51
|
Lemay MA, Henry P, Lamb CT, Robson KM, Russello MA. Novel genomic resources for a climate change sensitive mammal: characterization of the American pika transcriptome. BMC Genomics 2013; 14:311. [PMID: 23663654 PMCID: PMC3662648 DOI: 10.1186/1471-2164-14-311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/04/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND When faced with climate change, species must either shift their home range or adapt in situ in order to maintain optimal physiological balance with their environment. The American pika (Ochotona princeps) is a small alpine mammal with limited dispersal capacity and low tolerance for thermal stress. As a result, pikas have become an important system for examining biotic responses to changing climatic conditions. Previous research using amplified fragment length polymorphisms (AFLPs) has revealed evidence for environmental-mediated selection in O. princeps populations distributed along elevation gradients, yet the anonymity of AFLP loci and lack of available genomic resources precluded the identification of associated gene regions. Here, we harnessed next-generation sequencing technology in order to characterize the American pika transcriptome and identify a large suite of single nucleotide polymorphisms (SNPs), which can be used to elucidate elevation- and site-specific patterns of sequence variation. RESULTS We constructed pooled cDNA libraries of O. princeps from high (1400 m) and low (300 m) elevation sites along a previously established transect in British Columbia. Transcriptome sequencing using the Roche 454 GS FLX titanium platform generated 780 million base pairs of data, which were assembled into 7,325 high coverage contigs. These contigs were used to identify 24,261 novel SNP loci. Using high resolution melt analysis, we developed 17 of these SNPs into genotyping assays, which were validated with independent DNA samples from British Columbia Canada and Oregon State USA. In addition, we detected haplotypes in the NADH dehydrogenase subunit 5 of the mitochondrial genome that were fixed and different among elevations, suggesting that this may be an informative target gene for studying the role of cellular respiration in local adaptation. We also identified contigs that were unique to each elevation, including a high elevation-specific contig that was a positive match with the hemoglobin alpha chain from the plateau pika, a species restricted to high elevation steppes in Asia. Elevation-specific contigs may represent candidate regions subject to differential levels of gene expression along this elevation gradient. CONCLUSIONS To our knowledge, this is the first broad-scale, transcriptome-level study conducted within the Ochotonidae, providing novel genomic resources for studying pika ecology, behaviour and population history.
Collapse
Affiliation(s)
- Matthew A Lemay
- Department of Biology, University of British Columbia, Okanagan Campus 3333 University Way, Kelowna, BC V1V 1V7, Canada.
| | | | | | | | | |
Collapse
|
52
|
Lemay MA, Donnelly DJ, Russello MA. Transcriptome-wide comparison of sequence variation in divergent ecotypes of kokanee salmon. BMC Genomics 2013; 14:308. [PMID: 23651561 PMCID: PMC3653777 DOI: 10.1186/1471-2164-14-308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 05/01/2013] [Indexed: 12/13/2022] Open
Abstract
Background High throughput next-generation sequencing technology has enabled the collection of genome-wide sequence data and revolutionized single nucleotide polymorphism (SNP) discovery in a broad range of species. When analyzed within a population genomics framework, SNP-based genotypic data may be used to investigate questions of evolutionary, ecological, and conservation significance in natural populations of non-model organisms. Kokanee salmon are recently diverged freshwater populations of sockeye salmon (Oncorhynchus nerka) that exhibit reproductive ecotypes (stream-spawning and shore-spawning) in lakes throughout western North America and northeast Asia. Current conservation and management strategies may treat these ecotypes as discrete stocks, however their recent divergence and low levels of gene flow make in-season genetic stock identification a challenge. The development of genome-wide SNP markers is an essential step towards fine-scale stock identification, and may enable a direct investigation of the genetic basis of ecotype divergence. Results We used pooled cDNA samples from both ecotypes of kokanee to generate 750 million base pairs of transcriptome sequence data. These raw data were assembled into 11,074 high coverage contigs from which we identified 32,699 novel single nucleotide polymorphisms. A subset of these putative SNPs was validated using high-resolution melt analysis and Sanger resequencing to genotype independent samples of kokanee and anadromous sockeye salmon. We also identified a number of contigs that were composed entirely of reads from a single ecotype, which may indicate regions of differential gene expression between the two reproductive ecotypes. In addition, we found some evidence for greater pathogen load among the kokanee sampled in stream-spawning habitats, suggesting a possible evolutionary advantage to shore-spawning that warrants further study. Conclusions This study provides novel genomic resources to support population genetic and genomic studies of both kokanee and anadromous sockeye salmon, and has the potential to produce markers capable of fine-scale stock assessment. While this RNAseq approach was successful at identifying a large number of new SNP loci, we found that the frequency of alleles present in the pooled transcriptome data was not an accurate predictor of population allele frequencies.
Collapse
Affiliation(s)
- Matthew A Lemay
- Department of Biology, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna BC, V1V 1V7, Canada.
| | | | | |
Collapse
|
53
|
Renn SC, Schumer ME. Genetic accommodation and behavioural evolution: insights from genomic studies. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2013.02.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
54
|
Kitano J, Yoshida K, Suzuki Y. RNA sequencing reveals small RNAs differentially expressed between incipient Japanese threespine sticklebacks. BMC Genomics 2013; 14:214. [PMID: 23547919 PMCID: PMC3637797 DOI: 10.1186/1471-2164-14-214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/20/2013] [Indexed: 01/01/2023] Open
Abstract
Background Non-coding small RNAs, ranging from 20 to 30 nucleotides in length, mediate the regulation of gene expression and play important roles in many biological processes. One class of small RNAs, microRNAs (miRNAs), are highly conserved across taxa and mediate the regulation of the chromatin state and the post-transcriptional regulation of messenger RNA (mRNA). Another class of small RNAs is the Piwi-interacting RNAs, which play important roles in the silencing of transposons and other functional genes. Although the biological functions of the different small RNAs have been elucidated in several laboratory animals, little is known regarding naturally occurring variation in small RNA transcriptomes among closely related species. Results We employed next-generation sequencing technology to compare the expression profiles of brain small RNAs between sympatric species of the Japanese threespine stickleback (Gasterosteus aculeatus). We identified several small RNAs that were differentially expressed between sympatric Pacific Ocean and Japan Sea sticklebacks. Potential targets of several small RNAs were identified as repetitive sequences. Female-biased miRNA expression from the old X chromosome was also observed, and it was attributed to the degeneration of the Y chromosome. Conclusions Our results suggest that expression patterns of small RNA can differ between incipient species and may be a potential mechanism underlying differential mRNA expression and transposon activity.
Collapse
Affiliation(s)
- Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, Japan.
| | | | | |
Collapse
|
55
|
Bougas B, Normandeau E, Audet C, Bernatchez L. Linking transcriptomic and genomic variation to growth in brook charr hybrids (Salvelinus fontinalis, Mitchill). Heredity (Edinb) 2013; 110:492-500. [PMID: 23321707 DOI: 10.1038/hdy.2012.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hybridization can lead to phenotypic differences arising from changes in gene expression patterns or new allele combinations. Variation in gene expression is thought to be controlled by differences in transcription regulation of parental alleles, either through cis- or trans-regulatory elements. A previous study among brook charr hybrids from different populations (Rupert, Laval, and domestic) showing distinct length at age during early life stages also revealed different patterns in transcription regulation inheritance of transcript abundance. In the present study, transcript abundance using RNA-sequencing and quantitative real-time PCR, single-nucleotide polymorphism (SNP) genotypes and allelic imbalance were assessed in order to understand the molecular mechanisms underlying the observed transcriptomic and differences in length at age among domestic × Rupert hybrids and Laval × domestic hybrids. We found 198 differentially expressed genes between the two hybrid crosses, and allelic imbalance could be analyzed for 69 of them. Among these 69 genes, 36 genes exhibited cis-acting regulatory effects in both of the two crosses, thus confirming the prevalent role of cis-acting regulatory elements in the regulation of differentially expressed genes among intraspecific hybrids. In addition, we detected a significant association between SNP genotypes of three genes and length at age. Our study is thus one of the few that have highlighted some of the molecular mechanisms potentially involved in the differential phenotypic expression in intraspecific hybrids for nonmodel species.
Collapse
Affiliation(s)
- B Bougas
- Département de biologie, Institut de Biologie Intégrative et des Systèmes IBIS, Université Laval, Québec, Canada.
| | | | | | | |
Collapse
|
56
|
Renaut S, Grassa CJ, Moyers BT, Kane NC, Rieseberg LH. The Population Genomics of Sunflowers and Genomic Determinants of Protein Evolution Revealed by RNAseq. BIOLOGY 2012; 1:575-96. [PMID: 24832509 PMCID: PMC4009819 DOI: 10.3390/biology1030575] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/09/2012] [Accepted: 10/12/2012] [Indexed: 11/17/2022]
Abstract
Few studies have investigated the causes of evolutionary rate variation among plant nuclear genes, especially in recently diverged species still capable of hybridizing in the wild. The recent advent of Next Generation Sequencing (NGS) permits investigation of genome wide rates of protein evolution and the role of selection in generating and maintaining divergence. Here, we use individual whole-transcriptome sequencing (RNAseq) to refine our understanding of the population genomics of wild species of sunflowers (Helianthus spp.) and the factors that affect rates of protein evolution. We aligned 35 GB of transcriptome sequencing data and identified 433,257 polymorphic sites (SNPs) in a reference transcriptome comprising 16,312 genes. Using SNP markers, we identified strong population clustering largely corresponding to the three species analyzed here (Helianthus annuus, H. petiolaris, H. debilis), with one distinct early generation hybrid. Then, we calculated the proportions of adaptive substitution fixed by selection (alpha) and identified gene ontology categories with elevated values of alpha. The “response to biotic stimulus” category had the highest mean alpha across the three interspecific comparisons, implying that natural selection imposed by other organisms plays an important role in driving protein evolution in wild sunflowers. Finally, we examined the relationship between protein evolution (dN/dS ratio) and several genomic factors predicted to co-vary with protein evolution (gene expression level, divergence and specificity, genetic divergence [FST], and nucleotide diversity pi). We find that variation in rates of protein divergence was correlated with gene expression level and specificity, consistent with results from a broad range of taxa and timescales. This would in turn imply that these factors govern protein evolution both at a microevolutionary and macroevolutionary timescale. Our results contribute to a general understanding of the determinants of rates of protein evolution and the impact of selection on patterns of polymorphism and divergence.
Collapse
Affiliation(s)
- Sébastien Renaut
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada.
| | - Christopher J Grassa
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Brook T Moyers
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Nolan C Kane
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
57
|
Abstract
The vertebrate immune system is comprised of numerous distinct and interdependent components. Every component has its own inherent protective value, and the final combination of them is likely to be related to an animal’s immunological history and evolutionary development. Vertebrate immune system consists of both systemic and mucosal immune compartments, but it is the mucosal immune system which protects the body from the first encounter of pathogens. According to anatomical location, the mucosa-associated lymphoid tissue, in teleost fish is subdivided into gut-, skin-, and gill-associated lymphoid tissue and most available studies focus on gut. The purpose of this paper is to summarise the current knowledge of the immunological defences present in skin mucosa as a very important part of the fish immune system, serving as an anatomical and physiological barrier against external hazards. Interest in defence mechanism of fish arises from a need to develop health management tools to support a growing finfish aquaculture industry, while at the same time addressing questions concerning origins and evolution of immunity in vertebrates. Increased knowledge of fish mucosal immune system will facilitate the development of novel vaccination strategies in fish.
Collapse
Affiliation(s)
- María Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| |
Collapse
|
58
|
O'Neill EM, Schwartz R, Bullock CT, Williams JS, Shaffer HB, Aguilar-Miguel X, Parra-Olea G, Weisrock DW. Parallel tagged amplicon sequencing reveals major lineages and phylogenetic structure in the North American tiger salamander (Ambystoma tigrinum) species complex. Mol Ecol 2012; 22:111-29. [PMID: 23062080 DOI: 10.1111/mec.12049] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/10/2012] [Accepted: 08/21/2012] [Indexed: 12/20/2022]
Abstract
Modern analytical methods for population genetics and phylogenetics are expected to provide more accurate results when data from multiple genome-wide loci are analysed. We present the results of an initial application of parallel tagged sequencing (PTS) on a next-generation platform to sequence thousands of barcoded PCR amplicons generated from 95 nuclear loci and 93 individuals sampled across the range of the tiger salamander (Ambystoma tigrinum) species complex. To manage the bioinformatic processing of this large data set (344 330 reads), we developed a pipeline that sorts PTS data by barcode and locus, identifies high-quality variable nucleotides and yields phased haplotype sequences for each individual at each locus. Our sequencing and bioinformatic strategy resulted in a genome-wide data set with relatively low levels of missing data and a wide range of nucleotide variation. structure analyses of these data in a genotypic format resulted in strongly supported assignments for the majority of individuals into nine geographically defined genetic clusters. Species tree analyses of the most variable loci using a multi-species coalescent model resulted in strong support for most branches in the species tree; however, analyses including more than 50 loci produced parameter sampling trends that indicated a lack of convergence on the posterior distribution. Overall, these results demonstrate the potential for amplicon-based PTS to rapidly generate large-scale data for population genetic and phylogenetic-based research.
Collapse
Affiliation(s)
- Eric M O'Neill
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Robinson N, Sahoo PK, Baranski M, Das Mahapatra K, Saha JN, Das S, Mishra Y, Das P, Barman HK, Eknath AE. Expressed sequences and polymorphisms in rohu carp (Labeo rohita, Hamilton) revealed by mRNA-seq. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:620-633. [PMID: 22298294 DOI: 10.1007/s10126-012-9433-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/23/2011] [Indexed: 05/31/2023]
Abstract
Expressed genes and polymorphisms were identified in lines of rohu Labeo rohita selected for resistance or susceptibility to Aeromonas hydrophila, an important bacterial pathogen causing aeromoniasis. All animals were grown in a common environment and RNA from ten individuals from each line pooled for Illumina mRNA-seq. De novo transcriptome assembly produced 137,629 contigs with 40× average coverage.Forty-four percent of the assembled sequences were annotated with gene names and ontology terms. Of these, 3,419 were assigned biological process terms related to "stress response" and 1,939 "immune system". Twenty-six contigs containing 38 single nucleotide polymorphisms (SNPs) were found to map to the Cyprinus carpio mitochondrial genome and over 26,000 putative SNPs and 1,700 microsatellite loci were detected. Seventeen percent of the 100 transcripts with coverage data most indicative of higher-fold expression(>5.6 fold) in the resistant line pool showed homology to major histocompatibility (MH), heat shock proteins (HSP)30, 70 and 90, glycoproteins or serum lectin genes with putative functions affecting immune response. Forty-one percent of these 100 transcripts showed no or low homology to known genes. Of the SNPs identified, 96 showing the highest allele frequency differences between susceptible and resistant line fish included transcripts with homology to MH class I and galactoside-binding soluble lectin, also with putative functions affecting innate and acquired immune response. A comprehensive sequence resource for L. rohita, including annotated microsatellites and SNPs from a mixture of A. hydrophila-susceptible and -resistant individuals, was created for subsequent experiments aiming to identify genes associated with A. hydrophila resistance.
Collapse
|
60
|
Micallef G, Bickerdike R, Reiff C, Fernandes JMO, Bowman AS, Martin SAM. Exploring the transcriptome of Atlantic salmon (Salmo salar) skin, a major defense organ. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:559-569. [PMID: 22527268 DOI: 10.1007/s10126-012-9447-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/03/2012] [Indexed: 05/31/2023]
Abstract
The skin of fish is the first line of defense against pathogens and parasites. The skin transcriptome of the Atlantic salmon is poorly characterized, and currently only 2,089 expressed sequence tags (ESTs) out of a total of half a million sequences are generated from skin-derived cDNA libraries. The primary aim of this study was to enhance the transcriptomic knowledge of salmon skin by using next-generation sequencing (NGS) technology, namely the Roche-454 platform. An equimolar mixture of high-quality RNA from skin and epidermal samples of salmon reared in either freshwater or seawater was used for 454-sequencing. This technique yielded over 600,000 reads, which were assembled into 34,696 isotigs using Newbler. Of these isotigs, 12 % had not been sequenced in Atlantic salmon, hence representing previously unreported salmon mRNAs that can potentially be skin-specific. Many full-length genes have been acquired, representing numerous biological processes. Mucin proteins are the main structural component of mucus and we examined in greater detail the sequences we obtained for these genes. Several isotigs exhibited homology to mammalian mucins (MUC2, MUC5AC and MUC5B). Mucin mRNAs are generally >10 kbp and contain large repetitive units, which pose a challenge towards full-length sequence discovery. To date, we have not unearthed any full-length salmon mucin genes with this dataset, but have both N- and C-terminal regions of a mucin type 5. This highlights the fact that, while NGS is indeed a formidable tool for sequence data mining of non-model species, it must be complemented with additional experimental and bioinformatic work to characterize some mRNA sequences with complex features.
Collapse
Affiliation(s)
- Giulia Micallef
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, UK
| | | | | | | | | | | |
Collapse
|
61
|
Lenz TL, Eizaguirre C, Rotter B, Kalbe M, Milinski M. Exploring local immunological adaptation of two stickleback ecotypes by experimental infection and transcriptome-wide digital gene expression analysis. Mol Ecol 2012; 22:774-86. [PMID: 22971109 PMCID: PMC3579235 DOI: 10.1111/j.1365-294x.2012.05756.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/10/2012] [Accepted: 07/15/2012] [Indexed: 11/28/2022]
Abstract
Understanding the extent of local adaptation in natural populations and the mechanisms that allow individuals to adapt to their native environment is a major avenue in molecular ecology research. Evidence for the frequent occurrence of diverging ecotypes in species that inhabit multiple ecological habitats is accumulating, but experimental approaches to understanding the biological pathways as well as the underlying genetic mechanisms are still rare. Parasites are invoked as one of the major selective forces driving evolution and are themselves dependent on the ecological conditions in a given habitat. Immunological adaptation to local parasite communities is therefore expected to be a key component of local adaptation in natural populations. Here, we use next-generation sequencing technology to compare the transcriptome-wide response of experimentally infected three-spined sticklebacks from a lake and a river population, which are known to evolve under selection by distinct parasite communities. By comparing overall gene expression levels as well as the activation of functional pathways in response to parasite exposure, we identified potential differences between the two stickleback populations at several levels. Our results suggest locally adapted patterns of gene regulation in response to parasite exposure, which may reflect different local optima in the trade-off between the benefits and the disadvantages of mounting an immune response because of quantitative differences of the local parasite communities.
Collapse
Affiliation(s)
- Tobias L Lenz
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany.
| | | | | | | | | |
Collapse
|
62
|
Jeukens J, Bernatchez L. Regulatory versus coding signatures of natural selection in a candidate gene involved in the adaptive divergence of whitefish species pairs (Coregonus spp.). Ecol Evol 2012; 2:258-71. [PMID: 22408741 PMCID: PMC3297193 DOI: 10.1002/ece3.52] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 12/12/2022] Open
Abstract
While gene expression divergence is known to be involved in adaptive phenotypic divergence and speciation, the relative importance of regulatory and structural evolution of genes is poorly understood. A recent next-generation sequencing experiment allowed identifying candidate genes potentially involved in the ongoing speciation of sympatric dwarf and normal lake whitefish (Coregonus clupeaformis), such as cytosolic malate dehydrogenase (MDH1), which showed both significant expression and sequence divergence. The main goal of this study was to investigate into more details the signatures of natural selection in the regulatory and coding sequences of MDH1 in lake whitefish and test for parallelism of these signatures with other coregonine species. Sequencing of the two regions in 118 fish from four sympatric pairs of whitefish and two cisco species revealed a total of 35 single nucleotide polymorphisms (SNPs), with more genetic diversity in European compared to North American coregonine species. While the coding region was found to be under purifying selection, an SNP in the proximal promoter exhibited significant allele frequency divergence in a parallel manner among independent sympatric pairs of North American lake whitefish and European whitefish (C. lavaretus). According to transcription factor binding simulation for 22 regulatory haplotypes of MDH1, putative binding profiles were fairly conserved among species, except for the region around this SNP. Moreover, we found evidence for the role of this SNP in the regulation of MDH1 expression level. Overall, these results provide further evidence for the role of natural selection in gene regulation evolution among whitefish species pairs and suggest its possible link with patterns of phenotypic diversity observed in coregonine species.
Collapse
Affiliation(s)
- Julie Jeukens
- Institut de biologie intégrative et des systèmes (IBIS), Québec-Océan, 1030 av. de la médecine, Université Laval Québec, QC, G1V 0A6, Canada
| | | |
Collapse
|
63
|
Albert FW, Somel M, Carneiro M, Aximu-Petri A, Halbwax M, Thalmann O, Blanco-Aguiar JA, Plyusnina IZ, Trut L, Villafuerte R, Ferrand N, Kaiser S, Jensen P, Pääbo S. A comparison of brain gene expression levels in domesticated and wild animals. PLoS Genet 2012; 8:e1002962. [PMID: 23028369 PMCID: PMC3459979 DOI: 10.1371/journal.pgen.1002962] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/06/2012] [Indexed: 11/25/2022] Open
Abstract
Domestication has led to similar changes in morphology and behavior in several animal species, raising the question whether similarities between different domestication events also exist at the molecular level. We used mRNA sequencing to analyze genome-wide gene expression patterns in brain frontal cortex in three pairs of domesticated and wild species (dogs and wolves, pigs and wild boars, and domesticated and wild rabbits). We compared the expression differences with those between domesticated guinea pigs and a distant wild relative (Cavia aperea) as well as between two lines of rats selected for tameness or aggression towards humans. There were few gene expression differences between domesticated and wild dogs, pigs, and rabbits (30-75 genes (less than 1%) of expressed genes were differentially expressed), while guinea pigs and C. aperea differed more strongly. Almost no overlap was found between the genes with differential expression in the different domestication events. In addition, joint analyses of all domesticated and wild samples provided only suggestive evidence for the existence of a small group of genes that changed their expression in a similar fashion in different domesticated species. The most extreme of these shared expression changes include up-regulation in domesticates of SOX6 and PROM1, two modulators of brain development. There was almost no overlap between gene expression in domesticated animals and the tame and aggressive rats. However, two of the genes with the strongest expression differences between the rats (DLL3 and DHDH) were located in a genomic region associated with tameness and aggression, suggesting a role in influencing tameness. In summary, the majority of brain gene expression changes in domesticated animals are specific to the given domestication event, suggesting that the causative variants of behavioral domestication traits may likewise be different.
Collapse
Affiliation(s)
- Frank W Albert
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Ekblom R, Farrell LL, Lank DB, Burke T. Gene expression divergence and nucleotide differentiation between males of different color morphs and mating strategies in the ruff. Ecol Evol 2012; 2:2485-505. [PMID: 23145334 PMCID: PMC3492775 DOI: 10.1002/ece3.370] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/01/2012] [Accepted: 08/08/2012] [Indexed: 12/16/2022] Open
Abstract
By next generation transcriptome sequencing, it is possible to obtain data on both nucleotide sequence variation and gene expression. We have used this approach (RNA-Seq) to investigate the genetic basis for differences in plumage coloration and mating strategies in a non-model bird species, the ruff (Philomachus pugnax). Ruff males show enormous variation in the coloration of ornamental feathers, used for individual recognition. This polymorphism is linked to reproductive strategies, with dark males (Independents) defending territories on leks against other Independents, whereas white morphs (Satellites) co-occupy Independent's courts without agonistic interactions. Previous work found a strong genetic component for mating strategy, but the genes involved were not identified. We present feather transcriptome data of more than 6,000 de-novo sequenced ruff genes (although with limited coverage for many of them). None of the identified genes showed significant expression divergence between males, but many genetic markers showed nucleotide differentiation between different color morphs and mating strategies. These include several feather keratin genes, splicing factors, and the Xg blood-group gene. Many of the genes with significant genetic structure between mating strategies have not yet been annotated and their functions remain to be elucidated. We also conducted in-depth investigations of 28 pre-identified coloration candidate genes. Two of these (EDNRB and TYR) were specifically expressed in black- and rust-colored males, respectively. We have demonstrated the utility of next generation transcriptome sequencing for identifying and genotyping large number of genetic markers in a non-model species without previous genomic resources, and highlight the potential of this approach for addressing the genetic basis of ecologically important variation.
Collapse
Affiliation(s)
- Robert Ekblom
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University Norbyvägen 18 D, SE-75236, Uppsala, Sweden ; Department of Animal and Plant Sciences, University of Sheffield Sheffield, S10 2TN, UK
| | | | | | | |
Collapse
|
65
|
Hornett EA, Wheat CW. Quantitative RNA-Seq analysis in non-model species: assessing transcriptome assemblies as a scaffold and the utility of evolutionary divergent genomic reference species. BMC Genomics 2012; 13:361. [PMID: 22853326 PMCID: PMC3469347 DOI: 10.1186/1471-2164-13-361] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/23/2012] [Indexed: 11/16/2022] Open
Abstract
Background How well does RNA-Seq data perform for quantitative whole gene expression analysis in the absence of a genome? This is one unanswered question facing the rapidly growing number of researchers studying non-model species. Using Homo sapiens data and resources, we compared the direct mapping of sequencing reads to predicted genes from the genome with mapping to de novo transcriptomes assembled from RNA-Seq data. Gene coverage and expression analysis was further investigated in the non-model context by using increasingly divergent genomic reference species to group assembled contigs by unique genes. Results Eight transcriptome sets, composed of varying amounts of Illumina and 454 data, were assembled and assessed. Hybrid 454/Illumina assemblies had the highest transcriptome and individual gene coverage. Quantitative whole gene expression levels were highly similar between using a de novo hybrid assembly and the predicted genes as a scaffold, although mapping to the de novo transcriptome assembly provided data on fewer genes. Using non-target species as reference scaffolds does result in some loss of sequence and expression data, and bias and error increase with evolutionary distance. However, within a 100 million year window these effect sizes are relatively small. Conclusions Predicted gene sets from sequenced genomes of related species can provide a powerful method for grouping RNA-Seq reads and annotating contigs. Gene expression results can be produced that are similar to results obtained using gene models derived from a high quality genome, though biased towards conserved genes. Our results demonstrate the power and limitations of conducting RNA-Seq in non-model species.
Collapse
Affiliation(s)
- Emily A Hornett
- Department of Biological Sciences, University of Helsinki, PL 65, Viikinkaari 1, 00014, Helsinki, Finland
| | | |
Collapse
|
66
|
Yúfera M, Halm S, Beltran S, Fusté B, Planas JV, Martínez-Rodríguez G. Transcriptomic characterization of the larval stage in gilthead seabream (Sparus aurata) by 454 pyrosequencing. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:423-435. [PMID: 22160372 DOI: 10.1007/s10126-011-9422-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 11/24/2011] [Indexed: 05/31/2023]
Abstract
Gilthead seabream (Sparus aurata) is a teleost belonging to the family Sparidae with a high economical relevance in the Mediterranean countries. Although genomic tools have been developed in this species in order to investigate its physiology at the molecular level and consequently its culture, genomic information on post-embryonic development is still scarce. In this study, we have investigated the transcriptome of a marine teleost during the larval stage (from hatching to 60 days after hatching) by the use of 454 pyrosequencing technology. We obtained a total of 68,289 assembled contigs, representing putative transcripts, belonging to 54,606 different clusters. Comparison against all S. aurata expressed sequenced tags (ESTs) from the NCBI database revealed that up to 34,722 contigs, belonging to about 61% of gene clusters, are sequences previously not described. Contigs were annotated through an iterative Blast pipeline by comparison against databases such as NCBI RefSeq from Danio rerio, SwissProt or NCBI teleost ESTs. Our results indicate that we have enriched the number of annotated sequences for this species by more than 50% compared with previously existing databases for the gilthead seabream. Gene Ontology analysis of these novel sequences revealed that there is a statistically significant number of transcripts with key roles in larval development, differentiation, morphology, and growth. Finally, all information has been made available online through user-friendly interfaces such as GBrowse and a Blast server with a graphical frontend.
Collapse
Affiliation(s)
- Manuel Yúfera
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Apartado Oficial 11510 Puerto Real, Cádiz, Spain.
| | | | | | | | | | | |
Collapse
|
67
|
CZYPIONKA TILL, CHENG JIE, POZHITKOV ALEXANDER, NOLTE ARNEW. Transcriptome changes after genome-wide admixture in invasive sculpins (Cottus). Mol Ecol 2012; 21:4797-810. [DOI: 10.1111/j.1365-294x.2012.05645.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
68
|
Garcia de la Serrana D, Estévez A, Andree K, Johnston IA. Fast skeletal muscle transcriptome of the gilthead sea bream (Sparus aurata) determined by next generation sequencing. BMC Genomics 2012; 13:181. [PMID: 22577894 PMCID: PMC3418159 DOI: 10.1186/1471-2164-13-181] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 03/30/2012] [Indexed: 01/04/2023] Open
Abstract
Background The gilthead sea bream (Sparus aurata L.) occurs around the Mediterranean and along Eastern Atlantic coasts from Great Britain to Senegal. It is tolerant of a wide range of temperatures and salinities and is often found in brackish coastal lagoons and estuarine areas, particularly early in its life cycle. Gilthead sea bream are extensively cultivated in the Mediterranean with an annual production of 125,000 metric tonnes. Here we present a de novo assembly of the fast skeletal muscle transcriptome of gilthead sea bream using 454 reads and identify gene paralogues, splice variants and microsatellite repeats. An annotated transcriptome of the skeletal muscle will facilitate understanding of the genetic and molecular basis of traits linked to production in this economically important species. Results Around 2.7 million reads of mRNA sequence data were generated from the fast myotomal of adult fish (~2 kg) and juvenile fish (~0.09 kg) that had been either fed to satiation, fasted for 3-5d or transferred to low (11°C) or high (33°C) temperatures for 3-5d. Newbler v2.5 assembly resulted in 43,461 isotigs >100 bp. The number of sequences annotated by searching protein and gene ontology databases was 10,465. The average coverage of the annotated isotigs was x40 containing 5655 unique gene IDs and 785 full-length cDNAs coding for proteins containing 58–1536 amino acids. The v2.5 assembly was found to be of good quality based on validation using 200 full-length cDNAs from GenBank. Annotated isotigs from the reference transcriptome were attributable to 344 KEGG pathway maps. We identified 26 gene paralogues (20 of them teleost-specific) and 43 splice variants, of which 12 had functional domains missing that were likely to affect their biological function. Many key transcription factors, signaling molecules and structural proteins necessary for myogenesis and muscle growth have been identified. Physiological status affected the number of reads that mapped to isotigs, reflecting changes in gene expression between treatments. Conclusions We have produced a comprehensive fast skeletal muscle transcriptome for the gilthead sea bream, which will provide a resource for SNP discovery in genes with a large effect on production traits of commercial interest and for expression studies of growth and adaptation.
Collapse
Affiliation(s)
- Daniel Garcia de la Serrana
- Physiological and Evolutionary Genomics Laboratory, Scottish Oceans Institute, School of Biology, University of St Andrews, Fife, KY16 8LB, , Scotland, UK.
| | | | | | | |
Collapse
|
69
|
LAMAZE FABIENC, SAUVAGE CHRISTOPHER, MARIE AMANDINE, GARANT DANY, BERNATCHEZ LOUIS. Dynamics of introgressive hybridization assessed by SNP population genomics of coding genes in stocked brook charr (Salvelinus fontinalis). Mol Ecol 2012; 21:2877-95. [DOI: 10.1111/j.1365-294x.2012.05579.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
70
|
Mehinto AC, Martyniuk CJ, Spade DJ, Denslow ND. Applications for next-generation sequencing in fish ecotoxicogenomics. Front Genet 2012; 3:62. [PMID: 22539934 PMCID: PMC3336092 DOI: 10.3389/fgene.2012.00062] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/02/2012] [Indexed: 01/23/2023] Open
Abstract
The new technologies for next-generation sequencing (NGS) and global gene expression analyses that are widely used in molecular medicine are increasingly applied to the field of fish biology. This has facilitated new directions to address research areas that could not be previously considered due to the lack of molecular information for ecologically relevant species. Over the past decade, the cost of NGS has decreased significantly, making it possible to use non-model fish species to investigate emerging environmental issues. NGS technologies have permitted researchers to obtain large amounts of raw data in short periods of time. There have also been significant improvements in bioinformatics to assemble the sequences and annotate the genes, thus facilitating the management of these large datasets.The combination of DNA sequencing and bioinformatics has improved our abilities to design custom microarrays and study the genome and transcriptome of a wide variety of organisms. Despite the promising results obtained using these techniques in fish studies, NGS technologies are currently underused in ecotoxicogenomics and few studies have employed these methods. These issues should be addressed in order to exploit the full potential of NGS in ecotoxicological studies and expand our understanding of the biology of non-model organisms.
Collapse
Affiliation(s)
- Alvine C Mehinto
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
71
|
Mundry M, Bornberg-Bauer E, Sammeth M, Feulner PGD. Evaluating characteristics of de novo assembly software on 454 transcriptome data: a simulation approach. PLoS One 2012; 7:e31410. [PMID: 22384018 PMCID: PMC3288049 DOI: 10.1371/journal.pone.0031410] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/10/2012] [Indexed: 01/24/2023] Open
Abstract
Background The quantity of transcriptome data is rapidly increasing for non-model organisms. As sequencing technology advances, focus shifts towards solving bioinformatic challenges, of which sequence read assembly is the first task. Recent studies have compared the performance of different software to establish a best practice for transcriptome assembly. Here, we adapted a simulation approach to evaluate specific features of assembly programs on 454 data. The novelty of our study is that the simulation allows us to calculate a model assembly as reference point for comparison. Findings The simulation approach allows us to compare basic metrics of assemblies computed by different software applications (CAP3, MIRA, Newbler, and Oases) to a known optimal solution. We found MIRA and CAP3 are conservative in merging reads. This resulted in comparably high number of short contigs. In contrast, Newbler more readily merged reads into longer contigs, while Oases produced the overall shortest assembly. Due to the simulation approach, reads could be traced back to their correct placement within the transcriptome. Together with mapping reads onto the assembled contigs, we were able to evaluate ambiguity in the assemblies. This analysis further supported the conservative nature of MIRA and CAP3, which resulted in low proportions of chimeric contigs, but high redundancy. Newbler produced less redundancy, but the proportion of chimeric contigs was higher. Conclusion Our evaluation of four assemblers suggested that MIRA and Newbler slightly outperformed the other programs, while showing contrasting characteristics. Oases did not perform very well on the 454 reads. Our evaluation indicated that the software was either conservative (MIRA) or liberal (Newbler) about merging reads into contigs. This suggested that in choosing an assembly program researchers should carefully consider their follow up analysis and consequences of the chosen approach to gain an assembly.
Collapse
Affiliation(s)
- Marvin Mundry
- Evolutionary Bioinformatics, Institute for Evolution and Biodiversity, Westfaelische-Wilhelms-University, Muenster, Germany
| | - Erich Bornberg-Bauer
- Evolutionary Bioinformatics, Institute for Evolution and Biodiversity, Westfaelische-Wilhelms-University, Muenster, Germany
| | - Michael Sammeth
- Functional Bioinformatics, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain
| | - Philine G. D. Feulner
- Evolutionary Bioinformatics, Institute for Evolution and Biodiversity, Westfaelische-Wilhelms-University, Muenster, Germany
- * E-mail:
| |
Collapse
|
72
|
Huan P, Wang H, Liu B. Transcriptomic analysis of the clam Meretrix meretrix on different larval stages. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:69-78. [PMID: 21603879 DOI: 10.1007/s10126-011-9389-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 05/03/2011] [Indexed: 05/30/2023]
Abstract
The clam Meretrix meretrix (Mollusca: Bivalvia) is an important commercial species in China. The deficiency of genomic and transcriptomic data is becoming the bottleneck of further researches on its complex and unique developmental processes. To improve this situation, in this study, a large-scale RNA sequencing was conducted on M. meretrix on larval stages. In particular, mRNAs of trochophore, D-veliger, pediveliger, and postlarva were purified, reverse transcribed, and sequenced through 454 sequencing technology. A total of 704,671 reads were obtained and assembled into 124,737 unique sequences (35,205 contigs and 89,532 singletons). Further analysis showed that 118,075 (94.66%) of these sequences were low-expression-level transcripts. Fifteen thousand two hundred fifteen (12.20%) of the unique sequences were annotated by searching against Uniprot Protein Knowledgebase, while the others (109,522, 87.80%) were left as novel sequences. Gene ontology analysis of the annotated sequences showed that most of them were assigned to certain gene ontology terms. By analyzing the depth of each unique sequence, a preliminary quantification analysis was conducted. An amount of sequences that showed a dramatic transcript discrepancy among the four larval stages were screened, which were related to development, growth, shell formation, and immune responses etc. As the first attempt on large-scale RNA sequencing of marine bivalve larvae, this work would enrich the knowledge of larval development of marine bivalves and provide fundamental support for further researches.
Collapse
Affiliation(s)
- Pin Huan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | |
Collapse
|
73
|
Le Provost G, Sulmon C, Frigerio JM, Bodénès C, Kremer A, Plomion C. Role of waterlogging-responsive genes in shaping interspecific differentiation between two sympatric oak species. TREE PHYSIOLOGY 2012; 32:119-34. [PMID: 22170438 DOI: 10.1093/treephys/tpr123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pedunculate (Quercus robur L.) and sessile oak (Quercus petreae Matt. Liebl.) are closely related species with a widely sympatric distribution in Europe. These two oak species are also known to display different ecological features, particularly related to their adaptation to soil waterlogging. Pedunculate oak grows in humid areas and can withstand high moisture content of the soil, whereas sessile oak requires drier soil with better drainage. The main goal of this study was to explore the role of gene expression contributing to differences in terms of waterlogging tolerance between these two species. We implemented a series of experiments aimed at evaluating whether differentially expressed genes between species are associated with their ecological preferences and underlie adaptive genetic divergence. Rooted cuttings of both species were grown in hydroponic conditions and subjected to gradual root hypoxia. White roots were sampled after 6, 12, 24 and 48 h. Real-time polymerase chain reaction (qPCR) was first used to monitor the expression of 10 known waterlogging-responsive genes, to identify discriminating sampling time points along the kinetics of hypoxia. Secondly, four subtractive suppressive hybridization libraries (sessile vs. pedunculate, pedunculate vs. sessile for early and late responses) were generated to isolate differentially expressed genes between species. A total of 2160 high-quality expressed sequence tags were obtained and annotated, and a subset of 45 genes were selected for qPCR analysis in a second independent factorial experimental design applying two stress durations per two species. Significant differences of gene expression between pedunculate and sessile oaks were detected, suggesting species-specific molecular strategies to respond to hypoxia. This study revealed that the ability of pedunculate oak to maintain glycolysis and fermentation under hypoxic conditions may help explain its tolerance to waterlogging.
Collapse
|
74
|
Lidder P, Sonnino A. Biotechnologies for the management of genetic resources for food and agriculture. ADVANCES IN GENETICS 2012; 78:1-167. [PMID: 22980921 DOI: 10.1016/b978-0-12-394394-1.00001-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the land area under agriculture has declined as also has the rate of growth in agricultural productivity while the demand for food continues to escalate. The world population now stands at 7 billion and is expected to reach 9 billion in 2045. A broad range of agricultural genetic diversity needs to be available and utilized in order to feed this growing population. Climate change is an added threat to biodiversity that will significantly impact genetic resources for food and agriculture (GRFA) and food production. There is no simple, all-encompassing solution to the challenges of increasing productivity while conserving genetic diversity. Sustainable management of GRFA requires a multipronged approach, and as outlined in the paper, biotechnologies can provide powerful tools for the management of GRFA. These tools vary in complexity from those that are relatively simple to those that are more sophisticated. Further, advances in biotechnologies are occurring at a rapid pace and provide novel opportunities for more effective and efficient management of GRFA. Biotechnology applications must be integrated with ongoing conventional breeding and development programs in order to succeed. Additionally, the generation, adaptation, and adoption of biotechnologies require a consistent level of financial and human resources and appropriate policies need to be in place. These issues were also recognized by Member States at the FAO international technical conference on Agricultural Biotechnologies for Developing Countries (ABDC-10), which took place in March 2010 in Mexico. At the end of the conference, the Member States reached a number of key conclusions, agreeing, inter alia, that developing countries should significantly increase sustained investments in capacity building and the development and use of biotechnologies to maintain the natural resource base; that effective and enabling national biotechnology policies and science-based regulatory frameworks can facilitate the development and appropriate use of biotechnologies in developing countries; and that FAO and other relevant international organizations and donors should significantly increase their efforts to support the strengthening of national capacities in the development and appropriate use of pro-poor agricultural biotechnologies.
Collapse
Affiliation(s)
- Preetmoninder Lidder
- Office of Knowledge Exchange, Research and Extension, Research and Extension Branch, Food and Agriculture Organization of the UN (FAO), Viale delle Terme di Caracalla, Rome, Italy
| | - Andrea Sonnino
- Office of Knowledge Exchange, Research and Extension, Research and Extension Branch, Food and Agriculture Organization of the UN (FAO), Viale delle Terme di Caracalla, Rome, Italy
| |
Collapse
|
75
|
Xia JH, He XP, Bai ZY, Lin G, Yue GH. Analysis of the Asian seabass transcriptome based on expressed sequence tags. DNA Res 2011; 18:513-22. [PMID: 22086997 PMCID: PMC3223082 DOI: 10.1093/dnares/dsr036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Analysis of transcriptomes is of great importance in genomic studies. Asian seabass is an important fish species. A number of genomic tools in it were developed, while large expressed sequence tag (EST) data are lacking. We sequenced ESTs from nine normalized cDNA libraries and obtained 11 431 high-quality ESTs. We retrieved 8524 ESTs from dbEST database and analyzed all 19 975 ESTs using bioinformatics tools. After clustering, we obtained 8837 unique sequences (2838 contigs and 5999 singletons). The average contig length was 574 bp. Annotation of these unique sequences revealed that 48.9% of them showed significant homology to RNA sequences in GenBank. Functional classification of the unique ESTs identified a broad range of genes involved in different functions. We identified 6114 putative single-nucleotide polymorphisms and 634 microsatellites in ESTs. We discovered different temporal and spatial expression patterns of some immune-related genes in the Asian seabass after challenging with a pathogen Vibrio harveyi. The unique EST sequences are being used in developing a cDNA microarray to examine global gene expression and will also facilitate future whole-genome sequence assembly and annotation of Asian seabass and comparative genomics.
Collapse
Affiliation(s)
- Jun Hong Xia
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, National University of Singapore
| | | | | | | | | |
Collapse
|
76
|
MEYER E, AGLYAMOVA GV, MATZ MV. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Mol Ecol 2011; 20:3599-616. [DOI: 10.1111/j.1365-294x.2011.05205.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
77
|
MACQUEEN DANIELJ, KRISTJÁNSSON BJARNIK, PAXTON CHARLESGM, VIEIRA VERALA, JOHNSTON IANA. The parallel evolution of dwarfism in Arctic charr is accompanied by adaptive divergence in mTOR-pathway gene expression. Mol Ecol 2011; 20:3167-84. [DOI: 10.1111/j.1365-294x.2011.05172.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
78
|
|
79
|
JEUKENS J, BOYLE B, KUKAVICA‐IBRULJ I, ST‐CYR J, LÉVESQUE RC, BERNATCHEZ L. BAC library construction, screening and clone sequencing of lake whitefish (
Coregonus clupeaformis
, Salmonidae) towards the elucidation of adaptive species divergence. Mol Ecol Resour 2011; 11:541-9. [DOI: 10.1111/j.1755-0998.2011.02982.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. JEUKENS
- Institut de biologie intégrative et des systèmes (IBIS), 1030 av. de la Médecine, Québec City, Québec, G1V 0A6, Canada
- Quebec‐Ocean, Department of biology, Université Laval, Québec City, Québec, Canada
| | - B. BOYLE
- Institut de biologie intégrative et des systèmes (IBIS), 1030 av. de la Médecine, Québec City, Québec, G1V 0A6, Canada
- Arborea, Center for Forest Research, Université Laval, Québec City, Québec, Canada
| | - I. KUKAVICA‐IBRULJ
- Institut de biologie intégrative et des systèmes (IBIS), 1030 av. de la Médecine, Québec City, Québec, G1V 0A6, Canada
- Department of microbiology‐infectiology and immunology, Université Laval, Québec City, Québec, Canada
| | - J. ST‐CYR
- Institut de biologie intégrative et des systèmes (IBIS), 1030 av. de la Médecine, Québec City, Québec, G1V 0A6, Canada
| | - R. C. LÉVESQUE
- Institut de biologie intégrative et des systèmes (IBIS), 1030 av. de la Médecine, Québec City, Québec, G1V 0A6, Canada
- Department of microbiology‐infectiology and immunology, Université Laval, Québec City, Québec, Canada
| | - L. BERNATCHEZ
- Institut de biologie intégrative et des systèmes (IBIS), 1030 av. de la Médecine, Québec City, Québec, G1V 0A6, Canada
- Quebec‐Ocean, Department of biology, Université Laval, Québec City, Québec, Canada
| |
Collapse
|