51
|
Bogan AE, Roe KJ. Freshwater bivalve (Unioniformes) diversity, systematics, and evolution: status and future directions. ACTA ACUST UNITED AC 2008. [DOI: 10.1899/07-069.1] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Arthur E. Bogan
- North Carolina State Museum of Natural Sciences, Research Laboratory, 4301 Reedy Creek Road, Raleigh, North Carolina 27607 USA
| | - Kevin J. Roe
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, Iowa 50011 USA
| |
Collapse
|
52
|
Chapman EG, Piontkivska H, Walker JM, Stewart DT, Curole JP, Hoeh WR. Extreme primary and secondary protein structure variability in the chimeric male-transmitted cytochrome c oxidase subunit II protein in freshwater mussels: evidence for an elevated amino acid substitution rate in the face of domain-specific purifying selection. BMC Evol Biol 2008; 8:165. [PMID: 18513440 PMCID: PMC2430956 DOI: 10.1186/1471-2148-8-165] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 05/31/2008] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Freshwater unionoidean bivalves, and species representing two marine bivalve orders (Mytiloida and Veneroida), exhibit a mode of mtDNA inheritance involving distinct maternal (F) and paternal (M) transmission routes concomitant with highly divergent gender-associated mtDNA genomes. Additionally, male unionoidean bivalves have a approximately 550 bp 3' coding extension to the cox2 gene (Mcox2e), that is apparently absent from all other metazoan taxa. RESULTS Our molecular sequence analyses of MCOX2e indicate that both the primary and secondary structures of the MCOX2e region are evolving much faster than other regions of the F and M COX2-COX1 gene junction. The near N-terminus approximately 2/3 of the MCOX2e region contains an interspecifically variable number of predicted transmembrane helices (TMH) and interhelical loops (IHL) whereas the C-terminus approximately 1/3 is relatively conserved and hydrophilic while containing conserved functional motifs. MCOX2e displays an overall pattern of purifying selection that leads to the preservation of TMH/IHL and C-terminus tail sub-regions. However, 14 amino acid positions in the MCOX2e TMH/IHL sub-region might be targeted by diversifying selection, each representing a site where there exists interspecific variation for the constituent amino acids residing in a TMH or IHL. CONCLUSION Our results indicate that Mcox2e is unique to unionoidean bivalves, likely the result of a single insertion event that took place over 65 MYA and that MCOX2e is functional. The predicted TMH number, length and position variability likely stems from substitution-based processes rather than the typically implicated insertion/deletion events. MCOX2e has relatively high rates of primary and secondary structure evolution, with some amino acid residues potentially subjected to site-specific positive selection, yet an overall pattern of purifying selection leading to the preservation of the TMH/IHL and hydrophilic C-terminus tail subregions. The more conserved C-terminus tail (relative to the TMH/IHL sub-region of MCOX2e) is likely biologically active because it contains functional motifs. The rapid evolution of primary and secondary structure in MCOX2e, combined with the action of both positive and purifying selection, provide supporting evidence for the hypothesis that MCOX2e has a novel reproductive function within unionoidean bivalves. All tolled, our data indicate that unionoidean bivalve MCOX2 is the first reported chimeric animal mtDNA-encoded protein.
Collapse
Affiliation(s)
- Eric G Chapman
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Jennifer M Walker
- Department of Biological Sciences, The University of Southern Mississippi, Long Beach, MS 39560, USA
| | | | - Jason P Curole
- University of Southern California, Los Angeles, CA 90089, USA
| | - Walter R Hoeh
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
53
|
Theologidis I, Fodelianakis S, Gaspar MB, Zouros E. Doubly uniparental inheritance (DUI) of mitochondrial DNA in Donax trunculus (Bivalvia: Donacidae) and the problem of its sporadic detection in Bivalvia. Evolution 2008; 62:959-70. [PMID: 18208565 DOI: 10.1111/j.1558-5646.2008.00329.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mitochondrial DNA is transmitted maternally in metazoan species. This rule does not hold in several species of bivalves that have two mtDNA types, one that is transmitted maternally and the other paternally. This system of mitochondrial DNA transmission is known as doubly uniparental inheritance (DUI). Here we present evidence of DUI in the clam Donax trunculus making Donacidae the sixth bivalve family in which the phenomenon has been found. In addition, we present the taxonomic affiliation of all species in which DUI is currently known to occur and construct a phylogeny of the maternal and paternal genomes of these species. We use this information to address the question of a single or multiple origins of DUI and to discuss whether failed attempts to demonstrate the presence of DUI in several bivalve species might be due to problems of detection or to genuine absence of the phenomenon.
Collapse
|
54
|
Chapman EG, Gordon ME, Walker JM, Lang BK, Campbell DC, Watters GT, Curole JP, Piontkivska H, Hoeh WR. Evolutionary Relationships Of Popenaias popeii and the Early Evolution Of Lampsiline Bivalves (Unionidae): Phylogenetic Analyses Of Dna and Amino Acid Sequences From F and M Mitochondrial Genomes. MALACOLOGIA 2008. [DOI: 10.4002/0076-2997-50.1-2.303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
55
|
Cyr F, Paquet A, Martel AL, Angers B. Cryptic lineages and hybridization in freshwater mussels of the genus Pyganodon (Unionidae) in northeastern North America. CAN J ZOOL 2007. [DOI: 10.1139/z07-104] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The distribution of freshwater mussels Pyganodon Crosse and P. Fischer, 1894 traditionally inferred from morphological characters was validated by a genetic characterization of the genus within the Quebec peninsula. Individuals were identified by comparing the sequences from the female mitochondrial genome (COI and 16S) with those of reference individuals, while hybridization was assessed with male mitochondrial (COI and COII) and nuclear genomes (ITS1 and ITS2). The results confirmed most of the previous morphological identifications but revealed unexpected results. Both male and female mitochondrial genomes support the distinction between Pyganodon fragilis (Lamarck, 1819) and Pyganodon cataracta (Say, 1817). However, only one lineage of Pyganodon grandis (Say, 1829), instead of the two expected, was detected in the sampled area. The genetic survey also revealed the presence of two unidentified Pyganodon lineages, previously unreported within the Quebec peninsula. These extremely rare lineages harbour the signature of ancestral hybridizations. Finally, recent divergence and hybridizations make shell characters only partially efficient in discriminating Pyganodon lineages.
Collapse
Affiliation(s)
- Frédéric Cyr
- Département des sciences biologiques, Université de Montréal, 90 Vincent d’Indy, Montréal QC H2V 2S9, Canada
- Ministère des Ressources naturelles et de la Faune, 880 chemin Sainte Foy, 2e étage, QC G1S 4X4, Canada
- Sciences biologiques, section Malacologie, Musée canadien de la nature, C.P. 3443, succersale D, Ottawa ON K1P 6P4, Canada
| | - Annie Paquet
- Département des sciences biologiques, Université de Montréal, 90 Vincent d’Indy, Montréal QC H2V 2S9, Canada
- Ministère des Ressources naturelles et de la Faune, 880 chemin Sainte Foy, 2e étage, QC G1S 4X4, Canada
- Sciences biologiques, section Malacologie, Musée canadien de la nature, C.P. 3443, succersale D, Ottawa ON K1P 6P4, Canada
| | - André L. Martel
- Département des sciences biologiques, Université de Montréal, 90 Vincent d’Indy, Montréal QC H2V 2S9, Canada
- Ministère des Ressources naturelles et de la Faune, 880 chemin Sainte Foy, 2e étage, QC G1S 4X4, Canada
- Sciences biologiques, section Malacologie, Musée canadien de la nature, C.P. 3443, succersale D, Ottawa ON K1P 6P4, Canada
| | - Bernard Angers
- Département des sciences biologiques, Université de Montréal, 90 Vincent d’Indy, Montréal QC H2V 2S9, Canada
- Ministère des Ressources naturelles et de la Faune, 880 chemin Sainte Foy, 2e étage, QC G1S 4X4, Canada
- Sciences biologiques, section Malacologie, Musée canadien de la nature, C.P. 3443, succersale D, Ottawa ON K1P 6P4, Canada
| |
Collapse
|
56
|
Venetis C, Theologidis I, Zouros E, Rodakis GC. A mitochondrial genome with a reversed transmission route in the Mediterranean mussel Mytilus galloprovincialis. Gene 2007; 406:79-90. [PMID: 17611047 DOI: 10.1016/j.gene.2007.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 05/25/2007] [Accepted: 06/04/2007] [Indexed: 11/28/2022]
Abstract
Species of the marine mussel genus Mytilus are known to contain two mitochondrial genomes, one transmitted maternally (the F genome) and the other paternally (the M genome). The two genomes have diverged by more than 20% in DNA sequence. Here we present the complete sequence of a third genome, genome C, which we found in the sperm of a Mytilus galloprovincialis male. The coding part of the new genome resembles in sequence the F genome, from which it differs by about 2% on average, but differs from the M genome by as much as the F from the M. Its major control region (CR) is more than three times larger than that of the F or the M genome and consists of repeated sequence domains of the CR of the M genome flanked by domains of the CR of the F genome. We present a sequence of events that reconstruct most parsimoniously the derivation of the C genome from the F and M genomes. The sequence consists of a duplication of CR elements of the M genome and subsequent insertion of these tandemly repeated elements in the F genome by recombination. The fact that the C genome was found as the only mitochondrial genome in the sperm of the male from which it was extracted suggests that it is transmitted paternally.
Collapse
Affiliation(s)
- Constantinos Venetis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15701 Athens, Greece
| | | | | | | |
Collapse
|
57
|
Jha M, Côté J, Hoeh WR, Blier PU, Stewart DT. Sperm motility in Mytilus edulis in relation to mitochondrial DNA polymorphisms: implications for the evolution of doubly uniparental inheritance in bivalves. Evolution 2007; 62:99-106. [PMID: 18039328 DOI: 10.1111/j.1558-5646.2007.00262.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bivalves of the families Mytilidae, Unionidae, and Veneridae have an unusual mode of mitochondrial DNA (mtDNA) transmission called doubly uniparental inheritance (DUI). A characteristic feature of DUI is the presence of two gender-associated mtDNA genomes that are transmitted through males (M-type mtDNA) and females (F-type mtDNA), respectively. Female mussels are predominantly homoplasmic with only the F-type expressed in both somatic and gonadal tissue; males are heteroplasmic with the M-type expressed in the gonad and F-type in somatic tissue for the most part. An unusual evolutionary feature of this system is that an mt genome with F-coding sequences occasionally invades the male route of inheritance (i.e., a "role reversal" event), and is thereafter transmitted as a new M-type. Phylogenetic studies have demonstrated that the new or "recently masculinized" M-types may eventually replace the older or "standard" M-types over time. To investigate whether this replacement process could be due to an advantage in sperm swimming behavior, we measured differences in motility parameters and found that sperm with the recently masculinized M-type had significantly faster curvilinear velocity and average path velocity when compared to sperm with standard M-type. This increase in sperm swimming speed could explain the multiple evolutionary replacements of standard M-types by masculinized M-types that have been hypothesized for the mytilid lineage. However, our observations do not support the hypothesis that DUI originated because it permits the evolution of mitochondrial adaptations specific to sperm performance, otherwise, the evolutionarily older, standard M genome should perform better.
Collapse
Affiliation(s)
- M Jha
- Department of Biology, Acadia University, Wolfville, NS, Canada.
| | | | | | | | | |
Collapse
|
58
|
Zanatta DT, Fraley SJ, Murphy RW. Population structure and mantle display polymorphisms in the wavy-rayed lampmussel, Lampsilis fasciola (Bivalvia: Unionidae). CAN J ZOOL 2007. [DOI: 10.1139/z07-089] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genotypes from 10 polymorphic DNA microsatellite loci were used to make assessments of population structure, measurements of gene flow, and attempts to genetically segregate polymorphic host fish-attracting mantle displays for the wavy-rayed lampmussel, Lampsilis fasciola Rafinesque, 1820 — an endangered species in Canada. Specimens were collected from seven localities — six in the Great Lakes drainages of Ontario, Canada, and one from the Little Tennessee River in North Carolina, USA. Four distinct and sympatric mantle display morphologies were observed on female L. fasciola. Displays could not be distinguished genetically using analysis of molecular variance and genotypic assignment tests. The diversity of mantle displays was correlated with the overall genetic diversity observed among populations of L. fasciola. In managing populations of L. fasciola for propagation, augmentation, and translocation, polymorphic lures should be represented in proportion to what is observed in wild populations. Through moderately high FSTvalues and high assignment to population in genotype assignment tests, genetic structure was evident among the river drainages. Within-drainage gene flow was very high, and sampling localities within the Ontario drainages displayed panmixia. Efforts in artificial propagation and possible translocations to reintroduce or augment populations should be made to maintain the substantial levels of genetic variation while maintaining distinctiveness.
Collapse
Affiliation(s)
- David T. Zanatta
- Royal Ontario Museum, Department of Natural History, 100 Queen’s Park, Toronto, ON M5S 2C6, Canada
- North Carolina Wildlife Resources Commission, 50 Trillium Way, Clyde, NC 28721, USA
| | - Stephen J. Fraley
- Royal Ontario Museum, Department of Natural History, 100 Queen’s Park, Toronto, ON M5S 2C6, Canada
- North Carolina Wildlife Resources Commission, 50 Trillium Way, Clyde, NC 28721, USA
| | - Robert W. Murphy
- Royal Ontario Museum, Department of Natural History, 100 Queen’s Park, Toronto, ON M5S 2C6, Canada
- North Carolina Wildlife Resources Commission, 50 Trillium Way, Clyde, NC 28721, USA
| |
Collapse
|
59
|
Ort BS, Pogson GH. Molecular population genetics of the male and female mitochondrial DNA molecules of the California sea mussel, Mytilus californianus. Genetics 2007; 177:1087-99. [PMID: 17720935 PMCID: PMC2034615 DOI: 10.1534/genetics.107.072934] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 08/19/2007] [Indexed: 02/06/2023] Open
Abstract
The presence of two gender-associated mitochondrial genomes in marine mussels provides a unique opportunity to investigate the dynamics of mtDNA evolution without complications inherent in interspecific comparisons. Here, we assess the relative importance of selection, mutation, and differential constraint in shaping the patterns of polymorphism within and divergence between the male (M) and female (F) mitochondrial genomes of the California sea mussel, Mytilus californianus. Partial sequences were obtained from homologous regions of four genes (nad2, cox1, atp6, and nad5) totaling 2307 bp in length. The M and F mtDNA molecules of M. californianus exhibited extensive levels of nucleotide polymorphism and were more highly diverged than observed in other mytilids (overall Tamura-Nei distances >40%). Consistent with previous studies, the M molecule had significantly higher levels of silent and replacement polymorphism relative to F. Both genomes possessed large numbers of singleton and low-frequency mutations that gave rise to significantly negative Tajima's D values. Mutation-rate scalars estimated for silent and replacement mutations were elevated in the M genome but were not sufficient to account for its higher level of polymorphism. McDonald-Kreitman tests were highly significant at all loci due to excess numbers of fixed replacement mutations between molecules. Strong purifying selection was evident in both genomes in keeping the majority of replacement mutations at low population frequencies but appeared to be slightly relaxed in M. Our results suggest that a reduction in selective constraint acting on the M genome remains the best explanation for its greater levels of polymorphism and faster rate of evolution.
Collapse
Affiliation(s)
- Brian S Ort
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA
| | | |
Collapse
|
60
|
Passamonti M. An unusual case of gender-associated mitochondrial DNA heteroplasmy: the mytilid Musculista senhousia (Mollusca Bivalvia). BMC Evol Biol 2007; 7 Suppl 2:S7. [PMID: 17767735 PMCID: PMC1963476 DOI: 10.1186/1471-2148-7-s2-s7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Doubly Uniparental Inheritance (DUI) represents the most outstanding exception to matrilinear inheritance of mitochondrial DNA (mtDNA), typical of Metazoa. In a few bivalve mollusks, two sex-linked mtDNAs (the so-called M and F) are inherited in a peculiar way: both daughters and sons receive their F from the mother, whereas sons inherit M from the father (males do not transmit F to their progeny). This realizes a double mechanism of transmission, in which M and F mtDNAs are inherited uniparentally. DUI systems represent a unique experimental model for testing the evolutionary mechanisms that apply to mitochondrial genomes and their transmission patterns as well as to mtDNA recombination. RESULTS A new case of DUI is described in Musculista senhousia (Mollusca: Bivalvia: Mytilidae). Its heteroplasmy pattern is in line with standard DUI. Sequence variability analysis evidenced two main results: F haplotypes sequence variability is higher than that of M haplotypes, and F mitochondrial haplotypes experience a higher mutation rate in males' somatic tissues than in females' ones. Phylogenetic analysis revealed also that M. senhousia M and F haplotypes cluster separately from that of the other mytilids. CONCLUSION Sequence variability analysis evidenced some unexpected traits. The inverted variability pattern (the F being more variable than M) was new and it challenges most of the rationales proposed to account for sex-linked mtDNA evolution. We tentatively related this to the history of the Northern Adriatic populations analyzed. Moreover, F sequences evidenced a higher mutation level in male's soma, this variability being produced de novo each generation. This suggests that mechanisms evolved to protect mtDNA in females (f.i. antioxidant gene complexes) might be under relaxed selection in males. Phylogenetic analysis of sex-linked haplotypes confirmed that they have switched their roles during the evolutionary history of mytilids, at variance to what has been observed in unionids. Consequently, reciprocal monophyly of M and F lineages got easily lost because of role-reversals and consequent losses of M lineages, as already observed in Mytilus.
Collapse
Affiliation(s)
- Marco Passamonti
- Department of Biologia Evoluzionistica Sperimentale, University of Bologna, Bologna, I-40126, Italy.
| |
Collapse
|
61
|
Breton S, Beaupré HD, Stewart DT, Hoeh WR, Blier PU. The unusual system of doubly uniparental inheritance of mtDNA: isn't one enough? Trends Genet 2007; 23:465-74. [PMID: 17681397 DOI: 10.1016/j.tig.2007.05.011] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
Mitochondria possess their own genetic material (mitochondrial DNA or mtDNA), whose gene products are involved in mitochondrial respiration and oxidative phosphorylation, transcription, and translation. In animals, mitochondrial DNA is typically transmitted to offspring by the mother alone. The discovery of 'doubly uniparental inheritance' (DUI) of mtDNA in some bivalves has challenged the paradigm of strict maternal inheritance (SMI). In this review, we survey recent advances in our understanding of DUI, which is a peculiar system of cytoplasmic DNA inheritance that involves distinct maternal and paternal routes of mtDNA transmission, a novel extension of a mitochondrial gene (cox2), recombination, and periodic 'role-reversals' of the normally male and female-transmitted mitochondrial genomes. DUI provides a unique opportunity for studying nuclear-cytoplasmic genome interactions and the evolutionary significance of different modes of mitochondrial inheritance.
Collapse
Affiliation(s)
- Sophie Breton
- Département de Biologie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada.
| | | | | | | | | |
Collapse
|
62
|
Range-wide population genetic analysis of the endangered northern riffleshell mussel, Epioblasma torulosa rangiana (Bivalvia: Unionoida). CONSERV GENET 2007. [DOI: 10.1007/s10592-007-9290-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
63
|
Venetis C, Theologidis I, Zouros E, Rodakis GC. No evidence for presence of maternal mitochondrial DNA in the sperm of Mytilus galloprovincialis males. Proc Biol Sci 2007; 273:2483-9. [PMID: 16959639 PMCID: PMC1634914 DOI: 10.1098/rspb.2006.3607] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Species of the mussel family Mytilidae have a special mitochondrial DNA (mtDNA) transmission system, known as doubly uniparental inheritance (DUI), which consists of a maternally inherited (F) and a paternally inherited (M) mitochondrial genome. Females are normally homoplasmic for the F genome and males are heteroplasmic mosaics, with their somatic tissues dominated by the maternal and their gonads dominated by the paternal genome. Several studies have indicated that the maternal genome may often be present in the male germ line. Here we report the results from the examination of mtDNA in pure sperm from more than 30 males of Mytilus galloprovincialis. In all cases, except one, we detected only the M genome. In the sperm of one male, we detected a paternal genome with an F-like primary sequence that was different from the sequence of the maternal genome in the animal's somatic tissues. We conclude that the male germ line is protected against invasion by the maternal genome. This is important because fidelity of gamete-specific transmission of the two mitochondrial genomes is a basic requirement for the stability of DUI.
Collapse
Affiliation(s)
- Constantinos Venetis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of AthensPanepistimioupolis, 15701 Athens, Greece
| | | | - Eleftherios Zouros
- Department of Biology, University of Crete71409 Heraklion, Crete, Greece
| | - George C Rodakis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of AthensPanepistimioupolis, 15701 Athens, Greece
- Author for correspondence ()
| |
Collapse
|
64
|
Rubinoff D, Cameron S, Will K. A genomic perspective on the shortcomings of mitochondrial DNA for "barcoding" identification. ACTA ACUST UNITED AC 2006; 97:581-94. [PMID: 17135463 DOI: 10.1093/jhered/esl036] [Citation(s) in RCA: 264] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Approximately 600-bp sequences of mitochondrial DNA (mtDNA) have been designated as "DNA barcodes" and have become one of the most contentious and animated issues in the application of genetic information to global biodiversity assessment and species identification. Advocates of DNA barcodes have received extensive attention and promotion in many popular and refereed scientific publications. However, we suggest that the utility of barcodes is suspect and vulnerable to technical challenges that are particularly pertinent to mtDNA. We review the natural history of mtDNA and discuss problems for barcoding which are particularly associated with mtDNA and inheritance, including reduced effective population size, maternal inheritance, recombination, inconsistent mutation rate, heteroplasmy, and compounding evolutionary processes. The aforementioned could significantly limit the application and utility of mtDNA barcoding efforts. Furthermore, global use of barcodes will require application and acceptance of a barcode-based species concept that has not been evaluated in the context of the extensive literature concerning species designation. Implementation of mtDNA barcodes in spite of technical and practical shortcomings we discuss may degrade the longstanding synthesis of genetic and organism-based research and will not advance studies ranging from genomic evolution to biodiversity assessment.
Collapse
Affiliation(s)
- Daniel Rubinoff
- Department of Plant and Environmental Protection Sciences, 310 Gilmore Hall, University of Hawaii, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
65
|
GRAF DANIELL, CUMMINGS KEVINS. Palaeoheterodont diversity (Mollusca: Trigonioida + Unionoida): what we know and what we wish we knew about freshwater mussel evolution. Zool J Linn Soc 2006. [DOI: 10.1111/j.1096-3642.2006.00259.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
66
|
Population genetics of the freshwater mussel, Amblema plicata (Say 1817) (Bivalvia: Unionidae): Evidence of high dispersal and post-glacial colonization. CONSERV GENET 2006. [DOI: 10.1007/s10592-006-9175-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
67
|
Burzyński A, Zbawicka M, Skibinski DOF, Wenne R. Doubly uniparental inheritance is associated with high polymorphism for rearranged and recombinant control region haplotypes in Baltic Mytilus trossulus. Genetics 2006; 174:1081-94. [PMID: 16951056 PMCID: PMC1667088 DOI: 10.1534/genetics.106.063180] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many bivalve species, including mussels of the genus Mytilus, are unusual in having two mtDNA genomes, one inherited maternally (the F genome) and the other inherited paternally (the M genome). The sequence differences between the genomes are usually great, indicating ancient divergence predating speciation events. However, in Mytilus trossulus from the Baltic, both genomes are similar to the F genome from the closely related M. edulis. This study analyzed the mtDNA control region structure in male and female Baltic M. trossulus mussels. We show that a great diversity of structural rearrangements is present in both sexes. Sperm samples are dominated by recombinant haplotypes with M. edulis M-like control region segments, some having large duplications. By contrast, the rearranged haplotypes that dominate in eggs lack segments from this M genome. The rearrangements can be explained by a combination of tandem duplication, deletion, and intermolecular recombination. An evolutionary pathway leading to the recombinant haplotypes is suggested. The data are also considered in relation to the hypothesis that the M. edulis M-like control region sequence is necessary to confer the paternal role on genomes that are otherwise F-like.
Collapse
Affiliation(s)
- Artur Burzyński
- Polish Academy of Sciences, Institute of Oceanology, Department of Genetics and Mariene Biotechnology, Sopot, Poland.
| | | | | | | |
Collapse
|
68
|
Chakrabarti R, Walker JM, Stewart DT, Trdan RJ, Vijayaraghavan S, Curole JP, Hoeh WR. Presence of a unique male-specific extension of C-terminus to the cytochrome c oxidase subunit II protein coded by the male-transmitted mitochondrial genome of Venustaconcha ellipsiformis (Bivalvia: Unionoidea). FEBS Lett 2006; 580:862-6. [PMID: 16414043 DOI: 10.1016/j.febslet.2005.12.104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 12/22/2005] [Indexed: 11/23/2022]
Abstract
Analyses of unionoidean bivalve male-transmitted (M) mtDNA genomes revealed an approximately 555 bp 3' coding extension to cox2. An antibody was generated against this predicted C-terminus extension to determine if the unique cox2 protein is expressed. Western blot and immunohistochemistry analyses demonstrated that the protein was predominantly expressed in testes. Weak expression was detected in other male tissues but the protein was not detected in female tissues. This is the first report documenting the expression of a cox2 protein with a long C-terminus in animals. Its universal presence in unionoidean bivalve testes suggests a functional significance for the protein.
Collapse
Affiliation(s)
- R Chakrabarti
- Department of Biological Sciences, Kent State University, Cunningham Hall, Summit Street, Kent, OH 44242, USA.
| | | | | | | | | | | | | |
Collapse
|
69
|
Breton S, Burger G, Stewart DT, Blier PU. Comparative analysis of gender-associated complete mitochondrial genomes in marine mussels (Mytilus spp.). Genetics 2005; 172:1107-19. [PMID: 16322521 PMCID: PMC1456209 DOI: 10.1534/genetics.105.047159] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Marine mussels of the genus Mytilus have an unusual mode of mitochondrial DNA (mtDNA) transmission termed doubly uniparental inheritance (DUI). Female mussels are homoplasmic for the F mitotype, which is inherited maternally, while males are usually heteroplasmic, carrying a mixture of the maternal F mitotype and the paternally inherited M genome. Two classes of M genomes have been observed: "standard" M genomes and "recently masculinized" M genomes. The latter are more similar to F genomes at the sequence level but are transmitted paternally like standard M genomes. In this study we report the complete sequences of two standard male M. edulis and one recently masculinized male M. trossulus mitochondrial genome. A comparative analysis, including the previously sequenced M. edulis F and M. galloprovincialis F and M mtDNAs, reveals that these genomes are identical in gene order, but highly divergent in nucleotide and amino acid sequence. The large amount (>20%) of nucleotide substitutions that fall in coding regions implies that there are several amino acid replacements between the F and M genomes, which likely have an impact on the structural and functional properties of the mitochondrial proteome. Correlation of the divergence rate of different protein-coding genes indicates that mtDNA-encoded proteins of the M genome are still under selective constraints, although less highly than genes of the F genome. The mosaic F/M control region of the masculinized F genome provides evidence for lineage-specific sequences that may be responsible for the different mode of transmission genetics. This analysis shows the value of comparative genomics to better understand the mechanisms of maintenance and segregation of mtDNA sequence variants in mytilid mussels.
Collapse
Affiliation(s)
- Sophie Breton
- Laboratoire de Biologie Evolutive, Département de Biologie, Université du Quebec, Rimouski, Canada
| | | | | | | |
Collapse
|
70
|
Rawson PD. Nonhomologous recombination between the large unassigned region of the male and female mitochondrial genomes in the mussel, Mytilus trossulus. J Mol Evol 2005; 61:717-32. [PMID: 16315104 DOI: 10.1007/s00239-004-0035-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 07/12/2005] [Indexed: 11/30/2022]
Abstract
Doubly uniparental inheritance of mtDNA (DUI) is commonly observed in several genera of bivalves. Under DUI, female offspring inherit mtDNA from their mothers, while male offspring inherit mtDNA from both parents but preferentially transmit the paternally inherited mtDNA to their sons. Several studies have shown that the female- and male-specific mtDNA lineages in blue mussels, Mytilus spp., vary by upward of 20% at the nucleotide level. In addition to high levels of nucleotide substitution, the present study observed substantial gender-based length polymorphism in the presumptive mitochondrial control region (=large unassigned region; LUR) of North American M. trossulus. In this species, female lineage LUR haplotypes are over 2 kb larger than male lineage LUR haplotypes. Analysis of sequence data for these length variants indicates that the F LUR haplotypes of North American M. trossulus contain sequences similar to the F lineage control region in the congeners M. edulis and M. galloprovincialis. Relative to the F LUR in the latter two species, however, the F lineage LUR haplotypes in M. trossulus contain two large sequence insertions, each nearly 1 kb in size. One of these insertions has high sequence similarity to the male lineage LUR of M. trossulus. The tandem arrangement of F and M control region sequences in the F lineage LUR of M. trossulus is most likely the result of nonhomologous recombination between the male and the female mitochondrial genomes in M. trossulus, a finding that has important implications regarding the transmission and evolution of blue mussel mitochondrial genomes.
Collapse
Affiliation(s)
- Paul D Rawson
- School of Marine Sciences, University of Maine, 5751 Murray Hall, Orono, ME 04469-5751, USA.
| |
Collapse
|
71
|
Curole JP, Kocher TD. Evolution of a Unique Mitotype-Specific Protein-Coding Extension of the Cytochrome c Oxidase II Gene in Freshwater Mussels (Bivalvia: Unionoida). J Mol Evol 2005; 61:381-9. [PMID: 16082567 DOI: 10.1007/s00239-004-0192-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 03/10/2005] [Indexed: 11/25/2022]
Abstract
A unique mode of mitochondrial DNA inheritance, designated doubly-uniparental inheritance (DUI), occurs in three bivalve subclasses (Pteriomorpha: Mytiloida, Palaeoheterodonta: Unionoida, Heterodonta: Veneroida), indicating that DUI may be a widespread phenomenon among bivalves. In mytiloids, breakdown of this pattern of inheritance (gender-switching) is observed in natural populations and in a phylogenetic context. In contrast, gender-switching has not occurred during the evolutionary history of unionoids. Here we present sequences for the male (M) and female (F) mitotypes from an additional 8 species of Unionoida. Consistent with previous observations, the M and F mitotypes of all species form reciprocally monophyletic clades supporting the hypothesis of taxon-specific rates of gender-switching. Coinciding with the absence of gender-switching is an approximately 185 codon extension of the cytochrome c oxidase II (MTCO2) locus in the male genome. The extension is present in all 12 unionoid species examined, including a representative of the family Margaritiferidae, indicating that this protein-coding polymorphism originated > or = 200 MYBP: . Although the extension is well conserved in length among 11 of the 12 species, one taxon has a significantly shortened extension. Lastly, examination of the rates and patterns of substitution indicate that the extension is evolving under relaxed purging selection, a pattern inconsistent with the conserved nature of MTCO2 or any cytochrome c oxidase locus.
Collapse
Affiliation(s)
- Jason P Curole
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, 03824, USA.
| | | |
Collapse
|
72
|
Knock EH, Petersen SD, Stewart DT. Differential display reverse transcription PCR applied to male Mytilus edulis mussels with two distinct mitochondrial DNA types. BIOCHEM SYST ECOL 2005. [DOI: 10.1016/j.bse.2004.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
73
|
Mizi A, Zouros E, Moschonas N, Rodakis GC. The Complete Maternal and Paternal Mitochondrial Genomes of the Mediterranean Mussel Mytilus galloprovincialis: Implications for the Doubly Uniparental Inheritance Mode of mtDNA. Mol Biol Evol 2005; 22:952-67. [PMID: 15647523 DOI: 10.1093/molbev/msi079] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The maternal (F) and paternal (M) mitochondrial genomes of the mussel Mytilus galloprovincialis have diverged by about 20% in nucleotide sequence but retained identical gene content and gene arrangement and similar nucleotide composition and codon usage bias. Both lack the ATPase8 subunit gene, have two tRNAs for methionine and a longer open-reading frame for cox3 than seen in other mollusks. Between the F and M genomes, tRNAs are most conserved followed by rRNAs and protein-coding genes, even though the degree of divergence varies considerably among the latter. Divergence at nad3 is exceptionally low most likely because this gene includes the origin of transcription of the lagging strand (O(L)). Noncoding regions are the least conserved with the notable exception of the central domain of the main control region and a segment of another noncoding region immediately following nad3. The amino acid divergence (14%) of the two genomes is smaller than in two other pairs of conspecific genomes that are available in GenBank, that of the clam Venerupis philippinarum (34%) and of the fresh water mussel Inversidens japanensis (50%), suggesting that doubly uniparental inheritance of mtDNA emerged at different times in the three species or that there has been a relatively recent replacement of the male genome by the female in the Mytilus line. The latter hypothesis is supported from phylogenetic and population studies of Mytilidae. That the M genome contains a full complement of genes with no premature termination codons argues against it being a selfish element that rides with the sperm. It is shorter than the F by 118 bp, which apparently cannot account for the postulated replicative advantage of this genome over the F in male gonads. The high similarity of the two genomes explains why the F genome may assume the role of the M genome, but it does not exclude the possibility that for this to happen some M-specific sequences must be transferred on to the F genome by means of recombination. If such sequences exist they would most likely be located in noncoding regions.
Collapse
Affiliation(s)
- Athanasia Mizi
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| | | | | | | |
Collapse
|
74
|
Mock KE, Brim-Box JC, Miller MP, Downing ME, Hoeh WR. Genetic diversity and divergence among freshwater mussel (Anodonta) populations in the Bonneville Basin of Utah. Mol Ecol 2004; 13:1085-98. [PMID: 15078447 DOI: 10.1111/j.1365-294x.2004.02143.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Populations of the freshwater mussel genus Anodonta appear to be in a state of rapid decline in western North America, following a trend that unfortunately seems to be prevalent among these animals (Mollusca: Unionoida). Here we describe the patterns of molecular divergence and diversity among Anodonta populations in the Bonneville Basin, a large sub-basin of the Great Basin in western North America. Using amplified fragment length polymorphism (AFLP) analysis, we found a striking lack of nuclear diversity within some of these populations, along with a high degree of structuring among populations (FST = 0.61), suggesting post-Pleistocene isolation, due either to a long-term loss of hydrologic connectivity among populations or to more recent fish introductions. We also found evidence of recent hybridization in one of these populations, possibly mediated by fish-stocking practices. Using mitochondrial sequence data, we compared the Bonneville Basin populations to Anodonta in several other drainages in western North America. We found a general lack of resolution in these phylogenetic reconstructions, although there was a tendency for the Bonneville Basin Anodonta (tentatively A. californiensis) to cluster with A. oregonensis from the adjacent Lahontan Basin in Nevada. We recommend further investigation of anthropogenic factors that may be contributing to the decline of western Anodonta and a broad-scale analysis and synthesis of genetic and morphological variation among Anodonta in western North America.
Collapse
Affiliation(s)
- K E Mock
- Department of Forest, Range, and Wildlife Sciences, Utah State University, 5230 Old Main Hill, Logan, UT 84322-5230, USA.
| | | | | | | | | |
Collapse
|
75
|
Krebs RA. Combining paternally and maternally inherited mitochondrial DNA for analysis of population structure in mussels. Mol Ecol 2004; 13:1701-5. [PMID: 15140112 DOI: 10.1111/j.1365-294x.2004.02133.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sequence divergence for a fragment of the 16S rRNA gene was compared to identify the advantages in using mitochondrial genes that descend separately through the female and male lineages to examine population structure. The test compared divergence among four local species of freshwater mussels (Unionidae) and was extended to multiple populations of one species, Pyganodon grandis. For the same gene, the male-inherited sequences diverged at a faster rate, producing longer branch lengths in the phylogenies. Of particular use were sequences extracted from P. grandis populations from the southern region of the Lake Erie watershed (Ohio, USA); five male-inherited haplotypes were found. Only one change was observed in the female-inherited form in this region. Therefore, more rapid evolution has occurred in the male form of the gene, and this form provided stronger evidence of geographical isolation among populations. A combination of analyses on haplotypes derived through males and females creates complementary opportunities to identify evolutionary relationships caused by drift and migration in mussels.
Collapse
Affiliation(s)
- Robert A Krebs
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, USA.
| |
Collapse
|
76
|
Boore JL, Medina M, Rosenberg LA. Complete sequences of the highly rearranged molluscan mitochondrial genomes of the Scaphopod Graptacme eborea and the bivalve Mytilus edulis. Mol Biol Evol 2004; 21:1492-503. [PMID: 15014161 DOI: 10.1093/molbev/msh090] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have determined the complete sequence of the mitochondrial genome of the scaphopod mollusk Graptacme eborea (14,492 nts) and completed the sequence of the mitochondrial genome of the bivalve mollusk Mytilus edulis (16,740 nts). (The name Graptacme eborea is a revision of the species formerly known as Dentalium eboreum.) G. eborea mtDNA contains the 37 genes that are typically found and has the genes divided about evenly between the two strands, but M. edulis contains an extra trnM and is missing atp8, and it has all genes on the same strand. Each has a highly rearranged gene order relative to each other and to all other studied mtDNAs. G. eborea mtDNA has almost no strand skew, but the coding strand of M. edulis mtDNA is very rich in G and T. This is reflected in differential codon usage patterns and even in amino acid compositions. G. eborea mtDNA has fewer noncoding nucleotides than any other mtDNA studied to date, with the largest noncoding region only 24 nt long. Phylogenetic analysis using 2,420 aligned amino acid positions of concatenated proteins weakly supports an association of the scaphopod with gastropods to the exclusion of Bivalvia, Cephalopoda, and Polyplacophora, but it is generally unable to convincingly resolve the relationships among major groups of the Lophotrochozoa, in contrast to the good resolution seen for several other major metazoan groups.
Collapse
Affiliation(s)
- Jeffrey L Boore
- Department of Biology, University of Michigan, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
77
|
Universal primers for the specific amplification of the male mitotype of the Unionoidea (Bivalvia). CONSERV GENET 2004. [DOI: 10.1007/s10592-004-1852-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|