51
|
Tran NT, Stevenson CE, Som NF, Thanapipatsiri A, Jalal ASB, Le TBK. Permissive zones for the centromere-binding protein ParB on the Caulobacter crescentus chromosome. Nucleic Acids Res 2019; 46:1196-1209. [PMID: 29186514 PMCID: PMC5815017 DOI: 10.1093/nar/gkx1192] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022] Open
Abstract
Proper chromosome segregation is essential in all living organisms. In Caulobacter crescentus, the ParA–ParB–parS system is required for proper chromosome segregation and cell viability. The bacterial centromere-like parS DNA locus is the first to be segregated following chromosome replication. parS is bound by ParB protein, which in turn interacts with ParA to partition the ParB-parS nucleoprotein complex to each daughter cell. Here, we investigated the genome-wide distribution of ParB on the Caulobacter chromosome using a combination of in vivo chromatin immunoprecipitation (ChIP-seq) and in vitro DNA affinity purification with deep sequencing (IDAP-seq). We confirmed two previously identified parS sites and discovered at least three more sites that cluster ∼8 kb from the origin of replication. We showed that Caulobacter ParB nucleates at parS sites and associates non-specifically with ∼10 kb flanking DNA to form a high-order nucleoprotein complex on the left chromosomal arm. Lastly, using transposon mutagenesis coupled with deep sequencing (Tn-seq), we identified a ∼500 kb region surrounding the native parS cluster that is tolerable to the insertion of a second parS cluster without severely affecting cell viability. Our results demonstrate that the genomic distribution of parS sites is highly restricted and is crucial for chromosome segregation in Caulobacter.
Collapse
Affiliation(s)
- Ngat T Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Clare E Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
| | - Nicolle F Som
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | | | - Adam S B Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
52
|
Hajduk IV, Mann R, Rodrigues CDA, Harry EJ. The ParB homologs, Spo0J and Noc, together prevent premature midcell Z ring assembly when the early stages of replication are blocked in Bacillus subtilis. Mol Microbiol 2019; 112:766-784. [PMID: 31152469 PMCID: PMC6852036 DOI: 10.1111/mmi.14319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2019] [Indexed: 01/19/2023]
Abstract
Precise cell division in coordination with DNA replication and segregation is of utmost importance for all organisms. The earliest stage of cell division is the assembly of a division protein FtsZ into a ring, known as the Z ring, at midcell. What still eludes us, however, is how bacteria precisely position the Z ring at midcell. Work in B. subtilis over the last two decades has identified a link between the early stages of DNA replication and cell division. A recent model proposed that the progression of the early stages of DNA replication leads to an increased ability for the Z ring to form at midcell. This model arose through studies examining Z ring position in mutants blocked at different steps of the early stages of DNA replication. Here, we show that this model is unlikely to be correct and the mutants previously studied generate nucleoids with different capacity for blocking midcell Z ring assembly. Importantly, our data suggest that two proteins of the widespread ParB family, Noc and Spo0J are required to prevent Z ring assembly over the bacterial nucleoid and help fine tune the assembly of the Z ring at midcell during the cell cycle.
Collapse
Affiliation(s)
- Isabella V Hajduk
- The ithree institute, University of Technology Sydney, Po Box 123, Broadway, NSW, 2007, Australia
| | - Riti Mann
- The ithree institute, University of Technology Sydney, Po Box 123, Broadway, NSW, 2007, Australia
| | | | - Elizabeth J Harry
- The ithree institute, University of Technology Sydney, Po Box 123, Broadway, NSW, 2007, Australia
| |
Collapse
|
53
|
Abstract
Plasmids are ubiquitous in the microbial world and have been identified in almost all species of bacteria that have been examined. Their localization inside the bacterial cell has been examined for about two decades; typically, they are not randomly distributed, and their positioning depends on copy number and their mode of segregation. Low-copy-number plasmids promote their own stable inheritance in their bacterial hosts by encoding active partition systems, which ensure that copies are positioned in both halves of a dividing cell. High-copy plasmids rely on passive diffusion of some copies, but many remain clustered together in the nucleoid-free regions of the cell. Here we review plasmid localization and partition (Par) systems, with particular emphasis on plasmids from Enterobacteriaceae and on recent results describing the in vivo localization properties and molecular mechanisms of each system. Partition systems also cause plasmid incompatibility such that distinct plasmids (with different replicons) with the same Par system cannot be stably maintained in the same cells. We discuss how partition-mediated incompatibility is a consequence of the partition mechanism.
Collapse
Affiliation(s)
- Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, F-31000 Toulouse, France
| | - Barbara E Funnell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5G 1M1
| |
Collapse
|
54
|
Madariaga-Marcos J, Pastrana CL, Fisher GL, Dillingham MS, Moreno-Herrero F. ParB dynamics and the critical role of the CTD in DNA condensation unveiled by combined force-fluorescence measurements. eLife 2019; 8:43812. [PMID: 30907359 PMCID: PMC6433461 DOI: 10.7554/elife.43812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/09/2019] [Indexed: 02/04/2023] Open
Abstract
Bacillus subtilis ParB forms multimeric networks involving non-specific DNA binding leading to DNA condensation. Previously, we found that an excess of the free C-terminal domain (CTD) of ParB impeded DNA condensation or promoted decondensation of pre-assembled networks (Fisher et al., 2017). However, interpretation of the molecular basis for this phenomenon was complicated by our inability to uncouple protein binding from DNA condensation. Here, we have combined lateral magnetic tweezers with TIRF microscopy to simultaneously control the restrictive force against condensation and to visualise ParB protein binding by fluorescence. At non-permissive forces for condensation, ParB binds non-specifically and highly dynamically to DNA. Our new approach concluded that the free CTD blocks the formation of ParB networks by heterodimerisation with full length DNA-bound ParB. This strongly supports a model in which the CTD acts as a key bridging interface between distal DNA binding loci within ParB networks.
Collapse
Affiliation(s)
- Julene Madariaga-Marcos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Cesar L Pastrana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gemma Lm Fisher
- DNA:Protein Interactions Unit, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Mark Simon Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
55
|
Debaugny RE, Sanchez A, Rech J, Labourdette D, Dorignac J, Geniet F, Palmeri J, Parmeggiani A, Boudsocq F, Anton Leberre V, Walter JC, Bouet JY. A conserved mechanism drives partition complex assembly on bacterial chromosomes and plasmids. Mol Syst Biol 2018; 14:e8516. [PMID: 30446599 PMCID: PMC6238139 DOI: 10.15252/msb.20188516] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/22/2018] [Indexed: 11/29/2022] Open
Abstract
Chromosome and plasmid segregation in bacteria are mostly driven by ParABS systems. These DNA partitioning machineries rely on large nucleoprotein complexes assembled on centromere sites (parS). However, the mechanism of how a few parS-bound ParB proteins nucleate the formation of highly concentrated ParB clusters remains unclear despite several proposed physico-mathematical models. We discriminated between these different models by varying some key parameters in vivo using the F plasmid partition system. We found that "Nucleation & caging" is the only coherent model recapitulating in vivo data. We also showed that the stochastic self-assembly of partition complexes (i) is a robust mechanism, (ii) does not directly involve ParA ATPase, (iii) results in a dynamic structure of discrete size independent of ParB concentration, and (iv) is not perturbed by active transcription but is by protein complexes. We refined the "Nucleation & caging" model and successfully applied it to the chromosomally encoded Par system of Vibrio cholerae, indicating that this stochastic self-assembly mechanism is widely conserved from plasmids to chromosomes.
Collapse
Affiliation(s)
- Roxanne E Debaugny
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, Toulouse, France
| | - Aurore Sanchez
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, Toulouse, France
| | - Jérôme Rech
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, Toulouse, France
| | | | - Jérôme Dorignac
- Laboratoire Charles Coulomb, CNRS-Université Montpellier, Montpellier, France
| | - Frédéric Geniet
- Laboratoire Charles Coulomb, CNRS-Université Montpellier, Montpellier, France
| | - John Palmeri
- Laboratoire Charles Coulomb, CNRS-Université Montpellier, Montpellier, France
| | - Andrea Parmeggiani
- Laboratoire Charles Coulomb, CNRS-Université Montpellier, Montpellier, France
- Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS-Université Montpellier, Montpellier, France
| | - François Boudsocq
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, Toulouse, France
| | | | - Jean-Charles Walter
- Laboratoire Charles Coulomb, CNRS-Université Montpellier, Montpellier, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
56
|
Abstract
Coordination between chromosome replication and segregation is essential for equal partitioning of genetic material between daughter cells. In bacteria, this is achieved through the proximity of the origin of replication, oriC, and the chromosome partitioning site, parS We report here that in Pseudomonas aeruginosa, segregation but not replication is also controlled at the terminus region of the chromosome. Using the fluorescent repressor operator system (FROS), we investigated chromosome segregation in P. aeruginosa strain PAO1-UW, wherein the chromosome dimer resolution site, dif, is asymmetrically positioned relative to oriC In these cells, segregation proceeded sequentially along the two chromosomal arms and terminated at dif In contrast, chromosome replication terminated elsewhere, opposite from oriC We further found two large domains on the longer arm of the chromosome, wherein DNA segregated simultaneously. Notably, GC-skew, which reflects a bias in nucleotide usage between the leading and lagging strands of the chromosome, switches polarity at the dif locus but not necessarily at the terminus of replication. These data demonstrate that termination of chromosome replication and segregation can be physically separated without adverse effects on bacterial fitness. They also reveal the critical role of the dif region in defining the global layout of the chromosome and the progression of chromosome segregation and suggest that chromosome packing adapts to its subcellular layout.IMPORTANCE Segregation of genetic information is a central event in cellular life. In bacteria, chromosome segregation occurs concurrently with replication, sequentially along the two arms from oriC to dif How the two processes are coordinated is unknown. We explored here chromosome segregation in an opportunistic human pathogen, Pseudomonas aeruginosa, using its strain with markedly unequal chromosomal arms. We found that replication and segregation diverge in this strain and terminate at very different locations, whereas the longer chromosomal arm folds into large domains to align itself with the shorter arm. The significance of this research is in establishing that segregation and replication of bacterial chromosomes are largely uncoupled from each other and that the large-scale structure of the chromosome adapts to its subcellular layout.
Collapse
|
57
|
Girardin RC, Bai G, He J, Sui H, McDonough KA. AbmR (Rv1265) is a novel transcription factor of Mycobacterium tuberculosis that regulates host cell association and expression of the non-coding small RNA Mcr11. Mol Microbiol 2018; 110:811-830. [PMID: 30207611 PMCID: PMC6282994 DOI: 10.1111/mmi.14126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 12/11/2022]
Abstract
Gene regulatory networks used by Mycobacterium tuberculosis (Mtb) during infection include many genes of unknown function, confounding efforts to determine their roles in Mtb biology. Rv1265 encodes a conserved hypothetical protein that is expressed during infection and in response to elevated levels of cyclic AMP. Here, we report that Rv1265 is a novel auto‐inhibitory ATP‐binding transcription factor that upregulates expression of the small non‐coding RNA Mcr11, and propose that Rv1265 be named ATP‐binding mcr11regulator (AbmR). AbmR directly and specifically bound DNA, as determined by electrophoretic mobility shift assays, and this DNA‐binding activity was enhanced by AbmR’s interaction with ATP. Genetic knockout of abmR in Mtb increased abmR promoter activity and eliminated growth phase‐dependent increases in mcr11 expression during hypoxia. Mutagenesis identified arginine residues in the carboxy terminus that are critical for AbmR’s DNA‐binding activity and gene regulatory function. Limited similarity to other DNA‐ or ATP‐binding domains suggests that AbmR belongs to a novel class of DNA‐ and ATP‐binding proteins. AbmR was also found to form large organized structures in solution and facilitate the serum‐dependent association of Mtb with human lung epithelial cells. These results indicate a potentially complex role for AbmR in Mtb biology.
Collapse
Affiliation(s)
- Roxie C Girardin
- Department of Biomedical Sciences, School of Public Health, University at Albany, PO Box 22002, Albany, NY, 12201-2002, USA
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Jie He
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Haixin Sui
- Department of Biomedical Sciences, School of Public Health, University at Albany, PO Box 22002, Albany, NY, 12201-2002, USA.,Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Kathleen A McDonough
- Department of Biomedical Sciences, School of Public Health, University at Albany, PO Box 22002, Albany, NY, 12201-2002, USA.,Wadsworth Center, New York State Department of Health, Albany, NY, USA
| |
Collapse
|
58
|
Madariaga-Marcos J, Hormeño S, Pastrana CL, Fisher GLM, Dillingham MS, Moreno-Herrero F. Force determination in lateral magnetic tweezers combined with TIRF microscopy. NANOSCALE 2018; 10:4579-4590. [PMID: 29461549 PMCID: PMC5831119 DOI: 10.1039/c7nr07344e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/07/2017] [Indexed: 06/08/2023]
Abstract
Combining single-molecule techniques with fluorescence microscopy has attracted much interest because it allows the correlation of mechanical measurements with directly visualized DNA : protein interactions. In particular, its combination with total internal reflection fluorescence microscopy (TIRF) is advantageous because of the high signal-to-noise ratio this technique achieves. This, however, requires stretching long DNA molecules across the surface of a flow cell to maximize polymer exposure to the excitation light. In this work, we develop a module to laterally stretch DNA molecules at a constant force, which can be easily implemented in regular or combined magnetic tweezers (MT)-TIRF setups. The pulling module is further characterized in standard flow cells of different thicknesses and glass capillaries, using two types of micrometer size superparamagnetic beads, long DNA molecules, and a home-built device to rotate capillaries with mrad precision. The force range achieved by the magnetic pulling module was between 0.1 and 30 pN. A formalism for estimating forces in flow-stretched tethered beads is also proposed, and the results compared with those of lateral MT, demonstrating that lateral MT achieve higher forces with lower dispersion. Finally, we show the compatibility with TIRF microscopy and the parallelization of measurements by characterizing DNA binding by the centromere-binding protein ParB from Bacillus subtilis. Simultaneous MT pulling and fluorescence imaging demonstrate the non-specific binding of BsParB on DNA under conditions restrictive to condensation.
Collapse
Affiliation(s)
- J. Madariaga-Marcos
- Department of Macromolecular Structures , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas , 28049 Cantoblanco , Madrid , Spain .
| | - S. Hormeño
- Department of Macromolecular Structures , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas , 28049 Cantoblanco , Madrid , Spain .
| | - C. L. Pastrana
- Department of Macromolecular Structures , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas , 28049 Cantoblanco , Madrid , Spain .
| | - G. L. M. Fisher
- DNA:Protein Interactions Unit , School of Biochemistry , Biomedical Sciences Building , University of Bristol , Bristol , BS8 1TD , UK
| | - M. S. Dillingham
- DNA:Protein Interactions Unit , School of Biochemistry , Biomedical Sciences Building , University of Bristol , Bristol , BS8 1TD , UK
| | - F. Moreno-Herrero
- Department of Macromolecular Structures , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas , 28049 Cantoblanco , Madrid , Spain .
| |
Collapse
|
59
|
Kamada K, Barillà D. Combing Chromosomal DNA Mediated by the SMC Complex: Structure and Mechanisms. Bioessays 2017; 40. [DOI: 10.1002/bies.201700166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/29/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Katsuhiko Kamada
- Chromosome Dynamics Laboratory; RIKEN; 2-1 Hirosawa; Wako Saitama 351-0198 Japan
| | | |
Collapse
|
60
|
Song D, Rodrigues K, Graham TGW, Loparo JJ. A network of cis and trans interactions is required for ParB spreading. Nucleic Acids Res 2017; 45:7106-7117. [PMID: 28407103 PMCID: PMC5499601 DOI: 10.1093/nar/gkx271] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/05/2017] [Indexed: 11/12/2022] Open
Abstract
Most bacteria utilize the highly conserved parABS partitioning system in plasmid and chromosome segregation. This system depends on a DNA-binding protein ParB, which binds specifically to the centromere DNA sequence parS and to adjacent non-specific DNA over multiple kilobases in a phenomenon called spreading. Previous single-molecule experiments in combination with genetic, biochemical and computational studies have argued that ParB spreading requires cooperative interactions between ParB dimers including DNA bridging and possible nearest-neighbor interactions. A recent structure of a ParB homolog co-crystallized with parS revealed that ParB dimers tetramerize to form a higher order nucleoprotein complex. Using this structure as a guide, we systematically ablated a series of proposed intermolecular interactions in the Bacillus subtilis ParB (BsSpo0J) and characterized their effect on spreading using both in vivo and in vitro assays. In particular, we measured DNA compaction mediated by BsSpo0J using a recently developed single-molecule method to simultaneously visualize protein binding on single DNA molecules and changes in DNA conformation without protein labeling. Our results indicate that residues acting as hubs for multiple interactions frequently led to the most severe spreading defects when mutated, and that a network of both cis and trans interactions between ParB dimers is necessary for spreading.
Collapse
Affiliation(s)
- Dan Song
- Harvard Biophysics Program, Harvard Medical School, Boston MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kristen Rodrigues
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Thomas G W Graham
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
61
|
Kawalek A, Glabski K, Bartosik AA, Fogtman A, Jagura-Burdzy G. Increased ParB level affects expression of stress response, adaptation and virulence operons and potentiates repression of promoters adjacent to the high affinity binding sites parS3 and parS4 in Pseudomonas aeruginosa. PLoS One 2017; 12:e0181726. [PMID: 28732084 PMCID: PMC5521831 DOI: 10.1371/journal.pone.0181726] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/06/2017] [Indexed: 12/14/2022] Open
Abstract
Similarly to its homologs in other bacteria, Pseudomonas aeruginosa partitioning protein ParB facilitates segregation of newly replicated chromosomes. Lack of ParB is not lethal but results in increased frequency of anucleate cells production, longer division time, cell elongation, altered colony morphology and defective swarming and swimming motility. Unlike in other bacteria, inactivation of parB leads to major changes of the transcriptome, suggesting that, directly or indirectly, ParB plays a role in regulation of gene expression in this organism. ParB overproduction affects growth rate, cell division and motility in a similar way as ParB deficiency. To identify primary ParB targets, here we analysed the impact of a slight increase in ParB level on P. aeruginosa transcriptome. ParB excess, which does not cause changes in growth rate and chromosome segregation, significantly alters the expression of 176 loci. Most notably, the mRNA level of genes adjacent to high affinity ParB binding sites parS1-4 close to oriC is reduced. Conversely, in cells lacking either parB or functional parS sequences the orfs adjacent to parS3 and parS4 are upregulated, indicating that direct ParB- parS3/parS4 interactions repress the transcription in this region. In addition, increased ParB level brings about repression or activation of numerous genes including several transcriptional regulators involved in SOS response, virulence and adaptation. Overall, our data support the role of partitioning protein ParB as a transcriptional regulator in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Adam Kawalek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| | - Krzysztof Glabski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| | - Aneta Agnieszka Bartosik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Microarray Analysis, Warsaw, Poland
| | - Grazyna Jagura-Burdzy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| |
Collapse
|
62
|
Novel Chromosome Organization Pattern in Actinomycetales-Overlapping Replication Cycles Combined with Diploidy. mBio 2017; 8:mBio.00511-17. [PMID: 28588128 PMCID: PMC5461407 DOI: 10.1128/mbio.00511-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bacteria regulate chromosome replication and segregation tightly with cell division to ensure faithful segregation of DNA to daughter generations. The underlying mechanisms have been addressed in several model species. It became apparent that bacteria have evolved quite different strategies to regulate DNA segregation and chromosomal organization. We have investigated here how the actinobacterium Corynebacterium glutamicum organizes chromosome segregation and DNA replication. Unexpectedly, we found that C. glutamicum cells are at least diploid under all of the conditions tested and that these organisms have overlapping C periods during replication, with both origins initiating replication simultaneously. On the basis of experimental data, we propose growth rate-dependent cell cycle models for C. glutamicum. Bacterial cell cycles are known for few model organisms and can vary significantly between species. Here, we studied the cell cycle of Corynebacterium glutamicum, an emerging cell biological model organism for mycolic acid-containing bacteria, including mycobacteria. Our data suggest that C. glutamicum carries two pole-attached chromosomes that replicate with overlapping C periods, thus initiating a new round of DNA replication before the previous one is terminated. The newly replicated origins segregate to midcell positions, where cell division occurs between the two new origins. Even after long starvation or under extremely slow-growth conditions, C. glutamicum cells are at least diploid, likely as an adaptation to environmental stress that may cause DNA damage. The cell cycle of C. glutamicum combines features of slow-growing organisms, such as polar origin localization, and fast-growing organisms, such as overlapping C periods.
Collapse
|
63
|
Lacerda LA, Cavalca LB, Martins PMM, Govone JS, Bacci M, Ferreira H. Protein depletion using the arabinose promoter in Xanthomonas citri subsp. citri. Plasmid 2017; 90:44-52. [PMID: 28343961 DOI: 10.1016/j.plasmid.2017.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 12/20/2022]
Abstract
Xanthomonas citri subsp. citri (X. citri) is a plant pathogen and the etiological agent of citrus canker, a severe disease that affects all the commercially important citrus varieties, and has worldwide distribution. Citrus canker cannot be healed, and the best method known to control the spread of X. citri in the orchards is the eradication of symptomatic and asymptomatic plants in the field. However, in the state of São Paulo, Brazil, the main orange producing area in the world, control is evolving to an integrated management system (IMS) in which growers have to use less susceptible plants, windshields to prevent bacterial spread out and sprays of cupric bactericidal formulations. Our group has recently proposed alternative methods to control citrus canker, which are based on the use of chemical compounds able to disrupt vital cellular processes of X. citri. An important step in this approach is the genetic and biochemical characterization of genes/proteins that are the possible targets to be perturbed, a task not always simple when the gene/protein under investigation is essential for the organism. Here, we describe vectors carrying the arabinose promoter that enable controllable protein expression in X. citri. These vectors were used as complementation tools for the clean deletion of parB in X. citri, a widespread and conserved gene involved in the essential process of bacterial chromosome segregation. Overexpression or depletion of ParB led to increased cell size, which is probably a resultant of delayed chromosome segregation with subsequent retard of cell division. However, ParB is not essential in X. citri, and in its absence the bacterium was fully competent to colonize the host citrus and cause disease. The arabinose expression vectors described here are valuable tools for protein expression, and especially, to assist in the deletion of essential genes in X. citri.
Collapse
Affiliation(s)
- Lilian A Lacerda
- Depto. Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, Av. 24A, 1515, Rio Claro, SP 13506-900, Brazil
| | - Lucia B Cavalca
- Depto. Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, Av. 24A, 1515, Rio Claro, SP 13506-900, Brazil
| | - Paula M M Martins
- Centro de Citricultura Sylvio Moreira, Rodovia Anhangüera, km 158, Caixa Postal 04, Cordeirópolis, SP 13490-970, Brazil
| | - José S Govone
- Depto. de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Av. 24A, 1515, Rio Claro, SP 13506-900, Brazil
| | - Maurício Bacci
- Centro de Estudos de Insetos Sociais, Instituto de Biociências, Universidade Estadual Paulista, Av. 24A, 1515, Rio Claro, SP 13506-900, Brazil
| | - Henrique Ferreira
- Depto. Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, Av. 24A, 1515, Rio Claro, SP 13506-900, Brazil.
| |
Collapse
|
64
|
Fisher GLM, Pastrana CL, Higman VA, Koh A, Taylor JA, Butterer A, Craggs T, Sobott F, Murray H, Crump MP, Moreno-Herrero F, Dillingham MS. The structural basis for dynamic DNA binding and bridging interactions which condense the bacterial centromere. eLife 2017; 6:e28086. [PMID: 29244022 PMCID: PMC5731820 DOI: 10.7554/elife.28086] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 12/02/2017] [Indexed: 01/20/2023] Open
Abstract
The ParB protein forms DNA bridging interactions around parS to condense DNA and earmark the bacterial chromosome for segregation. The molecular mechanism underlying the formation of these ParB networks is unclear. We show here that while the central DNA binding domain is essential for anchoring at parS, this interaction is not required for DNA condensation. Structural analysis of the C-terminal domain reveals a dimer with a lysine-rich surface that binds DNA non-specifically and is essential for DNA condensation in vitro. Mutation of either the dimerisation or the DNA binding interface eliminates ParB-GFP foci formation in vivo. Moreover, the free C-terminal domain can rapidly decondense ParB networks independently of its ability to bind DNA. Our work reveals a dual role for the C-terminal domain of ParB as both a DNA binding and bridging interface, and highlights the dynamic nature of ParB networks in Bacillus subtilis.
Collapse
Affiliation(s)
- Gemma LM Fisher
- DNA:protein Interactions Unit, School of BiochemistryUniversity of BristolBristolUnited Kingdom
| | - César L Pastrana
- Department of Macromolecular StructuresCentro Nacional de Biotecnologia, Consejo Superior de Investigaciones CientificasMadridSpain
| | | | - Alan Koh
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastleUnited Kingdom
| | - James A Taylor
- DNA:protein Interactions Unit, School of BiochemistryUniversity of BristolBristolUnited Kingdom
| | - Annika Butterer
- Biomolecular and Analytical Mass Spectrometry Group, Department of ChemistryUniversity of AntwerpAntwerpenBelgium
| | - Timothy Craggs
- Department of ChemistryUniversity of SheffieldSheffieldUnited Kingdom
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of ChemistryUniversity of AntwerpAntwerpenBelgium,Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom,School of Molecular and Cellular BiologyUniversity of LeedsLeedsUnited Kingdom
| | - Heath Murray
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastleUnited Kingdom
| | - Matthew P Crump
- School of ChemistryUniversity of BristolBristolUnited Kingdom
| | - Fernando Moreno-Herrero
- Department of Macromolecular StructuresCentro Nacional de Biotecnologia, Consejo Superior de Investigaciones CientificasMadridSpain
| | - Mark S Dillingham
- DNA:protein Interactions Unit, School of BiochemistryUniversity of BristolBristolUnited Kingdom
| |
Collapse
|
65
|
Oliva MA. Segrosome Complex Formation during DNA Trafficking in Bacterial Cell Division. Front Mol Biosci 2016; 3:51. [PMID: 27668216 PMCID: PMC5016525 DOI: 10.3389/fmolb.2016.00051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022] Open
Abstract
Bacterial extrachromosomal DNAs often contribute to virulence in pathogenic organisms or facilitate adaptation to particular environments. The transmission of genetic information from one generation to the next requires sufficient partitioning of DNA molecules to ensure that at least one copy reaches each side of the division plane and is inherited by the daughter cells. Segregation of the bacterial chromosome occurs during or after replication and probably involves a strategy in which several protein complexes participate to modify the folding pattern and distribution first of the origin domain and then of the rest of the chromosome. Low-copy number plasmids rely on specialized partitioning systems, which in some cases use a mechanism that show striking similarity to eukaryotic DNA segregation. Overall, there have been multiple systems implicated in the dynamic transport of DNA cargo to a new cellular position during the cell cycle but most seem to share a common initial DNA partitioning step, involving the formation of a nucleoprotein complex called the segrosome. The particular features and complex topologies of individual segrosomes depend on both the nature of the DNA binding protein involved and on the recognized centromeric DNA sequence, both of which vary across systems. The combination of in vivo and in vitro approaches, with structural biology has significantly furthered our understanding of the mechanisms underlying DNA trafficking in bacteria. Here, I discuss recent advances and the molecular details of the DNA segregation machinery, focusing on the formation of the segrosome complex.
Collapse
Affiliation(s)
- María A Oliva
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
66
|
Abstract
If fully stretched out, a typical bacterial chromosome would be nearly 1 mm long, approximately 1,000 times the length of a cell. Not only must cells massively compact their genetic material, but they must also organize their DNA in a manner that is compatible with a range of cellular processes, including DNA replication, DNA repair, homologous recombination, and horizontal gene transfer. Recent work, driven in part by technological advances, has begun to reveal the general principles of chromosome organization in bacteria. Here, drawing on studies of many different organisms, we review the emerging picture of how bacterial chromosomes are structured at multiple length scales, highlighting the functions of various DNA-binding proteins and the impact of physical forces. Additionally, we discuss the spatial dynamics of chromosomes, particularly during their segregation to daughter cells. Although there has been tremendous progress, we also highlight gaps that remain in understanding chromosome organization and segregation.
Collapse
|
67
|
Funnell BE. ParB Partition Proteins: Complex Formation and Spreading at Bacterial and Plasmid Centromeres. Front Mol Biosci 2016; 3:44. [PMID: 27622187 PMCID: PMC5002424 DOI: 10.3389/fmolb.2016.00044] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/15/2016] [Indexed: 11/13/2022] Open
Abstract
In bacteria, active partition systems contribute to the faithful segregation of both chromosomes and low-copy-number plasmids. Each system depends on a site-specific DNA binding protein to recognize and assemble a partition complex at a centromere-like site, commonly called parS. Many plasmid, and all chromosomal centromere-binding proteins are dimeric helix-turn-helix DNA binding proteins, which are commonly named ParB. Although the overall sequence conservation among ParBs is not high, the proteins share similar domain and functional organization, and they assemble into similar higher-order complexes. In vivo, ParBs "spread," that is, DNA binding extends away from the parS site into the surrounding non-specific DNA, a feature that reflects higher-order complex assembly. ParBs bridge and pair DNA at parS and non-specific DNA sites. ParB dimers interact with each other via flexible conformations of an N-terminal region. This review will focus on the properties of the HTH centromere-binding protein, in light of recent experimental evidence and models that are adding to our understanding of how these proteins assemble into large and dynamic partition complexes at and around their specific DNA sites.
Collapse
Affiliation(s)
- Barbara E Funnell
- Department of Molecular Genetics, University of Toronto Toronto, ON, Canada
| |
Collapse
|
68
|
Bacterial partition complexes segregate within the volume of the nucleoid. Nat Commun 2016; 7:12107. [PMID: 27377966 PMCID: PMC4935973 DOI: 10.1038/ncomms12107] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/31/2016] [Indexed: 11/08/2022] Open
Abstract
Precise and rapid DNA segregation is required for proper inheritance of genetic material. In most bacteria and archaea, this process is assured by a broadly conserved mitotic-like apparatus in which a NTPase (ParA) displaces the partition complex. Competing observations and models imply starkly different 3D localization patterns of the components of the partition machinery during segregation. Here we use super-resolution microscopies to localize in 3D each component of the segregation apparatus with respect to the bacterial chromosome. We show that Par proteins locate within the nucleoid volume and reveal that proper volumetric localization and segregation of partition complexes requires ATPase and DNA-binding activities of ParA. Finally, we find that the localization patterns of the different components of the partition system highly correlate with dense chromosomal regions. We propose a new mechanism in which the nucleoid provides a scaffold to guide the proper segregation of partition complexes. In most bacteria and archaea, a broadly conserved mitotic-like apparatus assures the inheritance of duplicated genetic material before cell division. Here, the authors use super-resolution microscopies to dissect the activities required for proper DNA segregation through the nucleoid interior.
Collapse
|
69
|
Kloosterman TG, Lenarcic R, Willis CR, Roberts DM, Hamoen LW, Errington J, Wu LJ. Complex polar machinery required for proper chromosome segregation in vegetative and sporulating cells of Bacillus subtilis. Mol Microbiol 2016; 101:333-50. [PMID: 27059541 PMCID: PMC4949633 DOI: 10.1111/mmi.13393] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 01/16/2023]
Abstract
Chromosome segregation is an essential process of cell multiplication. In prokaryotes, segregation starts with the newly replicated sister origins of replication, oriCs, which move apart to defined positions in the cell. We have developed a genetic screen to identify mutants defective in placement of oriC during spore development in the Gram‐positive bacterium Bacillus subtilis. In addition to the previously identified proteins Soj and DivIVA, our screen identified several new factors involved in polar recruitment of oriC: a reported regulator of competence ComN, and the regulators of division site selection MinD and MinJ. Previous work implicated Soj as an important regulator of oriC positioning in the cell. Our results suggest a model in which the DivIVA‐interacting proteins ComN and MinJ recruit MinD to the cell pole, and that these proteins work upstream of Soj to enable oriC placement. We show that these proteins form a polar complex, which acts in parallel with but distinct from the sporulation‐specific RacA pathway of oriC placement, and also functions during vegetative growth. Our study further shows that MinD has two distinct cell cycle roles, in cell division and chromosome segregation, and highlights that cell probably use multiple parallel mechanisms to ensure accurate chromosome segregation.
Collapse
Affiliation(s)
- Tomas G Kloosterman
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK.,Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Rok Lenarcic
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK.,Lek Pharmaceuticals d.d., Menges, Slovenia
| | - Clare R Willis
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - David M Roberts
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Leendert W Hamoen
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK.,Department of Cell Biology & Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Ling J Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
70
|
Connecting the dots of the bacterial cell cycle: Coordinating chromosome replication and segregation with cell division. Semin Cell Dev Biol 2016; 53:2-9. [DOI: 10.1016/j.semcdb.2015.11.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022]
|
71
|
Song D, Graham TGW, Loparo JJ. A general approach to visualize protein binding and DNA conformation without protein labelling. Nat Commun 2016; 7:10976. [PMID: 26952553 PMCID: PMC4786781 DOI: 10.1038/ncomms10976] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/08/2016] [Indexed: 01/29/2023] Open
Abstract
Single-molecule manipulation methods, such as magnetic tweezers and flow stretching, generally use the measurement of changes in DNA extension as a proxy for examining interactions between a DNA-binding protein and its substrate. These approaches are unable to directly measure protein–DNA association without fluorescently labelling the protein, which can be challenging. Here we address this limitation by developing a new approach that visualizes unlabelled protein binding on DNA with changes in DNA conformation in a relatively high-throughput manner. Protein binding to DNA molecules sparsely labelled with Cy3 results in an increase in fluorescence intensity due to protein-induced fluorescence enhancement (PIFE), whereas DNA length is monitored under flow of buffer through a microfluidic flow cell. Given that our assay uses unlabelled protein, it is not limited to the low protein concentrations normally required for single-molecule fluorescence imaging and should be broadly applicable to studying protein–DNA interactions. Single-molecule imaging of protein-DNA association requires fluorescently labelled protein, which limits the protein concentration that can be used. Here the authors exploit protein induced fluorescent enhancement of DNA sparsely labelled with Cy3 to visualize protein binding and correlate it with changes in DNA conformation.
Collapse
Affiliation(s)
- Dan Song
- Harvard Biophysics Program, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Seeley G. Mudd Room 204B, Boston, Massachusetts 02115, USA
| | - Thomas G W Graham
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Seeley G. Mudd Room 204B, Boston, Massachusetts 02115, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Seeley G. Mudd Room 204B, Boston, Massachusetts 02115, USA
| |
Collapse
|
72
|
Abstract
The stable maintenance of low-copy-number plasmids in bacteria is actively driven by partition mechanisms that are responsible for the positioning of plasmids inside the cell. Partition systems are ubiquitous in the microbial world and are encoded by many bacterial chromosomes as well as plasmids. These systems, although different in sequence and mechanism, typically consist of two proteins and a DNA partition site, or prokaryotic centromere, on the plasmid or chromosome. One protein binds site-specifically to the centromere to form a partition complex, and the other protein uses the energy of nucleotide binding and hydrolysis to transport the plasmid, via interactions with this partition complex inside the cell. For plasmids, this minimal cassette is sufficient to direct proper segregation in bacterial cells. There has been significant progress in the last several years in our understanding of partition mechanisms. Two general areas that have developed are (i) the structural biology of partition proteins and their interactions with DNA and (ii) the action and dynamics of the partition ATPases that drive the process. In addition, systems that use tubulin-like GTPases to partition plasmids have recently been identified. In this chapter, we concentrate on these recent developments and the molecular details of plasmid partition mechanisms.
Collapse
|
73
|
Directed and persistent movement arises from mechanochemistry of the ParA/ParB system. Proc Natl Acad Sci U S A 2015; 112:E7055-64. [PMID: 26647183 DOI: 10.1073/pnas.1505147112] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The segregation of DNA before cell division is essential for faithful genetic inheritance. In many bacteria, segregation of low-copy number plasmids involves an active partition system composed of a nonspecific DNA-binding ATPase, ParA, and its stimulator protein ParB. The ParA/ParB system drives directed and persistent movement of DNA cargo both in vivo and in vitro. Filament-based models akin to actin/microtubule-driven motility were proposed for plasmid segregation mediated by ParA. Recent experiments challenge this view and suggest that ParA/ParB system motility is driven by a diffusion ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. Here, we develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA-nucleoid affinity to the motion of the ParB-bound cargo. Paradoxically, this resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work thus sheds light on an emergent phenomenon in which nonmotor proteins work collectively via mechanochemical coupling to propel cargos-an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria.
Collapse
|
74
|
Wang X, Le TBK, Lajoie BR, Dekker J, Laub MT, Rudner DZ. Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis. Genes Dev 2015; 29:1661-75. [PMID: 26253537 PMCID: PMC4536313 DOI: 10.1101/gad.265876.115] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
SMC condensin complexes play a central role in compacting and resolving replicated chromosomes in virtually all organisms, yet how they accomplish this remains elusive. In Bacillus subtilis, condensin is loaded at centromeric parS sites, where it encircles DNA and individualizes newly replicated origins. Using chromosome conformation capture and cytological assays, we show that condensin recruitment to origin-proximal parS sites is required for the juxtaposition of the two chromosome arms. Recruitment to ectopic parS sites promotes alignment of large tracks of DNA flanking these sites. Importantly, insertion of parS sites on opposing arms indicates that these "zip-up" interactions only occur between adjacent DNA segments. Collectively, our data suggest that condensin resolves replicated origins by promoting the juxtaposition of DNA flanking parS sites, drawing sister origins in on themselves and away from each other. These results are consistent with a model in which condensin encircles the DNA flanking its loading site and then slides down, tethering the two arms together. Lengthwise condensation via loop extrusion could provide a generalizable mechanism by which condensin complexes act dynamically to individualize origins in B. subtilis and, when loaded along eukaryotic chromosomes, resolve them during mitosis.
Collapse
Affiliation(s)
- Xindan Wang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Tung B K Le
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bryan R Lajoie
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - David Z Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
75
|
Gruber S. Multilayer chromosome organization through DNA bending, bridging and extrusion. Curr Opin Microbiol 2015; 22:102-10. [PMID: 25460803 DOI: 10.1016/j.mib.2014.09.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 11/25/2022]
Abstract
All living cells have to master the extraordinarily extended and tangly nature of genomic DNA molecules — in particular during cell division when sister chromosomes are resolved from one another and confined to opposite halves of a cell. Bacteria have evolved diverse sets of proteins, which collectively ensure the formation of compact and yet highly dynamic nucleoids. Some of these players act locally by changing the path of DNA through the bending of its double helical backbone. Other proteins have wider or even global impact on chromosome organization, for example by interconnecting two distant segments of chromosomal DNA or by actively relocating DNA within a cell. Here, I highlight different modes of chromosome organization in bacteria and on this basis consider models for the function of SMC protein complexes, whose mechanism of action is only poorly understood so far.
Collapse
Affiliation(s)
- Stephan Gruber
- Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
76
|
Sanchez A, Cattoni D, Walter JC, Rech J, Parmeggiani A, Nollmann M, Bouet JY. Stochastic Self-Assembly of ParB Proteins Builds the Bacterial DNA Segregation Apparatus. Cell Syst 2015; 1:163-73. [DOI: 10.1016/j.cels.2015.07.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/15/2015] [Accepted: 07/30/2015] [Indexed: 11/25/2022]
|
77
|
Lioy VS, Volante A, Soberón NE, Lurz R, Ayora S, Alonso JC. ParAB Partition Dynamics in Firmicutes: Nucleoid Bound ParA Captures and Tethers ParB-Plasmid Complexes. PLoS One 2015; 10:e0131943. [PMID: 26161642 PMCID: PMC4498918 DOI: 10.1371/journal.pone.0131943] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/08/2015] [Indexed: 11/17/2022] Open
Abstract
In Firmicutes, small homodimeric ParA-like (δ2) and ParB-like (ω2) proteins, in concert with cis-acting plasmid-borne parS and the host chromosome, secure stable plasmid inheritance in a growing bacterial population. This study shows that (ω:YFP)2 binding to parS facilitates plasmid clustering in the cytosol. (δ:GFP)2 requires ATP binding but not hydrolysis to localize onto the cell’s nucleoid as a fluorescent cloud. The interaction of (δ:CFP)2 or δ2 bound to the nucleoid with (ω:YFP)2 foci facilitates plasmid capture, from a very broad distribution, towards the nucleoid and plasmid pairing. parS-bound ω2 promotes redistribution of (δ:GFP)2, leading to the dynamic release of (δ:GFP)2 from the nucleoid, in a process favored by ATP hydrolysis and protein-protein interaction. (δD60A:GFP)2, which binds but cannot hydrolyze ATP, also forms unstable complexes on the nucleoid. In the presence of ω2, (δD60A:GFP)2 accumulates foci or patched structures on the nucleoid. We propose that (δ:GFP)2 binding to different nucleoid regions and to ω2-parS might generate (δ:GFP)2 gradients that could direct plasmid movement. The iterative pairing and unpairing cycles may tether plasmids equidistantly on the nucleoid to ensure faithful plasmid segregation by a mechanism compatible with the diffusion-ratchet mechanism as proposed from in vitro reconstituted systems.
Collapse
Affiliation(s)
- Virginia S Lioy
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin Str. 3, 28049 Madrid, Spain
| | - Andrea Volante
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin Str. 3, 28049 Madrid, Spain
| | - Nora E Soberón
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin Str. 3, 28049 Madrid, Spain
| | - Rudi Lurz
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, D-1000 Berlin, Germany
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin Str. 3, 28049 Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin Str. 3, 28049 Madrid, Spain
| |
Collapse
|
78
|
Passot FM, Nguyen HH, Dard-Dascot C, Thermes C, Servant P, Espéli O, Sommer S. Nucleoid organization in the radioresistant bacteriumDeinococcus radiodurans. Mol Microbiol 2015; 97:759-74. [DOI: 10.1111/mmi.13064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Fanny Marie Passot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris Sud; Bâtiment 409 Orsay 91405 France
| | - Hong Ha Nguyen
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris Sud; Bâtiment 409 Orsay 91405 France
| | - Cloelia Dard-Dascot
- Plateforme Intégrée IMAGIF - CNRS; Avenue de la Terrasse; Gif sur Yvette 91198 France
| | - Claude Thermes
- Plateforme Intégrée IMAGIF - CNRS; Avenue de la Terrasse; Gif sur Yvette 91198 France
| | - Pascale Servant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris Sud; Bâtiment 409 Orsay 91405 France
| | - Olivier Espéli
- Center for Interdisciplinary Research In Biology (CIRB); Collège de France; CNRS UMR 7241, INSERM U1050, 11 place Marcelin Berthelot Paris 75005 France
| | - Suzanne Sommer
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris Sud; Bâtiment 409 Orsay 91405 France
| |
Collapse
|
79
|
Volante A, Alonso JC. Molecular Anatomy of ParA-ParA and ParA-ParB Interactions during Plasmid Partitioning. J Biol Chem 2015; 290:18782-95. [PMID: 26055701 DOI: 10.1074/jbc.m115.649632] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 11/06/2022] Open
Abstract
Firmicutes multidrug resistance inc18 plasmids encode parS sites and two small homodimeric ParA-like (δ2) and ParB-like (ω2) proteins to ensure faithful segregation. Protein ω2 binds to parS DNA, forming a short left-handed helix wrapped around the full parS, and interacts with δ2. Protein δ2 interacts with ω2 and, in the ATP-bound form, binds to nonspecific DNA (nsDNA), forming small clusters. Here, we have mapped the ω2·δ2 and δ2·δ2 interacting domains in the δ2 that are adjacent to but distinct from each other. The δ2 nsDNA binding domain is essential for stimulation of ω2·parS-mediated ATP hydrolysis. From the data presented here, we propose that δ2 interacts with ATP, nsDNA, and with ω2 bound to parS at near equimolar concentrations, facilitating a δ2 structural transition. This δ2 "activated" state overcomes its impediment in ATP hydrolysis, with the subsequent release of both of the proteins from nsDNA (plasmid unpairing).
Collapse
Affiliation(s)
- Andrea Volante
- From the Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin Str. 3, 28049 Madrid, Spain
| | - Juan C Alonso
- From the Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin Str. 3, 28049 Madrid, Spain
| |
Collapse
|
80
|
Insights into ParB spreading from the complex structure of Spo0J and parS. Proc Natl Acad Sci U S A 2015; 112:6613-8. [PMID: 25964325 DOI: 10.1073/pnas.1421927112] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spo0J (stage 0 sporulation protein J, a member of the ParB superfamily) is an essential component of the ParABS (partition system of ParA, ParB, and parS)-related bacterial chromosome segregation system. ParB (partition protein B) and its regulatory protein, ParA, act cooperatively through parS (partition S) DNA to facilitate chromosome segregation. ParB binds to chromosomal DNA at specific parS sites as well as the neighboring nonspecific DNA sites. Various ParB molecules can associate together and spread along the chromosomal DNA. ParB oligomer and parS DNA interact together to form a high-order nucleoprotein that is required for the loading of the structural maintenance of chromosomes proteins onto the chromosome for chromosomal DNA condensation. In this report, we characterized the binding of parS and Spo0J from Helicobacter pylori (HpSpo0J) and solved the crystal structure of the C-terminal domain truncated protein (Ct-HpSpo0J)-parS complex. Ct-HpSpo0J folds into an elongated structure that includes a flexible N-terminal domain for protein-protein interaction and a conserved DNA-binding domain for parS binding. Two Ct-HpSpo0J molecules bind with one parS. Ct-HpSpo0J interacts vertically and horizontally with its neighbors through the N-terminal domain to form an oligomer. These adjacent and transverse interactions are accomplished via a highly conserved arginine patch: RRLR. These interactions might be needed for molecular assembly of a high-order nucleoprotein complex and for ParB spreading. A structural model for ParB spreading and chromosomal DNA condensation that lead to chromosome segregation is proposed.
Collapse
|
81
|
Uhía I, Williams KJ, Shahrezaei V, Robertson BD. Mycobacterial Growth. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a021097. [PMID: 25957314 DOI: 10.1101/cshperspect.a021097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this work, we review progress made in understanding the molecular underpinnings of growth and division in mycobacteria, concentrating on work published since the last comprehensive review ( Hett and Rubin 2008). We have focused on exciting work making use of new time-lapse imaging technologies coupled with reporter-gene fusions and antimicrobial treatment to generate insights into how mycobacteria grow and divide in a heterogeneous manner. We try to reconcile the different observations reported, providing a model of how they might fit together. We also review the topic of mycobacterial spores, which has generated considerable discussion during the last few years. Resuscitation promoting factors, and regulation of growth and division, have also been actively researched, and we summarize progress in these areas.
Collapse
Affiliation(s)
- Iria Uhía
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Kerstin J Williams
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Brian D Robertson
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
82
|
Jecz P, Bartosik AA, Glabski K, Jagura-Burdzy G. A single parS sequence from the cluster of four sites closest to oriC is necessary and sufficient for proper chromosome segregation in Pseudomonas aeruginosa. PLoS One 2015; 10:e0120867. [PMID: 25794281 PMCID: PMC4368675 DOI: 10.1371/journal.pone.0120867] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/27/2015] [Indexed: 11/19/2022] Open
Abstract
Among the mechanisms that control chromosome segregation in bacteria are highly-conserved partitioning systems comprising three components: ParA protein (a deviant Walker-type ATPase), ParB protein (a DNA-binding element) and multiple cis-acting palindromic centromere-like sequences, designated parS. Ten putative parS sites have been identified in the P. aeruginosa PAO1 genome, four localized in close proximity of oriC and six, diverged by more than one nucleotide from a perfect palindromic sequence, dispersed along the chromosome. Here, we constructed and analyzed P. aeruginosa mutants deprived of each single parS sequence and their different combinations. The analysis included evaluation of a set of phenotypic features, chromosome segregation, and ParB localization in the cells. It was found that ParB binds specifically to all ten parS sites, although with different affinities. The P. aeruginosa parS mutant with all ten parS sites modified (parSnull) is viable however it demonstrates the phenotype characteristic for parAnull or parBnull mutants: slightly slower growth rate, high frequency of anucleate cells, and defects in motility. The genomic position and sequence of parS determine its role in P. aeruginosa biology. It transpired that any one of the four parS sites proximal to oriC (parS1 to parS4), which are bound by ParB with the highest affinity, is necessary and sufficient for the parABS role in chromosome partitioning. When all these four sites are mutated simultaneously, the strain shows the parSnull phenotype, which indicates that none of the remaining six parS sites can substitute for these four oriC-proximal sites in this function. A single ectopic parS2 (inserted opposite oriC in the parSnull mutant) facilitates ParB organization into regularly spaced condensed foci and reverses some of the mutant phenotypes but is not sufficient for accurate chromosome segregation.
Collapse
Affiliation(s)
- Paulina Jecz
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Aneta A. Bartosik
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Glabski
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Jagura-Burdzy
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
83
|
Building bridges within the bacterial chromosome. Trends Genet 2015; 31:164-73. [DOI: 10.1016/j.tig.2015.01.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 11/22/2022]
|
84
|
Kleine Borgmann LAK, Graumann PL. Structural maintenance of chromosome complex in bacteria. J Mol Microbiol Biotechnol 2015; 24:384-95. [PMID: 25732340 DOI: 10.1159/000368931] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In all organisms, from eukaryotes to prokaryotes, the chromosome is highly compacted and organized. Chromosome condensation is essential in all cells and ranges from 1,000- to more than 10,000-fold between bacterial and eukaryotic cells. Replication and transcription occur in parallel with chromosome segregation in bacteria. Structural maintenance of chromosome proteins play a key role in chromosome compaction and segregation, their coordination with the cell cycle, and in various other chromosome dynamics, including DNA repair. In spite of their essential nature in almost all organisms, their function at a molecular level is only slowly beginning to emerge.
Collapse
Affiliation(s)
- Luise A K Kleine Borgmann
- Division of Biological Sciences and Section of Molecular Biology, University of California, San Diego, La Jolla, Calif., USA
| | | |
Collapse
|
85
|
Taylor JA, Pastrana CL, Butterer A, Pernstich C, Gwynn EJ, Sobott F, Moreno-Herrero F, Dillingham MS. Specific and non-specific interactions of ParB with DNA: implications for chromosome segregation. Nucleic Acids Res 2015; 43:719-31. [PMID: 25572315 PMCID: PMC4333373 DOI: 10.1093/nar/gku1295] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The segregation of many bacterial chromosomes is dependent on the interactions of ParB proteins with centromere-like DNA sequences called parS that are located close to the origin of replication. In this work, we have investigated the binding of Bacillus subtilis ParB to DNA in vitro using a variety of biochemical and biophysical techniques. We observe tight and specific binding of a ParB homodimer to the parS sequence. Binding of ParB to non-specific DNA is more complex and displays apparent positive co-operativity that is associated with the formation of larger, poorly defined, nucleoprotein complexes. Experiments with magnetic tweezers demonstrate that non-specific binding leads to DNA condensation that is reversible by protein unbinding or force. The condensed DNA structure is not well ordered and we infer that it is formed by many looping interactions between neighbouring DNA segments. Consistent with this view, ParB is also able to stabilize writhe in single supercoiled DNA molecules and to bridge segments from two different DNA molecules in trans. The experiments provide no evidence for the promotion of non-specific DNA binding and/or condensation events by the presence of parS sequences. The implications of these observations for chromosome segregation are discussed.
Collapse
Affiliation(s)
- James A Taylor
- DNA:Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Cesar L Pastrana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Annika Butterer
- Biomolecular & Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Christian Pernstich
- DNA:Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Emma J Gwynn
- DNA:Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium Center for Proteomics (CFP-CeProMa), University of Antwerp, 2020 Antwerpen, Belgium
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Mark S Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
86
|
Abstract
To proliferate efficiently, cells must co-ordinate division with chromosome segregation. In Bacillus subtilis, the nucleoid occlusion protein Noc binds to specific DNA sequences (NBSs) scattered around the chromosome and helps to protect genomic integrity by coupling the initiation of division to the progression of chromosome replication and segregation. However, how it inhibits division has remained unclear. Here, we demonstrate that Noc associates with the cell membrane via an N-terminal amphipathic helix, which is necessary for function. Importantly, the membrane-binding affinity of this helix is weak and requires the assembly of nucleoprotein complexes, thus establishing a mechanism for DNA-dependent activation of Noc. Furthermore, division inhibition by Noc requires recruitment of NBS DNA to the cell membrane and is dependent on its ability to bind DNA and membrane simultaneously. Indeed, Noc production in a heterologous system is sufficient for recruitment of chromosomal DNA to the membrane. Our results suggest a simple model in which the formation of large membrane-associated nucleoprotein complexes physically occludes assembly of the division machinery.
Collapse
Affiliation(s)
- David William Adams
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
87
|
Bouet JY, Stouf M, Lebailly E, Cornet F. Mechanisms for chromosome segregation. Curr Opin Microbiol 2014; 22:60-5. [DOI: 10.1016/j.mib.2014.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/15/2014] [Indexed: 11/25/2022]
|
88
|
Abstract
In this issue of Genes & Development, Graham and colleagues (pp. 1228-1238) examine how ParBs, which bind to prokaryotic centromere-like partition sites, spread into nearby nonspecific DNA and assemble into higher-order protein-DNA complexes. Spreading is accomplished by looping rather than one-dimensional filamentation, thereby compacting the DNA into an extensively bridged complex.
Collapse
Affiliation(s)
- Barbara E Funnell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
89
|
Condensation and localization of the partitioning protein ParB on the bacterial chromosome. Proc Natl Acad Sci U S A 2014; 111:8809-14. [PMID: 24927534 DOI: 10.1073/pnas.1402529111] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ParABS system mediates chromosome segregation and plasmid partitioning in many bacteria. As part of the partitioning mechanism, ParB proteins form a nucleoprotein complex at parS sites. The biophysical basis underlying ParB-DNA complex formation and localization remains elusive. Specifically, it is unclear whether ParB spreads in 1D along DNA or assembles into a 3D protein-DNA complex. We show that a combination of 1D spreading bonds and a single 3D bridging bond between ParB proteins constitutes a minimal model for a condensed ParB-DNA complex. This model implies a scaling behavior for ParB-mediated silencing of parS-flanking genes, which we confirm to be satisfied by experimental data from P1 plasmids. Furthermore, this model is consistent with experiments on the effects of DNA roadblocks on ParB localization. Finally, we show experimentally that a single parS site is necessary and sufficient for ParB-DNA complex formation in vivo. Together with our model, this suggests that ParB binding to parS triggers a conformational switch in ParB that overcomes a nucleation barrier. Conceptually, the combination of spreading and bridging bonds in our model provides a surface tension ensuring the condensation of the ParB-DNA complex, with analogies to liquid-like compartments such as nucleoli in eukaryotes.
Collapse
|
90
|
Lim HC, Surovtsev IV, Beltran BG, Huang F, Bewersdorf J, Jacobs-Wagner C. Evidence for a DNA-relay mechanism in ParABS-mediated chromosome segregation. eLife 2014; 3:e02758. [PMID: 24859756 PMCID: PMC4067530 DOI: 10.7554/elife.02758] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/16/2014] [Indexed: 12/12/2022] Open
Abstract
The widely conserved ParABS system plays a major role in bacterial chromosome segregation. How the components of this system work together to generate translocation force and directional motion remains uncertain. Here, we combine biochemical approaches, quantitative imaging and mathematical modeling to examine the mechanism by which ParA drives the translocation of the ParB/parS partition complex in Caulobacter crescentus. Our experiments, together with simulations grounded on experimentally-determined biochemical and cellular parameters, suggest a novel 'DNA-relay' mechanism in which the chromosome plays a mechanical function. In this model, DNA-bound ParA-ATP dimers serve as transient tethers that harness the elastic dynamics of the chromosome to relay the partition complex from one DNA region to another across a ParA-ATP dimer gradient. Since ParA-like proteins are implicated in the partitioning of various cytoplasmic cargos, the conservation of their DNA-binding activity suggests that the DNA-relay mechanism may be a general form of intracellular transport in bacteria.DOI: http://dx.doi.org/10.7554/eLife.02758.001.
Collapse
Affiliation(s)
- Hoong Chuin Lim
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States Microbial Diversity Institute, Yale University, West Haven, United States
| | - Ivan Vladimirovich Surovtsev
- Microbial Diversity Institute, Yale University, West Haven, United States Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States Howard Hughes Medical Institute, Yale University, New Haven, United States
| | - Bruno Gabriel Beltran
- Department of Mathematics, Louisiana State University, Baton Rouge, United States Howard Hughes Medical Institute, Yale University, New Haven, United States
| | - Fang Huang
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Jörg Bewersdorf
- Department of Cell Biology, Yale School of Medicine, New Haven, United States Department of Biomedical Engineering, Yale University, New Haven, United States
| | - Christine Jacobs-Wagner
- Microbial Diversity Institute, Yale University, West Haven, United States Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States Howard Hughes Medical Institute, Yale University, New Haven, United States Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, United States
| |
Collapse
|
91
|
Graham TGW, Wang X, Song D, Etson CM, van Oijen AM, Rudner DZ, Loparo JJ. ParB spreading requires DNA bridging. Genes Dev 2014; 28:1228-38. [PMID: 24829297 PMCID: PMC4052768 DOI: 10.1101/gad.242206.114] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The bacterial parABS system is employed for plasmid partitioning and chromosome segregation. ParB binds to parS sites and associates with broad regions of adjacent DNA, a phenomenon known as spreading. However, the molecular basis for spreading is unknown. Using single-molecule approaches, Graham et al. demonstrate DNA bridging by B. subtilis ParB (Spo0J). Spo0J mutations that disrupt DNA bridging lead to defective spreading and SMC condensin complex recruitment. This study suggests a novel, conserved mechanism by which ParB proteins function in chromosome organization and segregation. The parABS system is a widely employed mechanism for plasmid partitioning and chromosome segregation in bacteria. ParB binds to parS sites on plasmids and chromosomes and associates with broad regions of adjacent DNA, a phenomenon known as spreading. Although essential for ParB function, the mechanism of spreading remains poorly understood. Using single-molecule approaches, we discovered that Bacillus subtilis ParB (Spo0J) is able to trap DNA loops. Point mutants in Spo0J that disrupt DNA bridging are defective in spreading and recruitment of structural maintenance of chromosomes (SMC) condensin complexes in vivo. DNA bridging helps to explain how a limited number of Spo0J molecules per parS site (∼20) can spread over many kilobases and suggests a mechanism by which ParB proteins could facilitate the loading of SMC complexes. We show that DNA bridging is a property of diverse ParB homologs, suggesting broad evolutionary conservation.
Collapse
Affiliation(s)
- Thomas G W Graham
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xindan Wang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dan Song
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA; Harvard Biophysics Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Candice M Etson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA; Harvard Biophysics Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Antoine M van Oijen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David Z Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
92
|
Abstract
Bacteria use partitioning systems based on the ParA ATPase to actively mobilize and spatially organize molecular cargoes throughout the cytoplasm. The bacterium Caulobacter crescentus uses a ParA-based partitioning system to segregate newly replicated chromosomal centromeres to opposite cell poles. Here we demonstrate that the Caulobacter PopZ scaffold creates an organizing center at the cell pole that actively regulates polar centromere transport by the ParA partition system. As segregation proceeds, the ParB-bound centromere complex is moved by progressively disassembling ParA from a nucleoid-bound structure. Using superresolution microscopy, we show that released ParA is recruited directly to binding sites within a 3D ultrastructure composed of PopZ at the cell pole, whereas the ParB-centromere complex remains at the periphery of the PopZ structure. PopZ recruitment of ParA stimulates ParA to assemble on the nucleoid near the PopZ-proximal cell pole. We identify mutations in PopZ that allow scaffold assembly but specifically abrogate interactions with ParA and demonstrate that PopZ/ParA interactions are required for proper chromosome segregation in vivo. We propose that during segregation PopZ sequesters free ParA and induces target-proximal regeneration of ParA DNA binding activity to enforce processive and pole-directed centromere segregation, preventing segregation reversals. PopZ therefore functions as a polar hub complex at the cell pole to directly regulate the directionality and destination of transfer of the mitotic segregation machine.
Collapse
|
93
|
Iniesta AA. ParABS system in chromosome partitioning in the bacterium Myxococcus xanthus. PLoS One 2014; 9:e86897. [PMID: 24466283 PMCID: PMC3899335 DOI: 10.1371/journal.pone.0086897] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 12/17/2013] [Indexed: 12/19/2022] Open
Abstract
Chromosome segregation is an essential cellular function in eukaryotic and prokaryotic cells. The ParABS system is a fundamental player for a mitosis-like process in chromosome partitioning in many bacterial species. This work shows that the social bacterium Myxococcus xanthus also uses the ParABS system for chromosome segregation. Its large prokaryotic genome of 9.1 Mb contains 22 parS sequences near the origin of replication, and it is shown here that M. xanthus ParB binds preferentially to a consensus parS sequence in vitro. ParB and ParA are essential for cell viability in M. xanthus as in Caulobacter crescentus, but unlike in many other bacteria. Absence of ParB results in anucleate cells, chromosome segregation defects and loss of viability. Analysis of ParA subcellular localization shows that it clusters at the poles in all cells, and in some, in the DNA-free cell division plane between two chromosomal DNA masses. This ParA localization pattern depends on ParB but not on FtsZ. ParB inhibits the nonspecific interaction of ParA with DNA, and ParA colocalizes with chromosomal DNA only when ParB is depleted. The subcellular localization of ParB suggests a single ParB-parS complex localized at the edge of the nucleoid, next to a polar ParA cluster, with a second ParB-parS complex migrating after the replication of parS takes place to the opposite nucleoid edge, next to the other polar ParA cluster.
Collapse
Affiliation(s)
- Antonio A. Iniesta
- Departamento de Genética y Microbiología, Área de Genética, Facultad de Biología, Universidad de Murcia, Campus Regional de Excelencia Internacional “Campus Mare Nostrum”, Murcia, Spain
- * E-mail:
| |
Collapse
|
94
|
Ucci AP, Martins PMM, Lau IF, Bacci M, Belasque J, Ferreira H. Asymmetric chromosome segregation in Xanthomonas citri ssp. citri. Microbiologyopen 2013; 3:29-41. [PMID: 24339434 PMCID: PMC3937727 DOI: 10.1002/mbo3.145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/24/2013] [Accepted: 11/04/2013] [Indexed: 12/02/2022] Open
Abstract
This study was intended to characterize the chromosome segregation process of Xanthomonas citri ssp. citri (Xac) by investigating the functionality of the ParB factor encoded on its chromosome, and its requirement for cell viability and virulence. Using TAP tagging we show that ParB is expressed in Xac. Disruption of parB increased the cell doubling time and precluded the ability of Xac to colonize the host citrus. Moreover, Xac mutant cells expressing only truncated forms of ParB exhibited the classical phenotype of aberrant chromosome organization, and seemed affected in cell division judged by their reduced growth rate and the propensity to form filaments. The ParB-GFP localization pattern in Xac was suggestive of an asymmetric mode of replicon partitioning, which together with the filamentation phenotype support the idea that Xac may control septum placement using mechanisms probably analogous to Caulobacter crescentus, and perhaps Vibrio cholerae, and Corynebacterium glutamicum. Xac exhibits asymmetric chromosome segregation, and the perturbation of this process leads to an inability to colonize the host plant.
Collapse
Affiliation(s)
- Amanda P Ucci
- Depto. de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Rodovia Araraquara/Jaú Km 1, CP 502, Araraquara, São Paulo, 14801-902, Brazil
| | | | | | | | | | | |
Collapse
|
95
|
Wang X, Montero Llopis P, Rudner DZ. Organization and segregation of bacterial chromosomes. Nat Rev Genet 2013; 14:191-203. [PMID: 23400100 DOI: 10.1038/nrg3375] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bacterial chromosome must be compacted more than 1,000-fold to fit into the compartment in which it resides. How it is condensed, organized and ultimately segregated has been a puzzle for over half a century. Recent advances in live-cell imaging and genome-scale analyses have led to new insights into these problems. We argue that the key feature of compaction is the orderly folding of DNA along adjacent segments and that this organization provides easy and efficient access for protein-DNA transactions and has a central role in driving segregation. Similar principles and common proteins are used in eukaryotes to condense and to resolve sister chromatids at metaphase.
Collapse
Affiliation(s)
- Xindan Wang
- Harvard Medical School, Department of Microbiology and Immunobiology, HIM 1025, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
96
|
Qian S, Dean R, Urban VS, Chaudhuri BN. The internal organization of mycobacterial partition assembly: does the DNA wrap a protein core? PLoS One 2012; 7:e52690. [PMID: 23285150 PMCID: PMC3527565 DOI: 10.1371/journal.pone.0052690] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/20/2012] [Indexed: 11/18/2022] Open
Abstract
Before cell division in many bacteria, the ParBs spread on a large segment of DNA encompassing the origin-proximal parS site(s) to form the partition assembly that participates in chromosome segregation. Little is known about the structural organization of chromosomal partition assembly. We report solution X-ray and neutron scattering data characterizing the size parameters and internal organization of a nucleoprotein assembly formed by the mycobacterial chromosomal ParB and a 120-meric DNA containing a parS-encompassing region from the mycobacterial genome. The cross-sectional radii of gyration and linear mass density describing the rod-like ParB-DNA assembly were determined from solution scattering. A "DNA outside, protein inside" mode of partition assembly organization consistent with the neutron scattering hydrogen/deuterium contrast variation data is discussed. In this organization, the high scattering DNA is positioned towards the outer region of the partition assembly. The new results presented here provide a basis for understanding how ParBs organize the parS-proximal chromosome, thus setting the stage for further interactions with the DNA condensins, the origin tethering factors and the ParA.
Collapse
Affiliation(s)
- Shuo Qian
- Center for Structural Molecular Biology, Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Rebecca Dean
- Hauptman Woodward Institute, Buffalo, New York, United States of America
| | - Volker S. Urban
- Center for Structural Molecular Biology, Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Barnali N. Chaudhuri
- Hauptman Woodward Institute, Buffalo, New York, United States of America
- Department of Structural Biology, State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
97
|
Ptacin JL, Shapiro L. Chromosome architecture is a key element of bacterial cellular organization. Cell Microbiol 2012; 15:45-52. [PMID: 23078580 DOI: 10.1111/cmi.12049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/05/2012] [Accepted: 10/09/2012] [Indexed: 12/01/2022]
Abstract
The bacterial chromosome encodes information at multiple levels. Beyond direct protein coding, genomes encode regulatory information required to orchestrate the proper timing and levels of gene expression and protein synthesis, and contain binding sites and regulatory sequences to co-ordinate the activities of proteins involved in chromosome repair and maintenance. In addition, it is becoming increasingly clear that yet another level of information is encoded by the bacterial chromosome - the three-dimensional packaging of the chromosomal DNA molecule itself and its positioning relative to the cell. This vast structural blueprint of specific positional information is manifested in various ways, directing chromosome compaction, accessibility, attachment to the cell envelope, supercoiling, and general architecture and arrangement of the chromosome relative to the cell body. Recent studies have begun to identify and characterize novel systems that utilize the three-dimensional spatial information encoded by chromosomal architecture to co-ordinate and direct fundamental cellular processes within the cytoplasm, providing large-scale order within the complex clutter of the cytoplasmic compartment.
Collapse
Affiliation(s)
- Jerod L Ptacin
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
98
|
Dupaigne P, Tonthat NK, Espéli O, Whitfill T, Boccard F, Schumacher MA. Molecular basis for a protein-mediated DNA-bridging mechanism that functions in condensation of the E. coli chromosome. Mol Cell 2012; 48:560-71. [PMID: 23084832 DOI: 10.1016/j.molcel.2012.09.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 07/26/2012] [Accepted: 09/07/2012] [Indexed: 01/10/2023]
Abstract
The E. coli chromosome is condensed into insulated regions termed macrodomains (MDs), which are essential for genomic packaging. How chromosomal MDs are specifically organized and compacted is unknown. Here, we report studies revealing the molecular basis for Terminus-containing (Ter) chromosome condensation by the Ter-specific factor MatP. MatP contains a tripartite fold with a four-helix bundle DNA-binding motif, ribbon-helix-helix and C-terminal coiled-coil. Strikingly, MatP-matS structures show that the MatP coiled-coils form bridged tetramers that flexibly link distant matS sites. Atomic force microscopy and electron microscopy studies demonstrate that MatP alone loops DNA. Mutation of key coiled-coil residues destroys looping and causes a loss of Ter condensation in vivo. Thus, these data reveal the molecular basis for a protein-mediated DNA-bridging mechanism that mediates condensation of a large chromosomal domain in enterobacteria.
Collapse
Affiliation(s)
- Pauline Dupaigne
- Centre de Génétique Moléculaire du CNRS, Associé à l'Université Paris-Sud, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
99
|
Functional characterization of the role of the chromosome I partitioning system in genome segregation in Deinococcus radiodurans. J Bacteriol 2012; 194:5739-48. [PMID: 22843847 DOI: 10.1128/jb.00610-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deinococcus radiodurans, a radiation-resistant bacterium, harbors a multipartite genome. Chromosome I contains three putative centromeres (segS1, segS2, and segS3), and ParA (ParA1) and ParB (ParB1) homologues. The ParB1 interaction with segS was sequence specific, and ParA1 was shown to be a DNA binding ATPase. The ATPase activity of ParA1 was stimulated when segS elements were coincubated with ParB1, but the greatest increase was observed with segS3. ParA1 incubated with the segS-ParB1 complex showed increased light scattering in the absence of ATP. In the presence of ATP, this increase was continued with segS1-ParA1B1 and segS2-ParA1B1 complexes, while it decreased rapidly after an initial increase for 30 min in the case of segS3. D. radiodurans cells expressing green fluorescent protein (GFP)-ParB1 produced foci on nucleoids, and the ΔparB1 mutant showed growth retardation and ∼13%-higher anucleation than the wild type. Unstable mini-F plasmids carrying segS1 and segS2 showed inheritance in Escherichia coli without ParA1B1, while segS3-mediated plasmid stability required the in trans expression of ParA1B1. Unlike untransformed E. coli cells, cells harboring pDAGS3, a plasmid carrying segS3 and also expressing ParB1-GFP, produced discrete GFP foci on nucleoids. These findings suggested that both segS elements and the ParA1B1 proteins of D. radiodurans are functionally active and have a role in genome segregation.
Collapse
|
100
|
Donovan C, Sieger B, Krämer R, Bramkamp M. A synthetic Escherichia coli system identifies a conserved origin tethering factor in Actinobacteria. Mol Microbiol 2012; 84:105-16. [DOI: 10.1111/j.1365-2958.2012.08011.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|