss the limitations of existing FES technologies. Additionally, we discuss how optogenetics, a rapidly evolving technique used primarily to investigate select neuronal populations within the brain, may eventually be used to replace FES as a form of therapy for functional restoration after spinal cord injury.
Collapse
Affiliation(s)
- Grant W Mallory
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | - Peter J Grahn
- Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Jan T Hachmann
- School of Medicine, Heidelberg University, Neuenheimer Feld, Bergheim, Germany
| | - J Luis Lujan
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN.
| |
Collapse
|
58
|
Kathe C, Hutson TH, Chen Q, Shine HD, McMahon SB, Moon LDF. Unilateral pyramidotomy of the corticospinal tract in rats for assessment of neuroplasticity-inducing therapies. J Vis Exp 2014:51843. [PMID: 25549050 PMCID: PMC4396919 DOI: 10.3791/51843] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The corticospinal tract (CST) can be completely severed unilaterally in the medullary pyramids of the rodent brainstem. The CST is a motor tract that has great importance for distal muscle control in humans and, to a lesser extent, in rodents. A unilateral cut of one pyramid results in loss of CST innervation of the spinal cord mainly on the contralateral side of the spinal cord leading to transient motor disability in the forelimbs and sustained loss of dexterity. Ipsilateral projections of the corticospinal tract are minor. We have refined our surgical method to increase the chances of lesion completeness. We describe postsurgical care. Deficits on the Montoya staircase pellet reaching test and the horizontal ladder test shown here are detected up to 8 weeks postinjury. Deficits on the cylinder rearing test are only detected transiently. Therefore, the cylinder test may only be suitable for detection of short term recovery. We show how, electrophysiologically and anatomically, one may assess lesions and plastic changes. We also describe how to analyse fibers from the uninjured CST sprouting across the midline into the deprived areas. It is challenging to obtain >90% complete lesions consistently due to the proximity to the basilar artery in the medulla oblongata and survival rates can be low. Alternative surgical approaches and behavioural testing are described in this protocol. The pyramidotomy model is a good tool for assessing neuroplasticity-inducing treatments, which increase sprouting of intact fibers after injury.
Collapse
Affiliation(s)
- Claudia Kathe
- Neurorestoration, Wolfson Centre for Age-Related Diseases, King's College London;
| | - Thomas H Hutson
- Neurorestoration, Wolfson Centre for Age-Related Diseases, King's College London
| | - Qin Chen
- Department of Neuroscience, Baylor College of Medicine
| | | | - Stephen B McMahon
- Neurorestoration, Wolfson Centre for Age-Related Diseases, King's College London
| | - Lawrence D F Moon
- Neurorestoration, Wolfson Centre for Age-Related Diseases, King's College London
| |
Collapse
|
59
|
Examination of the combined effects of chondroitinase ABC, growth factors and locomotor training following compressive spinal cord injury on neuroanatomical plasticity and kinematics. PLoS One 2014; 9:e111072. [PMID: 25350665 PMCID: PMC4211738 DOI: 10.1371/journal.pone.0111072] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/23/2014] [Indexed: 12/13/2022] Open
Abstract
While several cellular and pharmacological treatments have been evaluated following spinal cord injury (SCI) in animal models, it is increasingly recognized that approaches to address the glial scar, including the use of chondroitinase ABC (ChABC), can facilitate neuroanatomical plasticity. Moreover, increasing evidence suggests that combinatorial strategies are key to unlocking the plasticity that is enabled by ChABC. Given this, we evaluated the anatomical and functional consequences of ChABC in a combinatorial approach that also included growth factor (EGF, FGF2 and PDGF-AA) treatments and daily treadmill training on the recovery of hindlimb locomotion in rats with mid thoracic clip compression SCI. Using quantitative neuroanatomical and kinematic assessments, we demonstrate that the combined therapy significantly enhanced the neuroanatomical plasticity of major descending spinal tracts such as corticospinal and serotonergic-spinal pathways. Additionally, the pharmacological treatment attenuated chronic astrogliosis and inflammation at and adjacent to the lesion with the modest synergistic effects of treadmill training. We also observed a trend for earlier recovery of locomotion accompanied by an improvement of the overall angular excursions in rats treated with ChABC and growth factors in the first 4 weeks after SCI. At the end of the 7-week recovery period, rats from all groups exhibited an impressive spontaneous recovery of the kinematic parameters during locomotion on treadmill. However, although the combinatorial treatment led to clear chronic neuroanatomical plasticity, these structural changes did not translate to an additional long-term improvement of locomotor parameters studied including hindlimb-forelimb coupling. These findings demonstrate the beneficial effects of combined ChABC, growth factors and locomotor training on the plasticity of the injured spinal cord and the potential to induce earlier neurobehavioral recovery. However, additional approaches such as stem cell therapies or a more adapted treadmill training protocol may be required to optimize this repair strategy in order to induce sustained functional locomotor improvement.
Collapse
|
60
|
Meves JM, Zheng B. Extrinsic inhibitors in axon sprouting and functional recovery after spinal cord injury. Neural Regen Res 2014; 9:460-1. [PMID: 25206838 PMCID: PMC4153497 DOI: 10.4103/1673-5374.130056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2014] [Indexed: 11/30/2022] Open
Abstract
Summary: The limited axonal growth after central nervous system (CNS) injury such as spinal cord injury presents a major challenge in promoting repair and recovery. The literature in axonal repair has focused mostly on frank regeneration of injured axons. Here, we argue that sprouting of uninjured axons, an innate repair mechanism of the CNS, might be more amenable to modulation in order to promote functional repair. Extrinsic inhibitors of axonal growth modulate axon sprouting after injury and may serve as the first group of therapeutic targets to promote functional repair.
Collapse
Affiliation(s)
- Jessica M Meves
- Neurosciences Graduate Program, Department of Neurosciences, University of California San Diego, School of Medicine, 9500 Gilman Drive, MC 0691, La Jolla, CA, USA
| | - Binhai Zheng
- Neurosciences Graduate Program, Department of Neurosciences, University of California San Diego, School of Medicine, 9500 Gilman Drive, MC 0691, La Jolla, CA, USA
| |
Collapse
|
61
|
Chen M, Zheng B. Axon plasticity in the mammalian central nervous system after injury. Trends Neurosci 2014; 37:583-93. [PMID: 25218468 DOI: 10.1016/j.tins.2014.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 12/31/2022]
Abstract
It is widely recognized that severed axons in the adult central nervous system (CNS) have limited capacity to regenerate. However, mounting evidence from studies of CNS injury response and repair is challenging the prevalent view that the adult mammalian CNS is incapable of structural reorganization to adapt to an altered environment. Animal studies demonstrate the potential to achieve significant anatomical repair and functional recovery following CNS injury by manipulating axon growth regulators alone or in combination with activity-dependent strategies. With a growing understanding of the cellular and molecular mechanisms regulating axon plasticity, and the availability of new experimental tools to map detour circuits of functional importance, directing circuit rewiring to promote functional recovery may be achieved.
Collapse
Affiliation(s)
- Meifan Chen
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, MC 0691, La Jolla, CA 92093-0691, USA
| | - Binhai Zheng
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, MC 0691, La Jolla, CA 92093-0691, USA.
| |
Collapse
|
62
|
Wahl AS, Schwab ME. Finding an optimal rehabilitation paradigm after stroke: enhancing fiber growth and training of the brain at the right moment. Front Hum Neurosci 2014; 8:381. [PMID: 25018717 PMCID: PMC4072965 DOI: 10.3389/fnhum.2014.00381] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 05/14/2014] [Indexed: 12/11/2022] Open
Abstract
After stroke the central nervous system reveals a spectrum of intrinsic capacities to react as a highly dynamic system which can change the properties of its circuits, form new contacts, erase others, and remap related cortical and spinal cord regions. This plasticity can lead to a surprising degree of spontaneous recovery. It includes the activation of neuronal molecular mechanisms of growth and of extrinsic growth promoting factors and guidance signals in the tissue. Rehabilitative training and pharmacological interventions may modify and boost these neuronal processes, but almost nothing is known on the optimal timing of the different processes and therapeutic interventions and on their detailed interactions. Finding optimal rehabilitation paradigms requires an optimal orchestration of the internal processes of re-organization and the therapeutic interventions in accordance with defined plastic time windows. In this review we summarize the mechanisms of spontaneous plasticity after stroke and experimental interventions to enhance growth and plasticity, with an emphasis on anti-Nogo-A immunotherapy. We highlight critical time windows of growth and of rehabilitative training and consider different approaches of combinatorial rehabilitative schedules. Finally, we discuss potential future strategies for designing repair and rehabilitation paradigms by introducing a “3 step model”: determination of the metabolic and plastic status of the brain, pharmacological enhancement of its plastic mechanisms, and stabilization of newly formed functional connections by rehabilitative training.
Collapse
Affiliation(s)
- Anna-Sophia Wahl
- Brain Research Institute, University of Zurich Zurich, Switzerland ; Department of Health, Sciences and Technology, ETH Zurich Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich Zurich, Switzerland ; Department of Health, Sciences and Technology, ETH Zurich Zurich, Switzerland
| |
Collapse
|
63
|
Chondroitin sulphate N-acetylgalactosaminyl-transferase-1 inhibits recovery from neural injury. Nat Commun 2014; 4:2740. [PMID: 24220492 PMCID: PMC3831297 DOI: 10.1038/ncomms3740] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/10/2013] [Indexed: 12/20/2022] Open
Abstract
Extracellular factors that inhibit axon growth and intrinsic factors that promote it affect neural regeneration. Therapies targeting any single gene have not yet simultaneously optimized both types of factors. Chondroitin sulphate (CS), a glycosaminoglycan, is the most abundant extracellular inhibitor of axon growth. Here we show that mice carrying a gene knockout for CS N-acetylgalactosaminyltransferase-1 (T1), a key enzyme in CS biosynthesis, recover more completely from spinal cord injury than wild-type mice and even chondroitinase ABC-treated mice. Notably, synthesis of heparan sulphate (HS), a glycosaminoglycan promoting axonal growth, is also upregulated in TI knockout mice because HS-synthesis enzymes are induced in the mutant neurons. Moreover, chondroitinase ABC treatment never induces HS upregulation. Taken together, our results indicate that regulation of a single gene, T1, mediates excellent recovery from spinal cord injury by optimizing counteracting effectors of axon regeneration—an extracellular inhibitor of CS and intrinsic promoters, namely, HS-synthesis enzymes. The glycosaminoglycan chondroitin sulphate inhibits axon growth. Here the authors show that mice deficient in chondroitin sulphate biosynthesis have increased levels of heparan sulphate, which is more efficient than chondroitinase in supporting recovery from spinal cord injury.
Collapse
|
64
|
Grosso MJ, Matheus V, Clark M, van Rooijen N, Iannotti CA, Steinmetz MP. Effects of an Immunomodulatory Therapy and Chondroitinase After Spinal Cord Hemisection Injury. Neurosurgery 2014; 75:461-71. [DOI: 10.1227/neu.0000000000000447] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
Individually, immunomodulatory therapy and chondroitinases have demonstrated neuroprotective and potential neuroregenerative effects following spinal cord injury.
OBJECTIVE:
To investigate the therapeutic potential of combined immunomodulatory and chondroitin sulfate-glycosaminoglycan degradation therapy in spinal cord injury.
METHODS:
A combined immunomodulatory treatment using (1) liposome-encapsulated clodronate (selectively depletes peripheral macrophages), and (2) rolipram (a selective type 4 phosphodiesterase inhibitor), along with the chondroitin sulfate proteoglycan-glycosaminoglycan-degrading enzyme, chondroitinase ABC (ChABC), was assessed for its potential to promote axonal regrowth and improve locomotor recovery following midthoracic spinal cord hemisection injury in adult rats.
RESULTS:
We demonstrate that combined treatment with liposomal clodronate, rolipram, and ChABC attenuates macrophage accumulation at the site of injury, reduces axonal die-back of injured dorsal column axons, and produces the greatest improvement in locomotor recovery at 6 weeks postinjury compared with controls and noncombined therapy. Anterograde and retrograde tracing revealed that delivery of clodronate, rolipram, and ChABC did not promote substantial axonal regeneration through the site of injury, although the treatment did limit the extent of axonal die-back. Histological assessments revealed that combined treatment with clodronate/rolipram and/or ChABC resulted in a significant reduction in lesion size and cystic cavitation in comparison with injured controls. Combined clodronate, rolipram, and ChABC treatment reduced the accumulation of macrophages within the injured spinal cord 7 weeks after injury.
CONCLUSION:
The present data suggest that delivery of an immunomodulatory therapy consisting of clodronate and rolipram, in combination with ChABC, reduces axonal injury and enhances neuroprotection, plasticity, and hindlimb functional recovery after hemisection spinal cord injury in adult rats.
Collapse
Affiliation(s)
- Matthew J. Grosso
- Center for Spine Health, Department of Neurological Surgery, Cleveland Clinic, Cleveland, Ohio
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | | | - Nico van Rooijen
- Department of Cell Biology & Immunology, Faculty of Medicine, Free University Medical Center, Amsterdam, Netherlands
| | | | - Michael P. Steinmetz
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio
- MetroHealth Medical Center, Cleveland, Ohio
| |
Collapse
|
65
|
Large-scale chondroitin sulfate proteoglycan digestion with chondroitinase gene therapy leads to reduced pathology and modulates macrophage phenotype following spinal cord contusion injury. J Neurosci 2014; 34:4822-36. [PMID: 24695702 DOI: 10.1523/jneurosci.4369-13.2014] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) inhibit repair following spinal cord injury. Here we use mammalian-compatible engineered chondroitinase ABC (ChABC) delivered via lentiviral vector (LV-ChABC) to explore the consequences of large-scale CSPG digestion for spinal cord repair. We demonstrate significantly reduced secondary injury pathology in adult rats following spinal contusion injury and LV-ChABC treatment, with reduced cavitation and enhanced preservation of spinal neurons and axons at 12 weeks postinjury, compared with control (LV-GFP)-treated animals. To understand these neuroprotective effects, we investigated early inflammatory changes following LV-ChABC treatment. Increased expression of the phagocytic macrophage marker CD68 at 3 d postinjury was followed by increased CD206 expression at 2 weeks, indicating that large-scale CSPG digestion can alter macrophage phenotype to favor alternatively activated M2 macrophages. Accordingly, ChABC treatment in vitro induced a significant increase in CD206 expression in unpolarized monocytes stimulated with conditioned medium from spinal-injured tissue explants. LV-ChABC also promoted the remodelling of specific CSPGs as well as enhanced vascularity, which was closely associated with CD206-positive macrophages. Neuroprotective effects of LV-ChABC corresponded with improved sensorimotor function, evident as early as 1 week postinjury, a time point when increased neuronal survival correlated with reduced apoptosis. Improved function was maintained into chronic injury stages, where improved axonal conduction and increased serotonergic innervation were also observed. Thus, we demonstrate that ChABC gene therapy can modulate secondary injury processes, with neuroprotective effects that lead to long-term improved functional outcome and reveal novel mechanistic evidence that modulation of macrophage phenotype may underlie these effects.
Collapse
|
66
|
Myelin-associated inhibitors in axonal growth after CNS injury. Curr Opin Neurobiol 2014; 27:31-8. [PMID: 24608164 DOI: 10.1016/j.conb.2014.02.012] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 01/22/2014] [Accepted: 02/10/2014] [Indexed: 11/20/2022]
Abstract
There are multiple barriers to axonal growth after CNS injury. Myelin-associated inhibitors represent one group of barriers extrinsic to the injured neurons. Nogo, MAG and OMgp are three prototypical myelin inhibitors that signal through multiple neuronal receptors to exert growth inhibition. Targeting myelin inhibition alone modulates the compensatory sprouting of uninjured axons but the effect on the regeneration of injured axons is limited. Meanwhile, modulating sprouting, a naturally occurring repair mechanism, may be a more attainable therapeutic goal for promoting functional repair after CNS injury in the near term.
Collapse
|
67
|
Orlando C, Raineteau O. Integrity of cortical perineuronal nets influences corticospinal tract plasticity after spinal cord injury. Brain Struct Funct 2014; 220:1077-91. [PMID: 24481829 PMCID: PMC4341008 DOI: 10.1007/s00429-013-0701-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/26/2013] [Indexed: 11/28/2022]
Abstract
The rapid decline of injury-induced neuronal circuit remodelling after birth is paralleled by the accumulation of chondroitin sulphate proteoglycans (CSPGs) in the extracellular matrix, culminating with the appearance of perineuronal nets (PNNs) around parvalbumin-expressing GABAergic interneurons. We used a spinal cord injury (SCI) model to study the interplay between integrity of PNN CSPGs in the sensorimotor cortex, anatomical remodelling of the corticospinal tract (CST) and motor recovery in adult mice. We showed that thoracic SCI resulted in an atrophy of GABAergic interneurons in the axotomized hindlimb cortex, as well as in a more widespread downregulation of parvalbumin expression. In parallel, spontaneous changes in the integrity of CSPG glycosaminoglycan (GAG) chains associated with PNNs occurred at the boundary between motor forelimb and sensorimotor hindlimb cortex, a region previously showed to undergo reorganization after thoracic SCI. Surprisingly, full digestion of CSPG GAG chains by intracortical chondroitinase ABC injection resulted in an aggravation of motor deficits and reduced sprouting of the axotomized CST above the lesion. Altogether, our data show that changes in the expression pattern of GABAergic markers and PNNs occur in regions of the sensorimotor cortex undergoing spontaneous reorganization after SCI, but suggest that these changes have to be tightly controlled to be of functional benefit.
Collapse
Affiliation(s)
- C. Orlando
- Brain Research Institute, University of Zurich/ETH, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - O. Raineteau
- Brain Research Institute, University of Zurich/ETH, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
68
|
Burnside ER, Bradbury EJ. Review: Manipulating the extracellular matrix and its role in brain and spinal cord plasticity and repair. Neuropathol Appl Neurobiol 2014; 40:26-59. [DOI: 10.1111/nan.12114] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/20/2013] [Indexed: 12/17/2022]
Affiliation(s)
- E. R. Burnside
- King's College London; Regeneration Group; The Wolfson Centre for Age-Related Diseases; Guy's Campus; London UK
| | - E. J. Bradbury
- King's College London; Regeneration Group; The Wolfson Centre for Age-Related Diseases; Guy's Campus; London UK
| |
Collapse
|
69
|
Sist B, Fouad K, Winship IR. Plasticity beyond peri-infarct cortex: spinal up regulation of structural plasticity, neurotrophins, and inflammatory cytokines during recovery from cortical stroke. Exp Neurol 2013; 252:47-56. [PMID: 24291254 DOI: 10.1016/j.expneurol.2013.11.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/24/2013] [Accepted: 11/20/2013] [Indexed: 12/12/2022]
Abstract
Stroke induces pathophysiological and adaptive processes in regions proximal and distal to the infarct. Recent studies suggest that plasticity at the level of the spinal cord may contribute to sensorimotor recovery after cortical stroke. Here, we compare the time course of heightened structural plasticity in the spinal cord against the temporal profile of cortical plasticity and spontaneous behavioral recovery. To examine the relation between trophic and inflammatory effectors and spinal structural plasticity, spinal expression of brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) was measured. Growth-associated protein 43 (GAP-43), measured at 3, 7, 14, or 28 days after photothrombotic stroke of the forelimb sensorimotor cortex (FL-SMC) to provide an index of periods of heightened structural plasticity, varied as a function of lesion size and time after stroke in the cortical hemispheres and the spinal cord. Notably, GAP-43 levels in the cervical spinal cord were significantly increased after FL-SMC lesion, but the temporal window of elevated structural plasticity was more finite in spinal cord relative to ipsilesional cortical expression (returning to baseline levels by 28 post-stroke). Peak GAP-43 expression in spinal cord occurred during periods of accelerated spontaneous recovery, as measured on the Montoya Staircase reaching task, and returned to baseline as recovery plateaued. Interestingly, spinal GAP-43 levels were significantly correlated with spinal levels of the inflammatory cytokines TNF-α and IL-6 as well as the neurotrophin NT-3, while a transient increase in BDNF levels preceded elevated GAP-43 expression. These data identify a significant but time-limited window of heightened structural plasticity in the spinal cord following stroke that correlates with spontaneous recovery and the spinal expression of inflammatory cytokines and neurotrophic factors.
Collapse
Affiliation(s)
- Bernice Sist
- Centre for Neuroscience, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; Neurochemical Research Unit, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.
| | - Karim Fouad
- Centre for Neuroscience, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; Faculty of Rehabilitative Medicine, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.
| | - Ian R Winship
- Centre for Neuroscience, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; Department of Psychiatry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; Neurochemical Research Unit, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.
| |
Collapse
|
70
|
Harlow DE, Macklin WB. Inhibitors of myelination: ECM changes, CSPGs and PTPs. Exp Neurol 2013; 251:39-46. [PMID: 24200549 DOI: 10.1016/j.expneurol.2013.10.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/22/2013] [Accepted: 10/26/2013] [Indexed: 01/06/2023]
Abstract
After inflammation-induced demyelination, such as in the disease multiple sclerosis, endogenous remyelination often fails. However, in animal models of demyelination induced with toxins, remyelination can be quite robust. A significant difference between inflammation-induced and toxin-induced demyelination is the response of local cells within the lesion, including astrocytes, oligodendrocytes, microglia/macrophages, and NG2+ cells, which respond to inflammatory stimuli with increased extracellular matrix (ECM) protein and chondroitin sulfate proteoglycan (CSPG) production and deposition. Here, we summarize current knowledge of ECM changes in demyelinating lesions, as well as oligodendrocyte responses to aberrant ECM proteins and CSPGs after various types of demyelinating insults. The discovery that CSPGs act through the receptor protein tyrosine phosphatase sigma (PTPσ) and the Rho-ROCK pathway to inhibit oligodendrocyte process extension and myelination, but not oligodendrocyte differentiation (Pendleton et al., Experimental Neurology (2013) vol. 247, pp. 113-121), highlights the need to better understand the ECM changes that accompany demyelination and their influence on oligodendrocytes and effective remyelination.
Collapse
Affiliation(s)
- Danielle E Harlow
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 12801 East 17th Avenue, Research Complex 1 South, Mail Stop 8108, Aurora, CO 80045, USA; Center for NeuroScience, University of Colorado School of Medicine, 12801 East 17th Avenue, Research Complex 1 South, Mail Stop 8108, Aurora, CO 80045, USA.
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 12801 East 17th Avenue, Research Complex 1 South, Mail Stop 8108, Aurora, CO 80045, USA; Center for NeuroScience, University of Colorado School of Medicine, 12801 East 17th Avenue, Research Complex 1 South, Mail Stop 8108, Aurora, CO 80045, USA.
| |
Collapse
|
71
|
Hunanyan AS, Petrosyan HA, Alessi V, Arvanian VL. Combination of chondroitinase ABC and AAV-NT3 promotes neural plasticity at descending spinal pathways after thoracic contusion in rats. J Neurophysiol 2013; 110:1782-92. [DOI: 10.1152/jn.00427.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transmission through descending pathways to lumbar motoneurons, although important for voluntary walking in humans and rats, has not been fully understood at the cellular level in contusion models. Major descending pathways innervating lumbar motoneurons include those at corticospinal tract (CST) and ventrolateral funiculus (VLF). We examined transmission and plasticity at synaptic pathways from dorsal (d)CST and VLF to individual motoneurons located in ventral horn and interneurons located in dorsomedial gray matter at lumbar segments after thoracic chronic contusion in adult anesthetized rats. To accomplish this, we used intracellular electrophysiological recordings and performed acute focal spinal lesions during the recordings. We directly demonstrate that after thoracic T10 chronic contusion the disrupted dCST axons spontaneously form new synaptic contacts with individual motoneurons, extending around the contusion cavity, through spared ventrolateral white matter. These detour synaptic connections are very weak, and strengthening these connections in order to improve function may be a target for therapeutic interventions after spinal cord injury (SCI). We found that degradation of scar-related chondroitin sulfate proteoglycans with the enzyme chondroitinase ABC (ChABC) combined with adeno-associated viral (AAV) vector-mediated prolonged delivery of neurotrophin NT-3 (AAV-NT3) strengthened these spontaneously formed connections in contused spinal cord. Moreover, ChABC/AAV-NT3 treatment induced the appearance of additional detour synaptic pathways innervating dorsomedial interneurons. Improved transmission in ChABC/AAV-NT3-treated animals was associated with increased immunoreactivity of 5-HT-positive fibers in lumbar dorsal and ventral horns. Improved locomotor function assessed with automated CatWalk highlights the physiological significance of these novel connections.
Collapse
Affiliation(s)
- Arsen S. Hunanyan
- Northport Veterans Affairs Medical Center, Northport, New York; and
- Department of Neurobiology and Behavior, SUNY at Stony Brook, Stony Brook, New York
| | - Hayk A. Petrosyan
- Northport Veterans Affairs Medical Center, Northport, New York; and
- Department of Neurobiology and Behavior, SUNY at Stony Brook, Stony Brook, New York
| | - Valentina Alessi
- Northport Veterans Affairs Medical Center, Northport, New York; and
- Department of Neurobiology and Behavior, SUNY at Stony Brook, Stony Brook, New York
| | - Victor L. Arvanian
- Northport Veterans Affairs Medical Center, Northport, New York; and
- Department of Neurobiology and Behavior, SUNY at Stony Brook, Stony Brook, New York
| |
Collapse
|
72
|
Olson L. Combinatory treatments needed for spinal cord injury. Exp Neurol 2013; 248:309-15. [DOI: 10.1016/j.expneurol.2013.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 01/02/2023]
|
73
|
Nerve regeneration restores supraspinal control of bladder function after complete spinal cord injury. J Neurosci 2013; 33:10591-606. [PMID: 23804083 DOI: 10.1523/jneurosci.1116-12.2013] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A life-threatening disability after complete spinal cord injury is urinary dysfunction, which is attributable to lack of regeneration of supraspinal pathways that control the bladder. Although numerous strategies have been proposed that can promote the regrowth of severed axons in the adult CNS, at present, the approaches by which this can be accomplished after complete cord transection are quite limited. In the present study, we modified a classic peripheral nerve grafting technique with the use of chondroitinase to facilitate the regeneration of axons across and beyond an extensive thoracic spinal cord transection lesion in adult rats. The novel combination treatment allows for remarkably lengthy regeneration of certain subtypes of brainstem and propriospinal axons across the injury site and is followed by markedly improved urinary function. Our studies provide evidence that an enhanced nerve grafting strategy represents a potential regenerative treatment after severe spinal cord injury.
Collapse
|
74
|
Witheford M, Westendorf K, Roskams AJ. Olfactory ensheathing cells promote corticospinal axonal outgrowth by a L1 CAM-dependent mechanism. Glia 2013; 61:1873-89. [DOI: 10.1002/glia.22564] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 07/19/2013] [Accepted: 07/24/2013] [Indexed: 01/24/2023]
Affiliation(s)
- Miranda Witheford
- Department of Zoology, Life Sciences Institute; University of British Columbia V6T 1Z3; Vancouver Canada
| | - Kathryn Westendorf
- Department of Zoology, Life Sciences Institute; University of British Columbia V6T 1Z3; Vancouver Canada
| | - A. Jane Roskams
- Department of Zoology, Life Sciences Institute; University of British Columbia V6T 1Z3; Vancouver Canada
| |
Collapse
|
75
|
Colello RJ, Chow WN, Bigbee JW, Lin C, Dalton D, Brown D, Jha BS, Mathern BE, Lee KD, Simpson DG. The incorporation of growth factor and chondroitinase ABC into an electrospun scaffold to promote axon regrowth following spinal cord injury. J Tissue Eng Regen Med 2013; 10:656-68. [DOI: 10.1002/term.1805] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/27/2013] [Accepted: 07/15/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Raymond J. Colello
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus; Virginia Commonwealth University; Richmond VA USA
| | - Woon N. Chow
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus; Virginia Commonwealth University; Richmond VA USA
| | - John W. Bigbee
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus; Virginia Commonwealth University; Richmond VA USA
| | - Charles Lin
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus; Virginia Commonwealth University; Richmond VA USA
| | - Dustin Dalton
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus; Virginia Commonwealth University; Richmond VA USA
| | - Damien Brown
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus; Virginia Commonwealth University; Richmond VA USA
| | - Balendu Shekhar Jha
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus; Virginia Commonwealth University; Richmond VA USA
| | - Bruce E. Mathern
- Department of Neurosurgery, Medical College of Virginia Campus; Virginia Commonwealth University; Richmond VA USA
| | - Kangmin D. Lee
- Department of Neurosurgery, Medical College of Virginia Campus; Virginia Commonwealth University; Richmond VA USA
| | - David G. Simpson
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus; Virginia Commonwealth University; Richmond VA USA
| |
Collapse
|