51
|
Wang K, Zhou X, Li W, Zhang L. Human salivary proteins and their peptidomimetics: Values of function, early diagnosis, and therapeutic potential in combating dental caries. Arch Oral Biol 2018; 99:31-42. [PMID: 30599395 DOI: 10.1016/j.archoralbio.2018.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/21/2018] [Accepted: 12/22/2018] [Indexed: 02/05/2023]
Abstract
Saliva contains a large number of proteins that play various crucial roles to maintain the oral health and tooth integrity. This oral fluid is proposed to be one of the most important host factors, serving as a special medium for monitoring aspects of microorganisms, diet and host susceptibility involved in the caries process. Extensive salivary proteomic and peptidomic studies have resulted in considerable advances in the field of biomarkers discovery for dental caries. These salivary biomarkers may be exploited for the prediction, diagnosis, prognosis and treatment of dental caries, many of which could also provide the potential templates for bioactive peptides used for the biomimetic management of dental caries, rather than repairing caries lesions with artificial materials. A comprehensive understanding of the biological function of salivary proteins as well as their derived biomimetic peptides with promising potential against dental caries has been long awaited. This review overviewed a collection of current literature and addressed the majority of different functions of salivary proteins and peptides with their potential as functional biomarkers for caries risk assessment and clinical prospects for the anti-caries application.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
52
|
Jin HS, Song K, Baek JH, Lee JE, Kim DJ, Nam GW, Kang NJ, Lee DW. Identification of Matrix Metalloproteinase-1-Suppressive Peptides in Feather Keratin Hydrolysate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12719-12729. [PMID: 30395462 DOI: 10.1021/acs.jafc.8b05213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Inhibition of matrix metalloproteinases (MMPs), which degrade collagen and elastin in the dermis of normal skin, is a key strategy for anti-skin aging. In this study, we identified five low-molecular-weight (LMW, <1 kDa) MMP-1-suppressive peptides in feather keratin hydrolysate (FKH) obtained by anaerobic digestion with an extremophilic bacterium. FKH was first subjected to ultrafiltration, followed by size-exclusion chromatography and liquid chromatography/electrospray ionization tandem mass spectrometry analysis. Chemically synthesized peptides identical to the sequences identified suppressed MMP expression in human dermal fibroblasts (HDFs). To investigate the impact of the MMP-1-suppressive peptides on the signaling pathway, we performed antibody array phosphorylation profiling of HDFs. The results suggested that the peptide GGFDL regulates ultraviolet-B-induced MMP-1 expression by inhibiting mitogen-activated protein kinases and nuclear factor κB signaling pathways as well as histone modification. Thus, LMW feather keratin peptides could serve as novel bioactive compounds to protect the skin against intrinsic and extrinsic factors.
Collapse
Affiliation(s)
- Hyeon-Su Jin
- Department of Biotechnology , Yonsei University , Seoul 03722 , South Korea
| | - Kyeongseop Song
- School of Food Science and Biotechnology , Kyungpook National University , Daegu 41566 , South Korea
| | - Je-Hyun Baek
- Center of Biomedical Mass Spectrometry (CBMS) , DiatechKorea Company, Limited , Seoul 05808 , South Korea
| | - Jae-Eun Lee
- School of Food Science and Biotechnology , Kyungpook National University , Daegu 41566 , South Korea
| | - Da Jeong Kim
- School of Food Science and Biotechnology , Kyungpook National University , Daegu 41566 , South Korea
| | - Gae-Won Nam
- School of Cosmetics , Seowon University , Cheongju 28674 , South Korea
| | - Nam Joo Kang
- School of Food Science and Biotechnology , Kyungpook National University , Daegu 41566 , South Korea
| | - Dong-Woo Lee
- Department of Biotechnology , Yonsei University , Seoul 03722 , South Korea
| |
Collapse
|
53
|
Winderickx S, De Brucker K, Bird MJ, Windmolders P, Meert E, Cammue BPA, Thevissen K. Structure-activity relationship study of the antimicrobial CRAMP-derived peptide CRAMP20-33. Peptides 2018; 109:33-38. [PMID: 30176261 DOI: 10.1016/j.peptides.2018.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 02/01/2023]
Abstract
We report here on the structure-activity relationship study of a 14 amino acid fragment of the cathelicidin-related antimicrobial peptide (CRAMP), CRAMP20-33 (KKIGQKIKNFFQKL). It showed activity against Escherichia coli and filamentous fungi with IC50 values below 30 μM and 10 μM, respectively. CRAMP20-33 variants with glycine at position 23 substituted by phenylalanine, leucine or tryptophan showed 2- to 4-fold improved activity against E. coli but not against filamentous fungi. Furthermore, the most active single-substituted peptide, CRAMP20-33 G23 W (IC50 = 2.3 μM against E. coli), showed broad-spectrum activity against Candida albicans, Staphylococcus epidermidis and Salmonella Typhimurium. Introduction of additional arginine substitutions in CRAMP20-33 G23 W, more specifically in CRAMP20-33 G23 W N28R or CRAMP20-33 G23 W Q31R, resulted in 3-fold increased activity against S. epidermidis (IC50 = 4 μM and 4.8 μM, respectively) as compared to CRAMP20-33 G23 W (IC50 = 15.1 μM) but not against the other pathogens tested. In general, double-substituted variants were non-toxic for human HepG2 cells, pointing to their therapeutic potential.
Collapse
Affiliation(s)
- Sofie Winderickx
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium
| | - Katrijn De Brucker
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium
| | - Matthew J Bird
- Department of Hepatology, University Hospital Gasthuisberg, Herestraat 49, Box 7003 09, 3000, Leuven, Belgium
| | - Petra Windmolders
- Department of Hepatology, University Hospital Gasthuisberg, Herestraat 49, Box 7003 09, 3000, Leuven, Belgium
| | - Els Meert
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium; Centre of Plant Systems Biology, VIB, Technologiepark 927, 9052, Ghent, Belgium.
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium
| |
Collapse
|
54
|
Herman A, Herman AP. Antimicrobial peptides activity in the skin. Skin Res Technol 2018; 25:111-117. [DOI: 10.1111/srt.12626] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/23/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Anna Herman
- Faculty of Health SciencesWarsaw College of Health and Engineering Warsaw Poland
| | - Andrzej P. Herman
- Department of Genetic EngineeringThe Kielanowski Institute of Animal Physiology and NutritionPolish Academy of Sciences Jabłonna, Warsaw Poland
| |
Collapse
|
55
|
Low-dose calcipotriol can elicit wound closure, anti-microbial, and anti-neoplastic effects in epidermolysis bullosa keratinocytes. Sci Rep 2018; 8:13430. [PMID: 30194425 PMCID: PMC6128832 DOI: 10.1038/s41598-018-31823-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 07/12/2018] [Indexed: 01/08/2023] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) patients suffer from chronic and repeatedly infected wounds predisposing them to the development of aggressive and life-threatening skin cancer in these areas. Vitamin D3 is an often neglected but critical factor for wound healing. Intact skin possesses the entire enzymatic machinery required to produce active 1-alpha,25-dihydroxyvitamin D3 (calcitriol), underscoring its significance to proper skin function. Injury enhances calcitriol production, inducing the expression of calcitriol target genes including the antimicrobial peptide cathelicidin (hCAP18), an essential component of the innate immune system and an important wound healing factor. We found significantly reduced hCAP18 expression in a subset of RDEB keratinocytes which could be restored by calcipotriol treatment. Reduced scratch closure in RDEB cell monolayers was enhanced up to 2-fold by calcipotriol treatment, and the secretome of calcipotriol-treated cells additionally showed increased antimicrobial activity. Calcipotriol exhibited anti-neoplastic effects, suppressing the clonogenicity and proliferation of RDEB tumor cells. The combined wound healing, anti-microbial, and anti-neoplastic effects indicate that calcipotriol may represent a vital therapeutic option for RDEB patients which we could demonstrate in a single-patient observation study.
Collapse
|
56
|
Hernández-Villa L, Manrique-Moreno M, Leidy C, Jemioła-Rzemińska M, Ortíz C, Strzałka K. Biophysical evaluation of cardiolipin content as a regulator of the membrane lytic effect of antimicrobial peptides. Biophys Chem 2018; 238:8-15. [DOI: 10.1016/j.bpc.2018.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
|
57
|
Mishra AA, Koh AY. Adaptation of Candida albicans during gastrointestinal tract colonization. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018; 5:165-172. [PMID: 30560045 DOI: 10.1007/s40588-018-0096-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of Review Colonization of the gastrointestinal (GI) tract with Candida albicans (CA), the most common human fungal pathogen, is the first step towards the development of invasive infection. Yet the fungal virulence factors and host factors that modulate CA GI colonization are still poorly understood. In this review, we will review emerging evidence of the importance of select CA genetic determinants and CA's interaction with the host that contribute to its successful adaptation as a pathobiont in the human GI tract. Recent Findings Recent data reveal the importance of 1) CA genetic determinants; 2) host factors; and 3) environmental factors in modulating CA GI colonization in humans. Summary As evidence continues to grow supporting the notion that the GI tract and its resident microbiota are an integral part of the host immune system, it will be critical for studies to interrogate the interaction of CA with the host (including both the host innate and adaptive immune system as well as the endogenous gut microbiota) in order to dissect the mechanisms of CA pathogenesis and thus lay the foundation for novel therapeutic approaches to prevent and/or treat invasive fungal infections.
Collapse
Affiliation(s)
- Animesh A Mishra
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew Y Koh
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
58
|
Van Dijck P, Sjollema J, Cammue BPA, Lagrou K, Berman J, d’Enfert C, Andes DR, Arendrup MC, Brakhage AA, Calderone R, Cantón E, Coenye T, Cos P, Cowen LE, Edgerton M, Espinel-Ingroff A, Filler SG, Ghannoum M, Gow NA, Haas H, Jabra-Rizk MA, Johnson EM, Lockhart SR, Lopez-Ribot JL, Maertens J, Munro CA, Nett JE, Nobile CJ, Pfaller MA, Ramage G, Sanglard D, Sanguinetti M, Spriet I, Verweij PE, Warris A, Wauters J, Yeaman MR, Zaat SA, Thevissen K. Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:300-326. [PMID: 29992128 PMCID: PMC6035839 DOI: 10.15698/mic2018.07.638] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
Unlike superficial fungal infections of the skin and nails, which are the most common fungal diseases in humans, invasive fungal infections carry high morbidity and mortality, particularly those associated with biofilm formation on indwelling medical devices. Therapeutic management of these complex diseases is often complicated by the rise in resistance to the commonly used antifungal agents. Therefore, the availability of accurate susceptibility testing methods for determining antifungal resistance, as well as discovery of novel antifungal and antibiofilm agents, are key priorities in medical mycology research. To direct advancements in this field, here we present an overview of the methods currently available for determining (i) the susceptibility or resistance of fungal isolates or biofilms to antifungal or antibiofilm compounds and compound combinations; (ii) the in vivo efficacy of antifungal and antibiofilm compounds and compound combinations; and (iii) the in vitro and in vivo performance of anti-infective coatings and materials to prevent fungal biofilm-based infections.
Collapse
Affiliation(s)
- Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Leuven, Belgium
| | - Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of BioMedical Engineering, Groningen, The Netherlands
| | - Bruno P. A. Cammue
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Katrien Lagrou
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Clinical Department of Laboratory Medicine and National Reference Center for Mycosis, UZ Leuven, Belgium
| | - Judith Berman
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Christophe d’Enfert
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - David R. Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Maiken C. Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Axel A. Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Dept. Microbiology and Molecular Biology, Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington DC, USA
| | - Emilia Cantón
- Severe Infection Research Group: Medical Research Institute La Fe (IISLaFe), Valencia, Spain
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- ESCMID Study Group for Biofilms, Switzerland
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Belgium
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mira Edgerton
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY USA
| | | | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mahmoud Ghannoum
- Center for Medical Mycology, Department of Dermatology, University Hospitals Cleveland Medical Center and Case Western Re-serve University, Cleveland, OH, USA
| | - Neil A.R. Gow
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Hubertus Haas
- Biocenter - Division of Molecular Biology, Medical University Innsbruck, Innsbruck, Austria
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry; Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, USA
| | - Elizabeth M. Johnson
- National Infection Service, Public Health England, Mycology Reference Laboratory, Bristol, UK
| | | | | | - Johan Maertens
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium and Clinical Department of Haematology, UZ Leuven, Leuven, Belgium
| | - Carol A. Munro
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jeniel E. Nett
- University of Wisconsin-Madison, Departments of Medicine and Medical Microbiology & Immunology, Madison, WI, USA
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, USA
| | - Michael A. Pfaller
- Departments of Pathology and Epidemiology, University of Iowa, Iowa, USA
- JMI Laboratories, North Liberty, Iowa, USA
| | - Gordon Ramage
- ESCMID Study Group for Biofilms, Switzerland
- College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne
| | - Maurizio Sanguinetti
- Institute of Microbiology, Università Cattolica del Sacro Cuore, IRCCS-Fondazione Policlinico "Agostino Gemelli", Rome, Italy
| | - Isabel Spriet
- Pharmacy Dpt, University Hospitals Leuven and Clinical Pharmacology and Pharmacotherapy, Dpt. of Pharmaceutical and Pharma-cological Sciences, KU Leuven, Belgium
| | - Paul E. Verweij
- Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Nijmegen, the Netherlands (omit "Nijmegen" in Radboud University Medical Center)
| | - Adilia Warris
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Joost Wauters
- KU Leuven-University of Leuven, University Hospitals Leuven, Department of General Internal Medicine, Herestraat 49, B-3000 Leuven, Belgium
| | - Michael R. Yeaman
- Geffen School of Medicine at the University of California, Los Angeles, Divisions of Molecular Medicine & Infectious Diseases, Har-bor-UCLA Medical Center, LABioMed at Harbor-UCLA Medical Center
| | - Sebastian A.J. Zaat
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Am-sterdam, Netherlands
| | - Karin Thevissen
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
59
|
Gupta S, Bhatia G, Sharma A, Saxena S. Host defense peptides: An insight into the antimicrobial world. J Oral Maxillofac Pathol 2018; 22:239-244. [PMID: 30158778 PMCID: PMC6097362 DOI: 10.4103/jomfp.jomfp_113_16] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 04/27/2018] [Indexed: 12/19/2022] Open
Abstract
A serious challenge to antimicrobial therapies has emerged due to rapid increase in drug-resistant infections creating an urge for the development of alternative therapeutics. Antimicrobial peptides (AMPs) have gained importance because of their broad-spectrum antimicrobial activities and mediator-like functions linking innate and adaptive immune responses. The multidimensional properties of these peptides hold promising potentials as prophylactic and antimicrobial agents. This review discusses various AMPs and their role in combating microorganisms and infections along with its clinical implication.
Collapse
Affiliation(s)
- Shiva Gupta
- Department of Periodontology, Subharti Dental College, Meerut, India
| | - Gouri Bhatia
- Department of Periodontology, Teerthanker Mahaveer Dental College and Research Centre, Moradabad, Uttar Pradesh, India
| | - Anamika Sharma
- Department of Periodontology, Subharti Dental College, Meerut, India
| | - Sameer Saxena
- Department of Periodontology, Teerthanker Mahaveer Dental College and Research Centre, Moradabad, Uttar Pradesh, India
| |
Collapse
|
60
|
Ceragenin CSA-13 as free molecules and attached to magnetic nanoparticle surfaces induce caspase-dependent apoptosis in human breast cancer cells via disruption of cell oxidative balance. Oncotarget 2018; 9:21904-21920. [PMID: 29774111 PMCID: PMC5955147 DOI: 10.18632/oncotarget.25105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/22/2018] [Indexed: 01/31/2023] Open
Abstract
Natural antimicrobial peptides and ceragenins, as non-peptide amphipathic mimics, have been proposed as anti-cancer agents. To date, it has been confirmed that cathelicidin LL-37 and ceragenin CSA-13, both in free form and immobilized on the surface of magnetic nanoparticles (MNP@LL-37, MNP@CSA-13) induce apoptosis in colon cancer cells. Nevertheless, the question remains whether ceragenins, as synthetic analogs of LL-37 peptide and mimicking a number of its properties, act as antineoplastic agents in breast cancer cells, where LL-37 peptide stimulates oncogenesis. Considering potential anticancer activity, we determined whether CSA-13 and MNP@CSA-13 might be effective against breast cancer cells. Our study provides evidence that both CSA-13 and MNP@CSA-13 decreased viability and inhibit proliferation of MCF-7 and MDA-MB-231 cells despite the protumorigenic properties of LL-37 peptide. Flow cytometry-based analyses revealed that ceragenin treatment results in increases in dead and PI-negative/low-viability cells, which was associated with glutathione (GSH) depletion and increased reactive oxygen species (ROS) generation followed by mitochondrial membrane depolarization, caspase activation, and DNA fragmentation. These findings demonstrate that both CSA-13 and MNP@CSA-13 cause disruption of the oxidative balance of cancer cells. This novel mechanism of ceragenin-mediated eradication of cancer cells suggest that these agents may be developed as a possible treatment of breast cancer.
Collapse
|
61
|
Hünniger K, Kurzai O. Phagocytes as central players in the defence against invasive fungal infection. Semin Cell Dev Biol 2018; 89:3-15. [PMID: 29601862 DOI: 10.1016/j.semcdb.2018.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 03/26/2018] [Indexed: 12/23/2022]
Abstract
Fungal pathogens cause severe and life-threatening infections worldwide. The majority of invasive infections occurs in immunocompromised patients and is based on acquired as well as congenital defects of innate and adaptive immune responses. In many cases, these defects affect phagocyte functions. Consequently, professional phagocytes - mainly monocytes, macrophages, dendritic cells and polymorphonuclear neutrophilic granulocytes - have been shown to act as central players in initiating and modulating antifungal immune responses as well as elimination of fungal pathogens. In this review we will summarize our current understanding on the role of these professional phagocytes in invasive fungal infection to emphasize two important aspects. (i) Analyses on the interaction between fungi and phagocytes have contributed to significant new insights into phagocyte biology. Important examples for this include the identification of pattern recognition receptors for β-glucan, a major cell wall component of many fungal pathogens, as well as the identification of genetic polymorphisms that determine individual host responses towards invading fungi. (ii) At the same time it was shown that fungal pathogens have evolved sophisticated mechanisms to counteract the attack of professional phagocytes. These mechanisms range from complete mechanical destruction of phagocytes to exquisite adaptation of some fungi to the hostile intracellular environment, enabling them to grow and replicate inside professional phagocytes.
Collapse
Affiliation(s)
- Kerstin Hünniger
- Institute for Hygiene and Microbiology, University of Würzburg, Germany; Septomics Research Center, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Jena, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, University of Würzburg, Germany; Septomics Research Center, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Jena, Germany.
| |
Collapse
|
62
|
Gunasekera S, Muhammad T, Strömstedt AA, Rosengren KJ, Göransson U. Alanine and Lysine Scans of the LL-37-Derived Peptide Fragment KR-12 Reveal Key Residues for Antimicrobial Activity. Chembiochem 2018; 19:931-939. [DOI: 10.1002/cbic.201700599] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Sunithi Gunasekera
- Pharmacognosy; Department of Medicinal Chemistry; Uppsala University; Biomedical Centre; Box 574 75123 Uppsala Sweden
| | - Taj Muhammad
- Pharmacognosy; Department of Medicinal Chemistry; Uppsala University; Biomedical Centre; Box 574 75123 Uppsala Sweden
| | - Adam A. Strömstedt
- Pharmacognosy; Department of Medicinal Chemistry; Uppsala University; Biomedical Centre; Box 574 75123 Uppsala Sweden
| | - K. Johan Rosengren
- The University of Queensland; School of Biomedical Sciences; Brisbane QLD 4072 Australia
| | - Ulf Göransson
- Pharmacognosy; Department of Medicinal Chemistry; Uppsala University; Biomedical Centre; Box 574 75123 Uppsala Sweden
| |
Collapse
|
63
|
Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds. Front Pharmacol 2018; 9:281. [PMID: 29643807 PMCID: PMC5882822 DOI: 10.3389/fphar.2018.00281] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/13/2018] [Indexed: 01/10/2023] Open
Abstract
Alarming data about increasing resistance to conventional antibiotics are reported, while at the same time the development of new antibiotics is stagnating. Skin and soft tissue infections (SSTIs) are mainly caused by the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) which belong to the most recalcitrant bacteria and are resistant to almost all common antibiotics. S. aureus and P. aeruginosa are the most frequent pathogens isolated from chronic wounds and increasing resistance to topical antibiotics has become a major issue. Therefore, new treatment options are urgently needed. In recent years, research focused on the development of synthetic antimicrobial peptides (AMPs) with lower toxicity and improved activity compared to their endogenous counterparts. AMPs appear to be promising therapeutic options for the treatment of SSTIs and wounds as they show a broad spectrum of antimicrobial activity, low resistance rates and display pivotal immunomodulatory as well as wound healing promoting activities such as induction of cell migration and proliferation and angiogenesis. In this review, we evaluate the potential of AMPs for the treatment of bacterial SSTIs and wounds and provide an overview of the mechanisms of actions of AMPs that contribute to combat skin infections and to improve wound healing. Bacteria growing in biofilms are more resistant to conventional antibiotics than their planktonic counterparts due to limited biofilm penetration and distinct metabolic and physiological functions, and often result in chronification of infections and wounds. Thus, we further discuss the feasibility of AMPs as anti-biofilm agents. Finally, we highlight perspectives for future therapies and which issues remain to bring AMPs successfully to the market.
Collapse
Affiliation(s)
- Anja Pfalzgraff
- Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | - Günther Weindl
- Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
64
|
Richardson JP, Moyes DL, Ho J, Naglik JR. Candida innate immunity at the mucosa. Semin Cell Dev Biol 2018; 89:58-70. [PMID: 29501618 DOI: 10.1016/j.semcdb.2018.02.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/27/2018] [Indexed: 12/17/2022]
Abstract
The tremendous diversity in microbial species that colonise the mucosal surfaces of the human body is only now beginning to be fully appreciated. Distinguishing between the behaviour of commensal microbes and harmful pathogens that reside at mucosal sites in the body is a complex, and exquisitely fine-tuned process central to mucosal health. The fungal pathobiont Candida albicans is frequently isolated from mucosal surfaces with an asymptomatic carriage rate of approximately 60% in the human population. While normally a benign member of the microbiota, overgrowth of C. albicans often results in localised mucosal infection causing morbidity in otherwise healthy individuals, and invasive infection that often causes death in the absence of effective immune defence. C. albicans triggers numerous innate immune responses at mucosal surfaces, and detection of C. albicans hyphae in particular, stimulates the production of antimicrobial peptides, danger-associated molecular patterns and cytokines that function to reduce fungal burdens during infection. This review will summarise our current understanding of innate immune responses to C. albicans at mucosal surfaces.
Collapse
Affiliation(s)
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Mucosal & Salivary Biology Division, Dental Institute, King's College London, UK.
| | - Jemima Ho
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, UK.
| | - Julian R Naglik
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, UK.
| |
Collapse
|
65
|
Teh SW, Mok PL, Abd Rashid M, Bastion MLC, Ibrahim N, Higuchi A, Murugan K, Mariappan R, Subbiah SK. Recent Updates on Treatment of Ocular Microbial Infections by Stem Cell Therapy: A Review. Int J Mol Sci 2018; 19:ijms19020558. [PMID: 29438279 PMCID: PMC5855780 DOI: 10.3390/ijms19020558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/03/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
Ocular microbial infection has emerged as a major public health crisis during the past two decades. A variety of causative agents can cause ocular microbial infections; which are characterized by persistent and destructive inflammation of the ocular tissue; progressive visual disturbance; and may result in loss of visual function in patients if early and effective treatments are not received. The conventional therapeutic approaches to treat vision impairment and blindness resulting from microbial infections involve antimicrobial therapy to eliminate the offending pathogens or in severe cases; by surgical methods and retinal prosthesis replacing of the infected area. In cases where there is concurrent inflammation, once infection is controlled, anti-inflammatory agents are indicated to reduce ocular damage from inflammation which ensues. Despite advances in medical research; progress in the control of ocular microbial infections remains slow. The varying level of ocular tissue recovery in individuals and the incomplete visual functional restoration indicate the chief limitations of current strategies. The development of a more extensive therapy is needed to help in healing to regain vision in patients. Stem cells are multipotent stromal cells that can give rise to a vast variety of cell types following proper differentiation protocol. Stem cell therapy shows promise in reducing inflammation and repairing tissue damage on the eye caused by microbial infections by its ability to modulate immune response and promote tissue regeneration. This article reviews a selected list of common infectious agents affecting the eye; which include fungi; viruses; parasites and bacteria with the aim of discussing the current antimicrobial treatments and the associated therapeutic challenges. We also provide recent updates of the advances in stem cells studies on sepsis therapy as a suggestion of optimum treatment regime for ocular microbial infections.
Collapse
Affiliation(s)
- Seoh Wei Teh
- Department of Biomedical Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Pooi Ling Mok
- Department of Biomedical Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Aljouf University, 72442 Sakaka, Aljouf Province, Saudi Arabia.
| | - Munirah Abd Rashid
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Mae-Lynn Catherine Bastion
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Normala Ibrahim
- Department of Psychiatry, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, 32001 Taoyuan, Taiwan.
| | - Kadarkarai Murugan
- Department of Zoology, Thiruvalluvar University, Serkkadu, 632 115 Vellore, India.
| | - Rajan Mariappan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625 021 Tamil Nadu, India.
| | - Suresh Kumar Subbiah
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
66
|
Pachón-Ibáñez ME, Smani Y, Pachón J, Sánchez-Céspedes J. Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol Rev 2018; 41:323-342. [PMID: 28521337 PMCID: PMC5435762 DOI: 10.1093/femsre/fux012] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/28/2017] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases caused by bacteria, viruses or fungi are among the leading causes of death worldwide. The emergence of drug-resistance mechanisms, especially among bacteria, threatens the efficacy of all current antimicrobial agents, some of them already ineffective. As a result, there is an urgent need for new antimicrobial drugs. Host defense antimicrobial peptides (HDPs) are natural occurring and well-conserved peptides of innate immunity, broadly active against Gram-negative and Gram-positive bacteria, viruses and fungi. They also are able to exert immunomodulatory and adjuvant functions by acting as chemotactic for immune cells, and inducing cytokines and chemokines secretion. Moreover, they show low propensity to elicit microbial adaptation, probably because of their non-specific mechanism of action, and are able to neutralize exotoxins and endotoxins. HDPs have the potential to be a great source of novel antimicrobial agents. The goal of this review is to provide an overview of the advances made in the development of human defensins as well as the cathelicidin LL-37 and their derivatives as antimicrobial agents against bacteria, viruses and fungi for clinical use.
Collapse
Affiliation(s)
- María Eugenia Pachón-Ibáñez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville
| | - Younes Smani
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville
| | - Jerónimo Pachón
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville.,Department of Medicine, University of Seville, Seville, Spain
| | - Javier Sánchez-Céspedes
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville.,Department of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
67
|
Kapitan M, Niemiec MJ, Steimle A, Frick JS, Jacobsen ID. Fungi as Part of the Microbiota and Interactions with Intestinal Bacteria. Curr Top Microbiol Immunol 2018; 422:265-301. [PMID: 30062595 DOI: 10.1007/82_2018_117] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The human microbiota consists of bacteria, archaea, viruses, and fungi that build a highly complex network of interactions between each other and the host. While there are many examples for commensal bacterial influence on host health and immune modulation, little is known about the role of commensal fungi inside the gut community. Up until now, fungal research was concentrating on opportunistic diseases caused by fungal species, leaving the possible role of fungi as part of the microbiota largely unclear. Interestingly, fungal and bacterial abundance in the gut appear to be negatively correlated and disruption of the bacterial microbiota is a prerequisite for fungal overgrowth. The mechanisms behind bacterial colonization resistance are likely diverse, including direct antagonism as well as bacterial stimulation of host defense mechanisms. In this work, we will review the current knowledge of the development of the intestinal bacterial and fungal community, the influence of the microbiota on human health and disease, and the role of the opportunistic yeast C. albicans. We will furthermore discuss the possible benefits of commensal fungal colonization. Finally, we will summarize the recent findings on bacterial-fungal interactions.
Collapse
Affiliation(s)
- Mario Kapitan
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - M Joanna Niemiec
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Alexander Steimle
- Interfaculty Institute for Microbiology and Infection Medicine, Tübingen, Germany
| | - Julia S Frick
- Interfaculty Institute for Microbiology and Infection Medicine, Tübingen, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
68
|
Santos SAD, Andrade DRD. HIF-1alpha and infectious diseases: a new frontier for the development of new therapies. Rev Inst Med Trop Sao Paulo 2017; 59:e92. [PMID: 29267600 PMCID: PMC5738998 DOI: 10.1590/s1678-9946201759092] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/07/2017] [Indexed: 01/08/2023] Open
Abstract
The aim of this review is to show the significant role of HIF-1alpha in inflammatory and infectious diseases. Hypoxia is a physiological characteristic of a wide range of diseases from cancer to infection. Cellular hypoxia is sensed by oxygen-sensitive hydrolase enzymes, which control the protein stability of hypoxia-inducible factor alpha 1 (HIF-1alpha) transcription factors. When stabilized, HIF-1alpha binds with its cofactors to HIF-responsive elements (HREs) in the promoters of target genes to organize a broad ranging transcriptional program in response to the hypoxic environment. HIF-1alpha also plays a regulatory function in response to a diversity of molecular signals of infection and inflammation even under normoxic conditions. HIF-1alpha is stimulated by pro-inflammatory cytokines, growth factors and a wide range of infections. Its induction is a general element of the host response to infection. In this review, we also discuss recent advances in knowledge on HIF-1alpha and inflammatory responses, as well as its direct influence in infectious diseases caused by bacteria, virus, protozoan parasites and fungi.
Collapse
Affiliation(s)
- Sânia Alves Dos Santos
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, Laboratório de Bacteriologia (LIM 54), São Paulo, São Paulo, Brazil
| | - Dahir Ramos de Andrade
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, Laboratório de Bacteriologia (LIM 54), São Paulo, São Paulo, Brazil
| |
Collapse
|
69
|
Ordonez SR, Veldhuizen EJA, van Eijk M, Haagsman HP. Role of Soluble Innate Effector Molecules in Pulmonary Defense against Fungal Pathogens. Front Microbiol 2017; 8:2098. [PMID: 29163395 PMCID: PMC5671533 DOI: 10.3389/fmicb.2017.02098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022] Open
Abstract
Fungal infections of the lung are life-threatening but rarely occur in healthy, immunocompetent individuals, indicating efficient clearance by pulmonary defense mechanisms. Upon inhalation, fungi will first encounter the airway surface liquid which contains several soluble effector molecules that form the first barrier of defense against fungal infections. These include host defense peptides, like LL-37 and defensins that can neutralize fungi by direct killing of the pathogen, and collectins, such as surfactant protein A and D, that can aggregate fungi and stimulate phagocytosis. In addition, these molecules have immunomodulatory activities which can aid in fungal clearance from the lung. However, existing observations are based on in vitro studies which do not reflect the complexity of the lung and its airway surface liquid. Ionic strength, pH, and the presence of mucus can have strong detrimental effects on antifungal activity, while the potential synergistic interplay between soluble effector molecules is largely unknown. In this review, we describe the current knowledge on soluble effector molecules that contribute to antifungal activity, the importance of environmental factors and discuss the future directions required to understand the innate antifungal defense in the lung.
Collapse
Affiliation(s)
- Soledad R Ordonez
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Edwin J A Veldhuizen
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Martin van Eijk
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Henk P Haagsman
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
70
|
Abdelaal NH, Rashed LA, Ibrahim SY, Abd El Halim MH, Ghoneim N, Saleh NA, Saleh MA. Cathelicidin (LL-37) level in the scalp hair of patients with tinea capitis. Med Mycol 2017; 55:733-736. [PMID: 27915299 DOI: 10.1093/mmy/myw132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/27/2016] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are considered an important first line of defense against pathogens. Cathelicidin LL-37 was upregulated in response to fungal infection. In this work we aimed to evaluate cathelicidin LL-37 in the hair of tinea capitis and compare it to normal controls. Hair samples were collected from 30 children and 30 controls aged from 2 to10 years old, and the level of cathelicidin LL-37 in the hair was detected by quantitative real-time PCR. The 30 patients were further subdivided into three subgroups according to their clinical type. Ten patients were scaly type, 10 patients were black dots type, and 10 patients were kerion type. Cathelicidin level in patients ranged from 6.0 to 17.5 with mean ± SD (11.3 ± 2.3) and in control ranged from 1.02 to 6.2, with mean ± SD (2.8 ± 1.5). There was a significant difference between the patients and controls regarding the cathelicidin level; P value was 0. The mean cathelicidin level was lowest in the kerion type10.73 ± 2.6 and highest in the black dot type 12.05 ± 2.76. However, there was no significant difference between the cathelicidin level of the different clinical types of tinea capitis; P value was 0.58. In conclusion, the level of cathelicidin LL-37 in hair specimens of human tinea capitis was significantly higher than controls.
Collapse
Affiliation(s)
- Nagwa H Abdelaal
- Department of Dermatology, AL Azhar University, Faculty of Medicine for girls
| | - Laila A Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University
| | - Sahar Y Ibrahim
- Department of Community, Faculty of Medicine, Cairo University
| | - Mona H Abd El Halim
- Department of Dermatology, AL Azhar University, Faculty of Medicine for girls
| | - Noha Ghoneim
- Department of Dermatology, AL Azhar University, Faculty of Medicine for girls
| | - Noha A Saleh
- Department of Dermatology, Faculty of Medicine, Cairo University
| | - Marwah A Saleh
- Department of Dermatology, Faculty of Medicine, Cairo University
| |
Collapse
|
71
|
Coorens M, Schneider VAF, de Groot AM, van Dijk A, Meijerink M, Wells JM, Scheenstra MR, Veldhuizen EJA, Haagsman HP. Cathelicidins Inhibit Escherichia coli-Induced TLR2 and TLR4 Activation in a Viability-Dependent Manner. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:1418-1428. [PMID: 28710255 PMCID: PMC5544931 DOI: 10.4049/jimmunol.1602164] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/09/2017] [Indexed: 11/19/2022]
Abstract
Activation of the immune system needs to be tightly regulated to provide protection against infections and, at the same time, to prevent excessive inflammation to limit collateral damage to the host. This tight regulation includes regulating the activation of TLRs, which are key players in the recognition of invading microbes. A group of short cationic antimicrobial peptides, called cathelicidins, have previously been shown to modulate TLR activation by synthetic or purified TLR ligands and may play an important role in the regulation of inflammation during infections. However, little is known about how these cathelicidins affect TLR activation in the context of complete and viable bacteria. In this article, we show that chicken cathelicidin-2 kills Escherichia coli in an immunogenically silent fashion. Our results show that chicken cathelicidin-2 kills E. coli by permeabilizing the bacterial inner membrane and subsequently binds the outer membrane-derived lipoproteins and LPS to inhibit TLR2 and TLR4 activation, respectively. In addition, other cathelicidins, including human, mouse, pig, and dog cathelicidins, which lack antimicrobial activity under cell culture conditions, only inhibit macrophage activation by nonviable E. coli In total, this study shows that cathelicidins do not affect immune activation by viable bacteria and only inhibit inflammation when bacterial viability is lost. Therefore, cathelicidins provide a novel mechanism by which the immune system can discriminate between viable and nonviable Gram-negative bacteria to tune the immune response, thereby limiting collateral damage to the host and the risk for sepsis.
Collapse
Affiliation(s)
- Maarten Coorens
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Viktoria A F Schneider
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - A Marit de Groot
- Division of Immunology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; and
| | - Albert van Dijk
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Marjolein Meijerink
- Host Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, the Netherlands
| | - Jerry M Wells
- Host Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, the Netherlands
| | - Maaike R Scheenstra
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Edwin J A Veldhuizen
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Henk P Haagsman
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands;
| |
Collapse
|
72
|
Anti-fungal activity of Ctn[15-34], the C-terminal peptide fragment of crotalicidin, a rattlesnake venom gland cathelicidin. J Antibiot (Tokyo) 2016; 70:231-237. [PMID: 27876749 DOI: 10.1038/ja.2016.135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/25/2016] [Accepted: 10/17/2016] [Indexed: 12/11/2022]
Abstract
Crotalicidin (Ctn), a 34-residue cathelicidin from a South American rattlesnake, and its fragment (Ctn[15-34]) have shown anti-infective and cytotoxic activities against Gram-negative bacteria and certain tumor lines, respectively. The extent of such effects has been related to physicochemical characteristics such as helicity and hydrophobicity. We now report the anti-fungal activity of Ctn and its fragments (Ctn[1-14]) and (Ctn[15-34]). MIC determination and luminescent cell viability assays were used to evaluate the anti-infective activity of Ctn and its fragments (Ctn[1-14]) and (Ctn[15-34]) as anti-fungal agents against opportunistic yeast and dermatophytes. Cytotoxicity towards healthy eukaryotic cells was assessed in vitro with healthy human kidney-2 (HK-2) cells and erythrocytes. The checkerboard technique was performed to estimate the effects of combining either one of the peptides with amphotericin B. Ctn was the most active peptide against dermatophytes and also the most toxic to healthy eukaryotic cells. Fragments Ctn[1-14] and Ctn[15-35] lost activity against dermatophytes, but became more active against pathogenic yeasts, including several Candida species, both clinical isolates and standard strains, with MICs as low as 5 μm. Interestingly, the two peptide fragments were less cytotoxic to healthy HK-2 cells and less hemolytic to human erythrocytes than the standard-of-care amphotericin B. Also noteworthy was the synergy between Ctn peptides and amphotericin B, with consequent reduction in MICs of both drug and peptides. Altogether, Ctn and its fragments, particularly Ctn[15-34], are promising leads, either alone or in combined regimen with amphotericin B, for the treatment of fungal diseases.
Collapse
|
73
|
Malik E, Dennison SR, Harris F, Phoenix DA. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents. Pharmaceuticals (Basel) 2016; 9:ph9040067. [PMID: 27809281 PMCID: PMC5198042 DOI: 10.3390/ph9040067] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) are potent antibiotics of the innate immune system that have been extensively investigated as a potential solution to the global problem of infectious diseases caused by pathogenic microbes. A group of AMPs that are increasingly being reported are those that utilise pH dependent antimicrobial mechanisms, and here we review research into this area. This review shows that these antimicrobial molecules are produced by a diverse spectrum of creatures, including vertebrates and invertebrates, and are primarily cationic, although a number of anionic examples are known. Some of these molecules exhibit high pH optima for their antimicrobial activity but in most cases, these AMPs show activity against microbes that present low pH optima, which reflects the acidic pH generally found at their sites of action, particularly the skin. The modes of action used by these molecules are based on a number of major structure/function relationships, which include metal ion binding, changes to net charge and conformational plasticity, and primarily involve the protonation of histidine, aspartic acid and glutamic acid residues at low pH. The pH dependent activity of pore forming antimicrobial proteins involves mechanisms that generally differ fundamentally to those used by pH dependent AMPs, which can be described by the carpet, toroidal pore and barrel-stave pore models of membrane interaction. A number of pH dependent AMPs and antimicrobial proteins have been developed for medical purposes and have successfully completed clinical trials, including kappacins, LL-37, histatins and lactoferrin, along with a number of their derivatives. Major examples of the therapeutic application of these antimicrobial molecules include wound healing as well as the treatment of multiple cancers and infections due to viruses, bacteria and fungi. In general, these applications involve topical administration, such as the use of mouth washes, cream formulations and hydrogel delivery systems. Nonetheless, many pH dependent AMPs and antimicrobial proteins have yet to be fully characterized and these molecules, as a whole, represent an untapped source of novel biologically active agents that could aid fulfillment of the urgent need for alternatives to conventional antibiotics, helping to avert a return to the pre-antibiotic era.
Collapse
Affiliation(s)
- Erum Malik
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Sarah R Dennison
- School of Pharmacy and Biological Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Frederick Harris
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - David A Phoenix
- Office of the Vice Chancellor, London South Bank University, 103 Borough Road, London SE1 0AA, UK.
| |
Collapse
|
74
|
Friedrich D, Fecher RA, Rupp J, Deepe GS. Impact of HIF-1α and hypoxia on fungal growth characteristics and fungal immunity. Microbes Infect 2016; 19:204-209. [PMID: 27810563 DOI: 10.1016/j.micinf.2016.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/28/2022]
Abstract
Human pathogenic fungi are highly adaptable to a changing environment. The ability to adjust to low oxygen conditions is crucial for colonization and infection of the host. Recently, the impact of mammalian hypoxia-inducible factor-1α (HIF-1α) on fungal immunity has emerged. In this review, the role of hypoxia and HIF-1α in fungal infections is discussed regarding the innate immune response.
Collapse
Affiliation(s)
- Dirk Friedrich
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany.
| | - Roger A Fecher
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45220, USA
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany
| | - George S Deepe
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Medical Service, Veterans Affairs Hospital, Cincinnati, OH 45220, USA
| |
Collapse
|
75
|
Khurshid Z, Naseem M, Sheikh Z, Najeeb S, Shahab S, Zafar MS. Oral antimicrobial peptides: Types and role in the oral cavity. Saudi Pharm J 2016; 24:515-524. [PMID: 27752223 PMCID: PMC5059823 DOI: 10.1016/j.jsps.2015.02.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/20/2015] [Indexed: 12/27/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a wide-ranging class of host-defense molecules that act early to contest against microbial invasion and challenge. These are small cationic peptides that play an important in the development of innate immunity. In the oral cavity, the AMPs are produced by the salivary glands and the oral epithelium and serve defensive purposes. The aim of this review was to discuss the types and functions of oral AMPs and their role in combating microorganisms and infections in the oral cavity.
Collapse
Affiliation(s)
- Zohaib Khurshid
- School of Materials and Metallurgy, University of Birmingham, United Kingdom
| | - Mustafa Naseem
- Department of Community Dentistry and Preventive Dentistry, School of Dentistry, Ziauddin University, Pakistan
| | - Zeeshan Sheikh
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Shariq Najeeb
- School of Dentistry, Al-Farabi Dental College, Saudi Arabia
| | - Sana Shahab
- Department of Dental Materials Science, Sir Syed College of Medical Sciences for Girls, Pakistan
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Madinah Al-Munawwarah, Saudi Arabia
| |
Collapse
|
76
|
Salazar VA, Arranz-Trullén J, Navarro S, Blanco JA, Sánchez D, Moussaoui M, Boix E. Exploring the mechanisms of action of human secretory RNase 3 and RNase 7 against Candida albicans. Microbiologyopen 2016; 5:830-845. [PMID: 27277554 PMCID: PMC5061719 DOI: 10.1002/mbo3.373] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 12/17/2022] Open
Abstract
Human antimicrobial RNases, which belong to the vertebrate RNase A superfamily and are secreted upon infection, display a wide spectrum of antipathogen activities. In this work, we examined the antifungal activity of the eosinophil RNase 3 and the skin-derived RNase 7, two proteins expressed by innate cell types that are directly involved in the host defense against fungal infection. Candida albicans has been selected as a suitable working model for testing RNase activities toward a eukaryotic pathogen. We explored the distinct levels of action of both RNases on yeast by combining cell viability and membrane model assays together with protein labeling and confocal microscopy. Site-directed mutagenesis was applied to ablate either the protein active site or the key anchoring region for cell binding. This is the first integrated study that highlights the RNases' dual mechanism of action. Along with an overall membrane-destabilization process, the RNases could internalize and target cellular RNA. The data support the contribution of the enzymatic activity for the antipathogen action of both antimicrobial proteins, which can be envisaged as suitable templates for the development of novel antifungal drugs. We suggest that both human RNases work as multitasking antimicrobial proteins that provide a first line immune barrier.
Collapse
Affiliation(s)
- Vivian A Salazar
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193, Spain
| | - Javier Arranz-Trullén
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193, Spain
| | - Susanna Navarro
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193, Spain.,Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193, Spain
| | - Jose A Blanco
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193, Spain
| | - Daniel Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193, Spain
| | - Mohammed Moussaoui
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193, Spain.
| |
Collapse
|
77
|
Rautenbach M, Troskie AM, Vosloo JA. Antifungal peptides: To be or not to be membrane active. Biochimie 2016; 130:132-145. [PMID: 27234616 DOI: 10.1016/j.biochi.2016.05.013] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023]
Abstract
Most antifungal peptides (AFPs), if not all, have membrane activity, while some also have alternative targets. Fungal membranes share many characteristics with mammalian membranes with only a few differences, such as differences in sphingolipids, phosphatidylinositol (PI) content and the main sterol is ergosterol. Fungal membranes are also more negative and a better target for cationic AFPs. Targeting just the fungal membrane lipids such as phosphatidylinositol and/or ergosterol by AFPs often translates into mammalian cell toxicity. Conversely, a specific AFP target in the fungal pathogen, such as glucosylceramide, mannosyldiinositol phosphorylceramide or a fungal protein target translates into high pathogen selectivity. However, a lower target concentration, absence or change in the specific fungal target can naturally lead to resistance, although such resistance in turn could result in reduced pathogen virulence. The question is then to be or not to be membrane active - what is the best choice for a successful AFP? In this review we deliberate on this question by focusing on the recent advances in our knowledge on how natural AFPs target fungi.
Collapse
Affiliation(s)
- Marina Rautenbach
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, South Africa.
| | - Anscha M Troskie
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, South Africa
| | - J Arnold Vosloo
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, South Africa
| |
Collapse
|
78
|
Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV. J Control Release 2016; 229:163-171. [DOI: 10.1016/j.jconrel.2016.03.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/10/2016] [Accepted: 03/16/2016] [Indexed: 11/20/2022]
|
79
|
Mattozzi C, Paolino G, Richetta AG, Calvieri S. Psoriasis, vitamin D and the importance of the cutaneous barrier's integrity: An update. J Dermatol 2016; 43:507-14. [DOI: 10.1111/1346-8138.13305] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/15/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Carlo Mattozzi
- Department of Internal Medicine and Medical Specialties; University of Rome “Sapienza”; Rome Italy
| | - Giovanni Paolino
- Department of Internal Medicine and Medical Specialties; University of Rome “Sapienza”; Rome Italy
| | | | - Stefano Calvieri
- Department of Internal Medicine and Medical Specialties; University of Rome “Sapienza”; Rome Italy
| |
Collapse
|
80
|
Ahmed AMS, Magalhaes RJS, Ahmed T, Long KZ, Hossain M, Islam MM, Mahfuz M, Gaffar SMA, Sharmeen A, Haque R, Guerrant RL, Petri WA, Mamun AA. Vitamin-D status is not a confounder of the relationship between zinc and diarrhoea: a study in 6-24-month-old underweight and normal-weight children of urban Bangladesh. Eur J Clin Nutr 2016; 70:620-8. [PMID: 26956127 DOI: 10.1038/ejcn.2016.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/23/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND/OBJECTIVE The role of micronutrients particularly zinc in childhood diarrhoea is well established. Immunomodulatory functions of vitamin-D in diarrhoea and its role in the effect of other micronutrients are not well understood. This study aimed to investigate whether vitamin-D directly associated or confounded the association between other micronutrient status and diarrhoeal incidence and severity in 6-24-month underweight and normal-weight children in urban Bangladesh. SUBJECTS/METHODS Multivariable generalised estimating equations were used to estimate incidence rate ratios for incidence (Poisson) and severity (binomial) of diarrhoea on cohorts of 446 normal-weight and 466 underweight children. Outcomes of interest included incidence and severity of diarrhoea, measured daily during a follow-up period of 5 months. The exposure of interest was vitamin-D status at enrolment. RESULTS Normal-weight and underweight children contributed 62 117 and 62 967 day observation, with 14.2 and 12.8 days/child/year of diarrhoea, respectively. None of the models showed significant associations of vitamin-D status with diarrhoeal morbidity. In the final model, zinc-insufficient normal-weight children had 1.3 times more days of diarrhoea than sufficient children (P<0.05). Again zinc insufficiency and mother's education (1-5 and >5 years) had 1.8 and 2.3 times more risk of severe diarrhoea. In underweight children, older age and female had 24-63 and 17% fewer days of diarrhoea and 52-54 and 31% fewer chances of severe diarrhoea. CONCLUSION Vitamin-D status was not associated with incidence and severity of diarrhoea in study children. Role of zinc in diarrhoea was only evident in normal-weight children. Our findings demonstrate that vitamin-D is not a confounder of the relationship between zinc and diarrhoea.
Collapse
Affiliation(s)
- A M S Ahmed
- School of Public Health, The University of Queensland, Brisbane, QLD, Australia.,Centre for Nutrition and Food Security, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - R J S Magalhaes
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia.,Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - T Ahmed
- Centre for Nutrition and Food Security, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - K Z Long
- School of Public Health, The University of Queensland, Brisbane, QLD, Australia.,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - MdI Hossain
- Centre for Nutrition and Food Security, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - M M Islam
- Centre for Nutrition and Food Security, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - M Mahfuz
- Centre for Nutrition and Food Security, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - S M A Gaffar
- Centre for Nutrition and Food Security, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - A Sharmeen
- Centre for Nutrition and Food Security, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - R Haque
- Centre for Nutrition and Food Security, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - R L Guerrant
- Division of Infectious Diseases and International Health, Department of Internal Medicine, University of Virginia, Charlottesville, VA, USA
| | - W A Petri
- Division of Infectious Diseases and International Health, Department of Internal Medicine, University of Virginia, Charlottesville, VA, USA
| | - A A Mamun
- School of Public Health, The University of Queensland, Brisbane, QLD, Australia.,Centre for Nutrition and Food Security, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
81
|
The human cathelicidin LL-37 — A pore-forming antibacterial peptide and host-cell modulator. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:546-66. [DOI: 10.1016/j.bbamem.2015.11.003] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 01/12/2023]
|
82
|
Zhang L, Wu WKK, Gallo RL, Fang EF, Hu W, Ling TKW, Shen J, Chan RLY, Lu L, Luo XM, Li MX, Chan KM, Yu J, Wong VWS, Ng SC, Wong SH, Chan FKL, Sung JJY, Chan MTV, Cho CH. Critical Role of Antimicrobial Peptide Cathelicidin for Controlling Helicobacter pylori Survival and Infection. THE JOURNAL OF IMMUNOLOGY 2016; 196:1799-1809. [DOI: 10.4049/jimmunol.1500021] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
The antimicrobial peptide cathelicidin is critical for protection against different kinds of microbial infection. This study sought to elucidate the protective action of cathelicidin against Helicobacter pylori infection and its associated gastritis. Exogenous cathelicidin was found to inhibit H. pylori growth, destroy the bacteria biofilm, and induce morphological alterations in H. pylori membrane. Additionally, knockdown of endogenous cathelicidin in human gastric epithelial HFE-145 cells markedly increased the intracellular survival of H. pylori. Consistently, cathelicidin knockout mice exhibited stronger H. pylori colonization, higher expression of proinflammatory cytokines IL-6, IL-1β, and ICAM1, and lower expression of the anti-inflammatory cytokine IL-10 in the gastric mucosa upon H. pylori infection. In wild-type mice, H. pylori infection also stimulated gastric epithelium-derived cathelicidin production. Importantly, pretreatment with bioengineered Lactococcus lactis that actively secretes cathelicidin significantly increased mucosal cathelicidin levels and reduced H. pylori infection and the associated inflammation. Moreover, cathelicidin strengthened the barrier function of gastric mucosa by stimulating mucus synthesis. Collectively, these findings indicate that cathelicidin plays a significant role as a potential natural antibiotic for H. pylori clearance and a therapeutic agent for chronic gastritis.
Collapse
Affiliation(s)
- Lin Zhang
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- †Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- ‡CUHK Shenzhen Research Institute, Shenzhen 518057, China
| | - William K. K. Wu
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- ‡CUHK Shenzhen Research Institute, Shenzhen 518057, China
- §Department of Anesthesia and Intensive Care, Chinese University of Hong Kong, Hong Kong, China
| | - Richard L. Gallo
- ¶Division of Dermatology, University of California, San Diego, La Jolla, CA 92093
| | - Evandro F. Fang
- ‖Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Wei Hu
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| | - Thomas K. W. Ling
- **Department of Microbiology, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Jing Shen
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| | - Ruby L. Y. Chan
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| | - Lan Lu
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| | - Xiao M. Luo
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| | - Ming X. Li
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| | - Kam M. Chan
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| | - Jun Yu
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- †Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- ‡CUHK Shenzhen Research Institute, Shenzhen 518057, China
| | - Vincent W. S. Wong
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- †Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Siew C. Ng
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- †Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Sunny H. Wong
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- †Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- ‡CUHK Shenzhen Research Institute, Shenzhen 518057, China
| | - Francis K. L. Chan
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- †Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- ‡CUHK Shenzhen Research Institute, Shenzhen 518057, China
| | - Joseph J. Y. Sung
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- †Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- ‡CUHK Shenzhen Research Institute, Shenzhen 518057, China
| | - Matthew T. V. Chan
- §Department of Anesthesia and Intensive Care, Chinese University of Hong Kong, Hong Kong, China
| | - Chi H. Cho
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| |
Collapse
|
83
|
Assessing the potential of four cathelicidins for the management of mouse candidiasis and Candida albicans biofilms. Biochimie 2016; 121:268-77. [DOI: 10.1016/j.biochi.2015.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/29/2015] [Indexed: 11/22/2022]
|
84
|
Vitamin D influences asthmatic pathology through its action on diverse immunological pathways. Ann Am Thorac Soc 2015; 11 Suppl 5:S314-21. [PMID: 25525739 DOI: 10.1513/annalsats.201405-204aw] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The prevalence of vitamin D insufficiency and deficiency has increased markedly in recent decades to current epidemic levels (Hyppönen E, et al. Am J Clin Nutr 2007;85:860-868). In parallel, there has been an increase in the incidence of a range of immune-mediated conditions ranging from cancer to autoimmune and respiratory diseases, including chronic obstructive pulmonary disease and asthma (Holick MF. N Engl J Med 2007;357:266-281; Finklea et al. Adv Nutr 2011;2:244-253). There is also an association with increased respiratory infections, which are the most common cause of asthma exacerbations (Finklea et al. Adv Nutr 2011;2:244-253). Together, this has resulted in considerable interest in the therapeutic potential of vitamin D to prevent and improve treatment of asthma and other respiratory diseases. To this end, data from clinical trials involving supplementation with active vitamin D, or more commonly a precursor, are starting to emerge. This review considers mechanisms by which vitamin D may act on the immune system to dampen inappropriate inflammatory responses in the airway while also promoting tolerance and antimicrobial defense mechanisms that collectively maintain respiratory health.
Collapse
|
85
|
Piktel E, Niemirowicz K, Wnorowska U, Wątek M, Wollny T, Głuszek K, Góźdź S, Levental I, Bucki R. The Role of Cathelicidin LL-37 in Cancer Development. Arch Immunol Ther Exp (Warsz) 2015; 64:33-46. [PMID: 26395996 PMCID: PMC4713713 DOI: 10.1007/s00005-015-0359-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/29/2015] [Indexed: 01/04/2023]
Abstract
LL-37 is a C-terminal peptide proteolytically released from 18 kDa human cathelicidin protein (hCAP18). Chronic infections, inflammation, tissue injury and tissue regeneration are all linked with neoplastic growth, and involve LL-37 antibacterial and immunomodulatory functions. Such a link points to the possible involvement of LL-37 peptide in carcinogenesis. An increasing amount of evidence suggests that LL-37 can have two different and contradictory effects--promotion or inhibition of tumor growth. The mechanisms are tissue-specific, complex, and depend mostly on the ability of LL-37 to act as a ligand for different membrane receptors whose expression varies on different cancer cells. Overexpression of LL-37 was found to promote development and progression of ovarian, lung and breast cancers, and to suppress tumorigenesis in colon and gastric cancer. This review explores and summarizes the current views on how LL-37 contributes to immunity, pathophysiology and cell signaling involved in malignant tumor growth.
Collapse
Affiliation(s)
- Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Katarzyna Niemirowicz
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Urszula Wnorowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Marzena Wątek
- Holy Cross Oncology Center of Kielce, Kielce, Poland
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Kielce, Poland
| | | | - Stanisław Góźdź
- The Faculty of Health Sciences of The Jan Kochanowski University in Kielce, Kielce, Poland
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School, Houston, TX, USA
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland.
- Department of Physiology, Pathophysiology and Microbiology of Infections, Faculty of Health Sciences of The Jan Kochanowski University in Kielce, Kielce, Poland.
| |
Collapse
|
86
|
Scarsini M, Tomasinsig L, Arzese A, D'Este F, Oro D, Skerlavaj B. Antifungal activity of cathelicidin peptides against planktonic and biofilm cultures of Candida species isolated from vaginal infections. Peptides 2015; 71:211-21. [PMID: 26238597 DOI: 10.1016/j.peptides.2015.07.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 01/13/2023]
Abstract
Vulvovaginal candidiasis (VVC) is a frequent gynecological condition caused by Candida albicans and a few non-albicans Candida spp. It has a significant impact on the quality of life of the affected women also due to a considerable incidence of recurrent infections that are difficult to treat. The formation of fungal biofilm may contribute to the problematic management of recurrent VVC due to the intrinsic resistance of sessile cells to the currently available antifungals. Thus, alternative approaches for the prevention and control of biofilm-related infections are urgently needed. In this regard, the cationic antimicrobial peptides (AMPs) of the innate immunity are potential candidates for the development of novel antimicrobials as many of them display activity against biofilm formed by various microbial species. In the present study, we investigated the in vitro antifungal activities of the cathelicidin peptides LL-37 and BMAP-28 against pathogenic Candida spp. also including C. albicans, isolated from vaginal infections, and against C. albicans SC5314 as a reference strain. The antimicrobial activity was evaluated against planktonic and biofilm-grown Candida cells by using microdilution susceptibility and XTT [2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide] reduction assays and, in the case of established biofilms, also by CFU enumeration and fluorescence microscopy. BMAP-28 was effective against planktonically grown yeasts in standard medium (MIC range, 2-32μM), and against isolates of C. albicans and Candida krusei in synthetic vaginal simulated fluid (MIC range 8-32μM, depending on the pH of the medium). Established 48-h old biofilms formed by C. albicans SC5314 and C. albicans and C. krusei isolates were 70-90% inhibited within 24h incubation with 16μM BMAP-28. As shown by propidium dye uptake and CFU enumeration, BMAP-28 at 32μM killed sessile C. albicans SC5314 by membrane permeabilization with a faster killing kinetics compared to 32μM miconazole (80-85% reduced biofilm viability in 90min vs 48h). In addition, BMAP-28 at 16μM prevented Candida biofilm formation on polystyrene and medical grade silicone surfaces by causing a >90% reduction in the viability of planktonic cells in 30min. LL-37 was overall less effective than BMAP-28 against planktonic Candida spp. (MIC range 4-≥64μM), and was ineffective against established Candida biofilms. However, LL-37 at 64μM prevented Candida biofilm development by inhibiting cell adhesion to polystyrene and silicone surfaces. Finally, Candida adhesion was strongly inhibited when silicone was pre-coated with a layer of BMAP-28 or LL-37, encouraging further studies for the development of peptide-based antimicrobial coatings.
Collapse
Affiliation(s)
- Michele Scarsini
- Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Linda Tomasinsig
- Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Alessandra Arzese
- Department of Experimental and Clinical Sciences, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Francesca D'Este
- Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Debora Oro
- Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Barbara Skerlavaj
- Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy.
| |
Collapse
|
87
|
Rerknimitr P, Tanizaki H, Otsuka A, Miyachi Y, Kabashima K. Diminution of Langerhans cells in keratitis, ichthyosis and deafness (KID) syndrome patient with recalcitrant cutaneous candidiasis. J Eur Acad Dermatol Venereol 2015; 30:e47-e49. [PMID: 26333049 DOI: 10.1111/jdv.13292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- P Rerknimitr
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Division of Dermatology, Department of Medicine, Faculty of Medicine, Allergy and Clinical Immunology Research Group, Chulalongkorn University, Bangkok, Thailand.,Dermatology Unit, Department of Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - H Tanizaki
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - A Otsuka
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Y Miyachi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - K Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
88
|
|
89
|
Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat Med 2015; 21:808-14. [PMID: 26053625 PMCID: PMC4496259 DOI: 10.1038/nm.3871] [Citation(s) in RCA: 288] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
Candida albicans colonization is required for invasive disease1-3. Unlike humans, adult mice with mature intact gut microbiota are resistant to C. albicans gastrointestinal (GI) colonization2,4. But the factors that promote C. albicans colonization resistance are unknown. Here we demonstrate that commensal anaerobic bacteria – specifically Clostridial Firmicutes (Clusters IV and XIVa) and Bacteroidetes – are critical for maintaining C. albicans colonization resistance in mice. Using Bacteroides thetaiotamicron as a model organism, we find that HIF-1α, a transcription factor important for activating innate immune effectors, and the antimicrobial peptide LL37-CRAMP are key determinants of C. albicans colonization resistance. While antibiotic treatment enables C. albicans colonization, pharmacologic activation of colonic Hif1a induces CRAMP expression and results in a significant reduction of C. albicans GI colonization and a 50% decrease in mortality from invasive disease. In the setting of antibiotics, Hif1a and Cramp are required for B. thetaiotamicron-induced protection against CA colonization of the gut. Thus, C. albicans GI colonization modulation by activation of gut mucosal immune effectors may represent a novel therapeutic approach for preventing invasive fungal disease in humans.
Collapse
|
90
|
Inactivation of the antifungal and immunomodulatory properties of human cathelicidin LL-37 by aspartic proteases produced by the pathogenic yeast Candida albicans. Infect Immun 2015; 83:2518-30. [PMID: 25847962 DOI: 10.1128/iai.00023-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/27/2015] [Indexed: 01/07/2023] Open
Abstract
Constant cross talk between Candida albicans yeast cells and their human host determines the outcome of fungal colonization and, eventually, the progress of infectious disease (candidiasis). An effective weapon used by C. albicans to cope with the host defense system is the release of 10 distinct secreted aspartic proteases (SAPs). Here, we validate a hypothesis that neutrophils and epithelial cells use the antimicrobial peptide LL-37 to inactivate C. albicans at sites of candidal infection and that C. albicans uses SAPs to effectively degrade LL-37. LL-37 is cleaved into multiple products by SAP1 to -4, SAP8, and SAP9, and this proteolytic processing is correlated with the gradual decrease in the antifungal activity of LL-37. Moreover, a major intermediate of LL-37 cleavage-the LL-25 peptide-is antifungal but devoid of the immunomodulatory properties of LL-37. In contrast to LL-37, LL-25 did not affect the generation of reactive oxygen species by neutrophils upon treatment with phorbol esters. Stimulating neutrophils with LL-25 (rather than LL-37) significantly decreased calcium flux and interleukin-8 production, resulting in lower chemotactic activity of the peptide against neutrophils, which may decrease the recruitment of neutrophils to infection foci. LL-25 also lost the function of LL-37 as an inhibitor of neutrophil apoptosis, thereby reducing the life span of these defense cells. This study indicates that C. albicans can effectively use aspartic proteases to destroy the antimicrobial and immunomodulatory properties of LL-37, thus enabling the pathogen to survive and propagate.
Collapse
|
91
|
Zhang H, Xia X, Han F, Jiang Q, Rong Y, Song D, Wang Y. Cathelicidin-BF, a Novel Antimicrobial Peptide from Bungarus fasciatus, Attenuates Disease in a Dextran Sulfate Sodium Model of Colitis. Mol Pharm 2015; 12:1648-61. [PMID: 25807257 DOI: 10.1021/acs.molpharmaceut.5b00069] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antimicrobial peptides are molecules of innate immunity. Cathelicidin-BF is the first cathelicidin peptide found in reptiles. However, the immunoregulatory and epithelial barrier protective properties of C-BF have not been reported. Inflammatory bowel diseases, including ulcerative colitis and Crohn's disease, can lead to colon cancer, the third most common malignant tumor. The objective is to develop the new found cathelicidin-BF as a therapeutic to patients of ulcerative colitis. The morphology of the colon epithelium was observed by H&E staining; apoptosis index and infiltration of inflammatory cells in colonic epithelium were measured by TUNEL and immunohistochemistry; the expression level of endogenous mCRAMP was analyzed by immunofluorescence; and phosphorylation of the transcription factors c-jun and NF-κB in colon were analyzed by Western blot. Our results showed that the morphology of the colon epithelium in the C-BF+DSS group was improved compared with the DSS group. Apoptosis and infiltration of inflammatory cells in colonic epithelium were also significantly attenuated in the C-BF+DSS group compared with the DSS group, and the expression level of endogenous mCRAMP in the DSS group was significantly higher than other groups. DSS-induced phosphorylation level of c-jun and NF-κB while C-BF effectively inhibited phosphorylation of NF-κB (p65). The barrier protective effect of C-BF was still excellent. In conclusion, C-BF effectively attenuated inflammation and improved disrupted barrier function. Notably, this is the first report to demonstrate that C-BF attenuates DSS-induced UC both through the regulation of intestinal immune and retention of barrier function, and the exact pathway was through NF-κB.
Collapse
Affiliation(s)
- Haiwen Zhang
- Key Laboratory of Animal Nutrition and Feed Science (Hua Dong), Ministry of Agriculture College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Xia
- Key Laboratory of Animal Nutrition and Feed Science (Hua Dong), Ministry of Agriculture College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feifei Han
- Key Laboratory of Animal Nutrition and Feed Science (Hua Dong), Ministry of Agriculture College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qin Jiang
- Key Laboratory of Animal Nutrition and Feed Science (Hua Dong), Ministry of Agriculture College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yili Rong
- Key Laboratory of Animal Nutrition and Feed Science (Hua Dong), Ministry of Agriculture College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Deguang Song
- Key Laboratory of Animal Nutrition and Feed Science (Hua Dong), Ministry of Agriculture College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yizhen Wang
- Key Laboratory of Animal Nutrition and Feed Science (Hua Dong), Ministry of Agriculture College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
92
|
Leaf DE, Croy HE, Abrahams SJ, Raed A, Waikar SS. Cathelicidin antimicrobial protein, vitamin D, and risk of death in critically ill patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:80. [PMID: 25887571 PMCID: PMC4357206 DOI: 10.1186/s13054-015-0812-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/13/2015] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Decreased production of cathelicidin antimicrobial protein-18 (hCAP18) has been proposed to be a key mechanism linking decreased 25-hydroxyvitamin D (25D) levels with adverse outcomes among critically ill patients. However, few studies in humans have directly assessed plasma hCAP18 levels, and no study has evaluated the association between hCAP18 levels and adverse outcomes among critically ill patients. METHODS We performed a single-center, prospective cohort study among 121 critically ill patients admitted to intensive care units (ICUs) between 2008 and 2012. We measured plasma hCAP18, 25D, D-binding protein, and parathyroid hormone levels on ICU day 1. The primary endpoint was 90-day mortality. Secondary endpoints included hospital mortality, sepsis, acute kidney injury, duration of mechanical ventilation, and hospital length of stay. RESULTS ICU day 1 hCAP18 levels were directly correlated with 25D levels (Spearman's rho (rs) = 0.30, P = 0.001). In multivariate analyses adjusted for age and Acute Physiology and Chronic Health Evaluation II (APACHE II) score, patients with hCAP18 levels in the lowest compared to highest tertile on ICU day 1 had a 4.49 (1.08 to 18.67) greater odds of 90-day mortality, and also had greater odds of sepsis. ICU day 1 levels of other analytes were not associated with 90-day mortality. CONCLUSIONS Lower 25D levels on ICU day 1 are associated with lower hCAP18 levels, which are in turn associated with a greater risk of 90-day mortality. These findings provide a potential mechanistic basis for the frequently observed association between low 25D levels and poor outcomes in critically ill patients.
Collapse
Affiliation(s)
- David E Leaf
- Division of Renal Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| | - Heather E Croy
- Division of Renal Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| | - Sara J Abrahams
- Division of Renal Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| | - Anas Raed
- Division of Renal Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| | - Sushrut S Waikar
- Division of Renal Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
93
|
Abstract
Only few Candida species, e.g., Candida albicans, Candida glabrata, Candida dubliniensis, and Candida parapsilosis, are successful colonizers of a human host. Under certain circumstances these species can cause infections ranging from superficial to life-threatening disseminated candidiasis. The success of C. albicans, the most prevalent and best studied Candida species, as both commensal and human pathogen depends on its genetic, biochemical, and morphological flexibility which facilitates adaptation to a wide range of host niches. In addition, formation of biofilms provides additional protection from adverse environmental conditions. Furthermore, in many host niches Candida cells coexist with members of the human microbiome. The resulting fungal-bacterial interactions have a major influence on the success of C. albicans as commensal and also influence disease development and outcome. In this chapter, we review the current knowledge of important survival strategies of Candida spp., focusing on fundamental fitness and virulence traits of C. albicans.
Collapse
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
94
|
Tomalka J, Azodi E, Narra HP, Patel K, O'Neill S, Cardwell C, Hall BA, Wilson JM, Hise AG. β-Defensin 1 plays a role in acute mucosal defense against Candida albicans. THE JOURNAL OF IMMUNOLOGY 2015; 194:1788-95. [PMID: 25595775 DOI: 10.4049/jimmunol.1203239] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Candida is an opportunistic fungal pathogen that colonizes the mucosal tract of humans. Pathogenic infection occurs in the presence of conditions causing perturbations to the commensal microbiota or host immunity. Early innate immune responses by the epithelium, including antimicrobial peptides (AMPs) and cytokines, are critical for protection against overgrowth. Reduced salivary AMP levels are associated with oral Candida infection, and certain AMPs, including human β-defensins 1-3, have direct fungicidal activity. In this study, we demonstrate that murine β-defensin 1 (mBD1) is important for control of early mucosal Candida infection and plays a critical role in the induction of innate inflammatory mediators. Mice deficient in mBD1, as compared with wild-type mice, exhibit elevated oral and systemic fungal burdens. Neutrophil infiltration to the sites of mucosal Candida invasion, an important step in limiting fungal infection, is significantly reduced in mBD1-deficient mice. These mice also exhibit defects in the expression of other AMPs, including mBD2 and mBD4, which may have direct anti-Candida activity. We also show that mBD1 deficiency impacts the production of important antifungal inflammatory mediators, including IL-1β, IL-6, KC, and IL-17. Collectively, these studies demonstrate a role for the mBD1 peptide in early control of Candida infection in a murine model of mucosal candidiasis, as well as in the modulation of host immunity through augmentation of leukocyte infiltration and inflammatory gene regulation.
Collapse
Affiliation(s)
- Jeffrey Tomalka
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106; Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Elaheh Azodi
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106; Department of Research, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106; and
| | - Hema P Narra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Krupen Patel
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Samantha O'Neill
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Cisley Cardwell
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Brian A Hall
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - James M Wilson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Amy G Hise
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106; Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106; Department of Research, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106; and
| |
Collapse
|
95
|
Leaf DE, Raed A, Donnino MW, Ginde AA, Waikar SS. Randomized controlled trial of calcitriol in severe sepsis. Am J Respir Crit Care Med 2014; 190:533-41. [PMID: 25029202 DOI: 10.1164/rccm.201405-0988oc] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Vitamin D and its metabolites have potent immunomodulatory effects in vitro, including up-regulation of cathelicidin, a critical antimicrobial protein. OBJECTIVES We investigated whether administration of 1,25-dihydroxyvitamin D (calcitriol) to critically ill patients with sepsis would have beneficial effects on markers of innate immunity, inflammation, and kidney injury. METHODS We performed a double-blind, randomized, placebo-controlled, physiologic study among 67 critically ill patients with severe sepsis or septic shock. Patients were randomized to receive a single dose of calcitriol (2 μg intravenously) versus placebo. The primary outcome was plasma cathelicidin protein levels assessed 24 hours after study drug administration. Secondary outcomes included leukocyte cathelicidin mRNA expression, plasma cytokine levels (IL-10, IL-6, tumor necrosis factor-α, IL-1β, and IL-2), and urinary kidney injury markers. MEASUREMENTS AND MAIN RESULTS Patients randomized to calcitriol (n = 36) versus placebo (n = 31) had similar plasma cathelicidin protein levels at 24 hours (P = 0.16). Calcitriol-treated patients had higher cathelicidin (P = 0.04) and IL-10 (P = 0.03) mRNA expression than placebo-treated patients 24 hours after study drug administration. Plasma cytokine levels (IL-10, IL-6, tumor necrosis factor-α, IL-1β, and IL-2) and urinary kidney injury markers were similar in calcitriol- versus placebo-treated patients (P > 0.05 for all comparisons). Calcitriol had no effect on clinical outcomes nor were any adverse effects observed. CONCLUSIONS Calcitriol administration did not increase plasma cathelicidin protein levels in critically ill patients with sepsis and had mixed effects on other immunomodulatory markers. Additional phase II trials investigating the dose and timing of calcitriol as a therapeutic agent in specific sepsis phenotypes may be warranted. Clinical trial registered with www.clinicaltrials.gov (NCT 01689441).
Collapse
Affiliation(s)
- David E Leaf
- 1 Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
96
|
Li N, Yamasaki K, Saito R, Fukushi-Takahashi S, Shimada-Omori R, Asano M, Aiba S. Alarmin function of cathelicidin antimicrobial peptide LL37 through IL-36γ induction in human epidermal keratinocytes. THE JOURNAL OF IMMUNOLOGY 2014; 193:5140-8. [PMID: 25305315 DOI: 10.4049/jimmunol.1302574] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Several dermatoses, including psoriasis, atopic dermatitis, and rosacea, alter the expression of the innate immune effector human cathelicidin antimicrobial peptide (CAMP). To elucidate the roles of aberrant CAMP in dermatoses, we performed cDNA array analysis in CAMP-stimulated human epidermal keratinocytes, the primary cells responding to innate immune stimuli and a major source of CAMP LL37 in skin. Among LL37-inducible genes, IL-1 cluster genes, particularly IL36G, are of interest because we observed coordinate increases in CAMP and IL-36γ in the lesional skin of psoriasis, whereas virtually no CAMP or IL-36γ was observed in nonlesional skin and normal skin. The production and release of IL-36γ were up to 20-30 ng/ml in differentiated keratinocytes cultured in high-calcium media. G-protein inhibitor pertussis toxin and p38 inhibitor suppressed IL-36γ induction by LL37. As an alarmin, LL37 induces chemokines, including CXCL1, CXCL8/IL8, CXCL10/IP-10, and CCL20/MIP3a, and IL-36 (10-100 ng/ml) augments the production of these chemokines by LL37. Pretreatment with small interfering RNA against IL36γ and IL-36R IL36R/IL1RL2 and IL1RAP suppressed LL37-dependent IL8, CXCL1, CXCL10/IP10, and CCL20 production in keratinocytes, suggesting that the alarmin function of LL37 was partially dependent on IL-36γ and its receptors. Counting on CAMP induction in innate stimuli, such as in infection and wounding, IL-36γ induction by cathelicidin would explain the mechanism of initiation of skin inflammation and occasional exacerbations of psoriasis and skin diseases by general infection.
Collapse
Affiliation(s)
- Na Li
- Department of Dermatology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan; and
| | - Kenshi Yamasaki
- Department of Dermatology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan; and
| | - Rumiko Saito
- Department of Dermatology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan; and Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8574, Japan
| | - Sawako Fukushi-Takahashi
- Department of Dermatology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan; and
| | - Ryoko Shimada-Omori
- Department of Dermatology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan; and
| | - Masayuki Asano
- Department of Dermatology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan; and
| | - Setsuya Aiba
- Department of Dermatology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan; and
| |
Collapse
|
97
|
Sirivoranankul C, Martinez M, Chen V, Clemons KV, Stevens DA. Vitamin D and experimental invasive aspergillosis. Med Mycol 2014; 52:847-52. [PMID: 25231772 DOI: 10.1093/mmy/myu048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immune cells express the vitamin D receptor and vitamin D metabolizing enzymes. Favorable vitamin D effects have been indicated in tuberculosis. Vitamin D deficiency increases T helper (Th) 2 responses to Aspergillus, and it suppresses Th2 responses in cystic fibrosis-allergic bronchopulmonary aspergillosis. Can vitamin D modulate the proinflammatory effects of amphotericin B (AmB) therapy in aspergillosis? Groups of mice were infected intravenously (IV) with 3-8 × 10(6) Aspergillus fumigatus conidia. In six experiments, doses of 0.08, 2, or 4 μg/kg calcitriol (active form of vitamin D) were given intraperitoneally +/- AmB-deoxycholate (AmBd) at 0.4, 0.8, 1.2, 1.8, 3.3, or 4.5 mg/kg or 0.8 or 1.2 mg/kg IV. Calcitriol doses were selected to range from doses used in humans to those just below doses shown to decalcify murine bones. In most experiments, doses of calcitriol and AmBd (or control diluents) were given five times, on alternate days, to minimize drug-drug interactions. Calcitriol treatment began on the day of challenge, and survival assessed for 10 days. In no experiments did calcitriol alone significantly worsen or enhance survival or affect residual infection in survivors. Calcitriol also did not affect the efficacy of AmBd. In a representative experiment, AmBd at 0.8 or 1.2 mg/kg IV alone +/- calcitriol at 2 μg/kg enhanced survival (P ≤ 0.01). However, the AmBd regimens with calcitriol were not different than those without, and calcitriol alone was identical to controls. In disseminated invasive aspergillosis, calcitriol did not affect outcome nor influence antifungal efficacy.
Collapse
Affiliation(s)
- Christopher Sirivoranankul
- Infectious Diseases Research Laboratory, California Institute for Medical Research, San Jose, CA, USA College of Letters and Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Marife Martinez
- Infectious Diseases Research Laboratory, California Institute for Medical Research, San Jose, CA, USA
| | - Vicky Chen
- Infectious Diseases Research Laboratory, California Institute for Medical Research, San Jose, CA, USA
| | - Karl V Clemons
- Infectious Diseases Research Laboratory, California Institute for Medical Research, San Jose, CA, USA Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA
| | - David A Stevens
- Infectious Diseases Research Laboratory, California Institute for Medical Research, San Jose, CA, USA Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA
| |
Collapse
|
98
|
Abstract
The human pathogenic fungus Candida albicans is the predominant cause of both superficial and invasive forms of candidiasis. C. albicans primarily infects immunocompromised individuals as a result of either immunodeficiency or intervention therapy, which highlights the importance of host immune defences in preventing fungal infections. The host defence system utilises a vast communication network of cells, proteins, and chemical signals distributed in blood and tissues, which constitute innate and adaptive immunity. Over the last decade the identity of many key molecules mediating host defence against C. albicans has been identified. This review will discuss how the host recognises this fungus, the events induced by fungal cells, and the host innate and adaptive immune defences that ultimately resolve C. albicans infections during health.
Collapse
|
99
|
Tsai PW, Cheng YL, Hsieh WP, Lan CY. Responses of Candida albicans to the human antimicrobial peptide LL-37. J Microbiol 2014; 52:581-9. [PMID: 24879350 DOI: 10.1007/s12275-014-3630-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/28/2014] [Accepted: 03/07/2014] [Indexed: 12/31/2022]
Abstract
Candida albicans is amajor fungal pathogen in humans. Antimicrobial peptides (AMPs) are critical components of the innate immune response in vertebrates and represent the first line of defense against microbial infection. LL-37 is the only member of the human family of cathelicidin AMPs and is commonly expressed by various tissues and cells, including surfaces of epithelia. The candidacidal effects of LL-37 have been well documented, but the mechanisms by which LL-37 kills C. albicans are not completely understood. In this study, we examined the effects of LL-37 on cell wall and cellular responses in C. albicans. Using transmission electron microscopy, carbohydrate analyses, and staining for β-1,3-glucan, changing of C. albicans cell wall integrity was detected upon LL-37 treatment. In addition, LL-37 also affected cell wall architecture of the pathogen. Finally, DNA microarray analysis and quantitative PCR demonstrated that sub-lethal concentrations of LL-37 modulated the expression of genes with a variety of functions, including transporters, regulators for biological processes, response to stress or chemical stimulus, and pathogenesis. Together, LL-37 induces complex responses in C. albicans, making LL-37 a promising candidate for use as a therapeutic agent against fungal infections.
Collapse
Affiliation(s)
- Pei-Wen Tsai
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | | | | | | |
Collapse
|
100
|
Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals (Basel) 2014; 7:545-94. [PMID: 24828484 PMCID: PMC4035769 DOI: 10.3390/ph7050545] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 12/11/2022] Open
Abstract
As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between -3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to combat drug-resistant superbugs, fungi, viruses, parasites, or cancer. Alternatively, multiple factors (e.g., albumin, arginine, butyrate, calcium, cyclic AMP, isoleucine, short-chain fatty acids, UV B light, vitamin D, and zinc) are able to induce the expression of antimicrobial peptides, opening new avenues to the development of anti-infectious drugs.
Collapse
Affiliation(s)
- Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| |
Collapse
|