51
|
Tsai HC, Chung KR. Calcineurin phosphatase and phospholipase C are required for developmental and pathological functions in the citrus fungal pathogen Alternaria alternata. MICROBIOLOGY-SGM 2014; 160:1453-1465. [PMID: 24763426 DOI: 10.1099/mic.0.077818-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Excessive Ca(2+) or compounds interfering with phosphoinositide cycling have been found to inhibit the growth of the tangerine pathotype of Alternaria alternata, suggesting a crucial role of Ca(2+) homeostasis in this pathotype. The roles of PLC1, a phospholipase C-coding gene and CAL1, a calcineurin phosphatase-coding gene were investigated. Targeted gene disruption showed that both PLC1 and CAL1 were required for vegetative growth, conidial formation and pathogenesis in citrus. Fungal strains lacking PLC1 or CAL1 exhibited extremely slow growth and induced small lesions on calamondin leaves. Δplc1 mutants produced fewer conidia, which germinated at slower rates than wild-type. Δcal1 mutants produced abnormal hyphae and failed to produce any mature conidia, but instead produced highly melanized bulbous hyphae with distinct septae. Fluorescence microscopy using Fluo-3 dye as a Ca(2+) indicator revealed that the Δplc1 mutant hyphae emitted stronger cytosolic fluorescence, and the Δcal1 mutant hyphae emitted less cytosolic fluorescence, than those of wild-type. Infection assessed on detached calamondin leaves revealed that application of CaCl2 or neomycin 24 h prior to inoculation provided protection against Alt. alternata. These data indicate that a dynamic equilibrium of cellular Ca(2+) is critical for developmental and pathological processes of Alt. alternata.
Collapse
Affiliation(s)
- Hsieh-Chin Tsai
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Kuang-Ren Chung
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL 32611, USA.,Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| |
Collapse
|
52
|
Chen LH, Yang SL, Chung KR. Resistance to oxidative stress via regulating siderophore-mediated iron acquisition by the citrus fungal pathogen Alternaria alternata. MICROBIOLOGY-SGM 2014; 160:970-979. [PMID: 24586035 DOI: 10.1099/mic.0.076182-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ability of the necrotrophic fungus Alternaria alternata to detoxify reactive oxygen species (ROS) is crucial for pathogenesis to citrus. We report regulation of siderophore-mediated iron acquisition and ROS resistance by the NADPH oxidase (NOX), the redox activating yes-associated protein 1 (YAP1) regulator, and the high-osmolarity glycerol 1 (HOG1) mitogen-activated protein kinase (MAPK). The A. alternata nonribosomal peptide synthetase (NPS6) is essential for the biosynthesis of siderophores, contributing to iron uptake under low-iron conditions. Fungal strains impaired for NOX, YAP1, HOG1 or NPS6 all display increased sensitivity to ROS. Exogenous addition of iron at least partially rescues ROS sensitivity seen for NPS6, YAP1, HOG1, and NOX mutants. Importantly, expression of the NPS6 gene and biosynthesis of siderophores are regulated by NOX, YAP1 and HOG1, supporting a functional link among these regulatory pathways. Although iron fully rescues H2O2 sensitivity seen in mutants impaired for the response regulator SKN7, neither expression of NPS6 nor biosynthesis of siderophores is controlled by SKN7. Our results indicate that the acquisition of environmental iron has profound effects on ROS detoxification.
Collapse
Affiliation(s)
- Li-Hung Chen
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Siwy Ling Yang
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL 32611, USA.,Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Kuang-Ren Chung
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL 32611, USA.,Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| |
Collapse
|
53
|
Mu D, Li C, Zhang X, Li X, Shi L, Ren A, Zhao M. Functions of the nicotinamide adenine dinucleotide phosphate oxidase family inGanoderma lucidum: an essential role in ganoderic acid biosynthesis regulation, hyphal branching, fruiting body development, and oxidative-stress resistance. Environ Microbiol 2013; 16:1709-28. [DOI: 10.1111/1462-2920.12326] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/01/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Dashuai Mu
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Chenyang Li
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Xuchen Zhang
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Xiongbiao Li
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Liang Shi
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Ang Ren
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Mingwen Zhao
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
54
|
Cuenca J, Aleza P, Vicent A, Brunel D, Ollitrault P, Navarro L. Genetically based location from triploid populations and gene ontology of a 3.3-mb genome region linked to Alternaria brown spot resistance in citrus reveal clusters of resistance genes. PLoS One 2013; 8:e76755. [PMID: 24116149 PMCID: PMC3792864 DOI: 10.1371/journal.pone.0076755] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/23/2013] [Indexed: 12/17/2022] Open
Abstract
Genetic analysis of phenotypical traits and marker-trait association in polyploid species is generally considered as a challenge. In the present work, different approaches were combined taking advantage of the particular genetic structures of 2n gametes resulting from second division restitution (SDR) to map a genome region linked to Alternaria brown spot (ABS) resistance in triploid citrus progeny. ABS in citrus is a serious disease caused by the tangerine pathotype of the fungus Alternaria alternata. This pathogen produces ACT-toxin, which induces necrotic lesions on fruit and young leaves, defoliation and fruit drop in susceptible genotypes. It is a strong concern for triploid breeding programs aiming to produce seedless mandarin cultivars. The monolocus dominant inheritance of susceptibility, proposed on the basis of diploid population studies, was corroborated in triploid progeny. Bulk segregant analysis coupled with genome scan using a large set of genetically mapped SNP markers and targeted genetic mapping by half tetrad analysis, using SSR and SNP markers, allowed locating a 3.3 Mb genomic region linked to ABS resistance near the centromere of chromosome III. Clusters of resistance genes were identified by gene ontology analysis of this genomic region. Some of these genes are good candidates to control the dominant susceptibility to the ACT-toxin. SSR and SNP markers were developed for efficient early marker-assisted selection of ABS resistant hybrids.
Collapse
Affiliation(s)
- José Cuenca
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias. Moncada, Valencia, Spain
| | - Pablo Aleza
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias. Moncada, Valencia, Spain
| | - Antonio Vicent
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias. Moncada, Valencia, Spain
| | - Dominique Brunel
- Etude du Polymorphisme des Genomes Vegetaux, Institut National de la Recherche Agronomique, Évry, France
| | - Patrick Ollitrault
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias. Moncada, Valencia, Spain
- Etude du Polymorphisme des Genomes Vegetaux, Institut National de la Recherche Agronomique, Évry, France
- BIOS Department, Amélioration Génétique des Espèces à Multiplication Végétative. Centre de Coopeération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Luis Navarro
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias. Moncada, Valencia, Spain
| |
Collapse
|
55
|
Yang SL, Chung KR. Similar and distinct roles of NADPH oxidase components in the tangerine pathotype of Alternaria alternata. MOLECULAR PLANT PATHOLOGY 2013; 14:543-556. [PMID: 23527595 PMCID: PMC6638896 DOI: 10.1111/mpp.12026] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The fungal nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) complex, which has been implicated in the production of low-level reactive oxygen species (ROS), contains mainly NoxA, NoxB (gp91(phox) homologues) and NoxR (p67(phox) homologue). Here, we report the developmental and pathological functions of NoxB and NoxR in the tangerine pathotype of Alternaria alternata. Loss-of-function genetics revealed that all three Nox components are required for the accumulation of cellular hydrogen peroxide (H₂O₂). Alternaria alternata strains lacking NoxA, NoxB or NoxR also displayed an increased sensitivity to H₂O₂ and many ROS-generating oxidants. These phenotypes are highly similar to those previously seen for the Δyap1 mutant lacking a YAP1 transcriptional regulator and for the Δhog1 mutant lacking a HOG1 mitogen-activated protein (MAP) kinase, implicating a possible link among them. A fungal strain carrying a NoxA NoxB or NoxA NoxR double mutation was more sensitive to the test compounds than the strain mutated at a single gene, implicating a synergistic function among Nox components. The ΔnoxB mutant strain failed to produce any conidia; both ΔnoxA and ΔnoxR mutant strains showed a severe reduction in sporulation. Mutant strains carrying defective NoxB had higher chitin content than the wild-type and were insensitive to calcofluor white, Congo red and the fungicides vinclozolin and fludioxonil. Virulence assays revealed that all three Nox components are required for the elaboration of the penetration process. The inability to penetrate the citrus host, observed for Δnox mutants, could be overcome by wounding and by reacquiring a dominant Nox gene. The A. alternata NoxR did not influence the expression of NoxB, but negatively regulated NoxA. Importantly, the expression of both YAP1 and HOG1 genes, whose products are involved in resistance to ROS, was down-regulated in fungi carrying defective NoxA, NoxB or NoxR. Our results highlight the requirement of Nox in ROS resistance and provide insights into its critical role in regulating both YAP1 and HOG1 in A. alternata.
Collapse
Affiliation(s)
- Siwy Ling Yang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences-IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | | |
Collapse
|
56
|
Chen LH, Lin CH, Chung KR. A nonribosomal peptide synthetase mediates siderophore production and virulence in the citrus fungal pathogen Alternaria alternata. MOLECULAR PLANT PATHOLOGY 2013; 14:497-505. [PMID: 23438010 PMCID: PMC6638914 DOI: 10.1111/mpp.12021] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Alternaria species produce and excrete dimethyl coprogen siderophores to acquire iron. The Alternaria alternata gene AaNPS6, encoding a polypeptide analogous to fungal nonribosomal peptide synthetases, was found to be required for the production of siderophores and virulence on citrus. Siderophores purified from culture filtrates of the wild-type strain did not induce any phytotoxicity on the leaves of citrus. Fungal strains lacking AaNPS6 produced little or no detectable extracellular siderophores and displayed an increased sensitivity to H₂O₂, superoxide-generating compounds (KO₂ and menadione) and iron depletion. Δnps6 mutants were also defective for the production of melanin and conidia. The introduction of a wild-type AaNPS6 under the control of its endogenous promoter to a Δnps6 null mutant at least partially restored siderophore production and virulence to citrus, demonstrating a functional link between iron uptake and fungal pathogenesis. Elevated sensitivity to H₂O₂, seen for the Δnps6 null strain could be relieved by exogenous application of ferric iron. The expression of the AaNPS6 gene was highly up-regulated under low-iron conditions and apparently controlled by the redox-responsive yeast transcriptional regulator YAP1. Hence, the maintenance of iron homeostasis via siderophore-mediated iron uptake also plays an important role in resistance to toxic reactive oxygen species (ROS). Our results demonstrate further the critical role of ROS detoxification for the pathogenicity of A. alternata in citrus.
Collapse
Affiliation(s)
- Li-Hung Chen
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences-IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | | | | |
Collapse
|
57
|
Morita Y, Hyon GS, Hosogi N, Miyata N, Nakayashiki H, Muranaka Y, Inada N, Park P, Ikeda K. Appressorium-localized NADPH oxidase B is essential for aggressiveness and pathogenicity in the host-specific, toxin-producing fungus Alternaria alternata Japanese pear pathotype. MOLECULAR PLANT PATHOLOGY 2013; 14:365-378. [PMID: 23279187 PMCID: PMC6638787 DOI: 10.1111/mpp.12013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Black spot disease, Alternaria alternata Japanese pear pathotype, produces the host-specific toxin AK-toxin, an important pathogenicity factor. Previously, we have found that hydrogen peroxide is produced in the hyphal cell wall at the plant-pathogen interaction site, suggesting that the fungal reactive oxygen species (ROS) generation machinery is important for pathogenicity. In this study, we identified two NADPH oxidase (NoxA and NoxB) genes and produced nox disruption mutants. ΔnoxA and ΔnoxB disruption mutants showed increased hyphal branching and spore production per unit area. Surprisingly, only the ΔnoxB disruption mutant compromised disease symptoms. A fluorescent protein reporter assay revealed that only NoxB localized at the appressoria during pear leaf infection. In contrast, both NoxA and NoxB were highly expressed on the cellulose membrane, and these Nox proteins were also localized at the appressoria. In the ΔnoxB disruption mutant, we could not detect any necrotic lesions caused by AK-toxin. Moreover, the ΔnoxB disruption mutant did not induce papilla formation on pear leaves. Ultrastructural analysis revealed that the ΔnoxB disruption mutant also did not penetrate the cuticle layer. Moreover, ROS generation was not essential for penetration, suggesting that NoxB may have an unknown function in penetration. Taken together, our results suggest that NoxB is essential for aggressiveness and basal pathogenicity in A. alternata.
Collapse
Affiliation(s)
- Yuichi Morita
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Chung KR. Stress Response and Pathogenicity of the Necrotrophic Fungal Pathogen Alternaria alternata. SCIENTIFICA 2012; 2012:635431. [PMID: 24278721 PMCID: PMC3820455 DOI: 10.6064/2012/635431] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/03/2012] [Indexed: 05/07/2023]
Abstract
The production of host-selective toxins by the necrotrophic fungus Alternaria alternata is essential for the pathogenesis. A. alternata infection in citrus leaves induces rapid lipid peroxidation, accumulation of hydrogen peroxide (H2O2), and cell death. The mechanisms by which A. alternata avoids killing by reactive oxygen species (ROS) after invasion have begun to be elucidated. The ability to coordinate of signaling pathways is essential for the detoxification of cellular stresses induced by ROS and for pathogenicity in A. alternata. A low level of H2O2, produced by the NADPH oxidase (NOX) complex, modulates ROS resistance and triggers conidiation partially via regulating the redox-responsive regulators (YAP1 and SKN7) and the mitogen-activated protein (MAP) kinase (HOG1) mediated pathways, which subsequently regulate the genes required for the biosynthesis of siderophore, an iron-chelating compound. Siderophore-mediated iron acquisition plays a key role in ROS detoxification because of the requirement of iron for the activities of antioxidants (e.g., catalase and SOD). Fungal strains impaired for the ROS-detoxifying system severely reduce the virulence on susceptible citrus cultivars. This paper summarizes the current state of knowledge of signaling pathways associated with cellular responses to multidrugs, oxidative and osmotic stress, and fungicides, as well as the pathogenicity/virulence in the tangerine pathotype of A. alternata.
Collapse
Affiliation(s)
- Kuang-Ren Chung
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
59
|
Tudzynski P, Heller J, Siegmund U. Reactive oxygen species generation in fungal development and pathogenesis. Curr Opin Microbiol 2012; 15:653-9. [PMID: 23123514 DOI: 10.1016/j.mib.2012.10.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) generated by NADPH-dependent oxidases (Nox) have been shown to function as signaling molecules and to be essential for many differentiation processes in mammals and plants. There is growing evidence that ROS are important for many aspects of fungal life including vegetative hyphal growth, differentiation of conidial anastomosis tubes, fruiting body and infection structure formation, and for induction of apoptosis. Recent results from studies in fungal saprophytic and pathogenic model systems have shed new light on the role of Nox in cytoskeleton organization, the structure of Nox complexes and links to components of the apical complex, and the localization of Nox to the endoplasmic reticulum.
Collapse
Affiliation(s)
- Paul Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westf. Wilhelms Universitaet, Schlossplatz 8, D-48143 Muenster, Germany.
| | | | | |
Collapse
|
60
|
Tsai HC, Yang SL, Chung KR. Cyclic AMP-dependent protein kinase A negatively regulates conidia formation by the tangerine pathotype of Alternaria alternata. World J Microbiol Biotechnol 2012; 29:289-300. [PMID: 23054702 DOI: 10.1007/s11274-012-1182-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/24/2012] [Indexed: 01/24/2023]
Abstract
The necrotrophic fungal pathogen Alternaria alternata causes brown spot diseases in many citrus cultivars. The FUS3 and SLT2 mitogen-activated protein kinases (MAPK)-mediated signaling pathways have been shown to be required for conidiation. Exogenous application of cAMP to this fungal pathogen decreased conidia formation considerably. This study determined whether a cAMP-activated protein kinase A (PKA) is required for conidiation. Using loss-of-function mutations in PKA catalytic and regulatory subunit-coding genes, we demonstrated that PKA negatively regulates conidiation. Fungal mutants lacking PKA catalytic subunit gene (PKA ( cat )) reduced growth, lacked detectable PKA activity, and produced higher amounts of conidia compared to wild-type. Introduction of a functional copy of PKA ( cat ) into a null mutant partially restored PKA activity and produced wild-type level of conidia. In contrast, fungi lacking PKA regulatory subunit gene (PKA ( reg )) produced detectable PKA activity, exhibited severe growth reduction, formed swelling hyphal segments, and produced no mature conidia. Introduction of the PKA ( reg ) gene to a regulatory subunit mutant restored all phenotypes to wild type. PKA ( reg )-null mutants induced fewer necrotic lesions on citrus compared to wild-type, whereas PKA ( cat ) mutant displayed wild-type virulence. Overall, our studies indicate that PKA and FUS3-mediated signaling pathways apparently have very different roles in the regulation of conidia production and A. alternata pathogenesis in citrus.
Collapse
Affiliation(s)
- Hsieh-Chin Tsai
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | | | | |
Collapse
|
61
|
Chen LH, Lin CH, Chung KR. Roles for SKN7 response regulator in stress resistance, conidiation and virulence in the citrus pathogen Alternaria alternata. Fungal Genet Biol 2012; 49:802-13. [PMID: 22902811 DOI: 10.1016/j.fgb.2012.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/17/2012] [Accepted: 07/26/2012] [Indexed: 01/17/2023]
Abstract
"Two-component" histidine kinase (HSK1) is the primary regulator of resistance to sugar osmotic stress and sensitivity to dicarboximide or phenylpyrrole fungicides in the citrus fungal pathogen Alternaria alternata. On the other hand, the mitogen-activated protein kinase HOG1 confers resistance solely to salts and oxidative stress. We report here independent and shared functions of the SKN7-mediated signaling pathway with HSK1 and HOG1. SKN7, a putative transcription downstream regulator of HSK1, is primarily required for cellular resistance to oxidative and sugar-induced osmotic stress. SKN7, perhaps acting in parallel with HOG1, is required for resistance to H(2)O(2), tert-butyl hydroperoxide, and cumyl peroxide, but not to the superoxide-generating compounds - menadione, potassium superoxide, and diamide. Because of phenotypic commonalities, SKN7 is likely involved in resistance to sugar-induced osmotic stress via the HSK1 signaling pathway. However, mutants lacking SKN7 displayed wild-type sensitivity to NaCl and KCl salts. SKN7 is constitutively localized in the nucleus regardless of H(2)O(2) treatment. When compared to the wild type, skn7 mutants exhibited lower catalase, peroxidase, and superoxide dismutase activities and induced significantly fewer necrotic lesions on the susceptible citrus cultivar. The skn7 mutant exhibited fungicide resistance at levels between the hsk1 and the hog1 mutant strains. Skn7/hog1 double mutants exhibited fungicide resistance, similar to the strain with a single AaHSK1 gene mutation. Moreover, the A. alternata SKN7 plays a role in conidia formation. Conidia produced by the skn7 mutant are smaller and have fewer transverse septae than those produced by wild type. All altered phenotypes in the mutant were restored by introducing and expressing a wild-type copy of SKN7 under control of the endogenous promoter.
Collapse
Affiliation(s)
- Li-Hung Chen
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| | | | | |
Collapse
|