51
|
Luu RA, Kootstra JD, Nesteryuk V, Brunton CN, Parales JV, Ditty JL, Parales RE. Integration of chemotaxis, transport and catabolism inPseudomonas putidaand identification of the aromatic acid chemoreceptor PcaY. Mol Microbiol 2015; 96:134-47. [DOI: 10.1111/mmi.12929] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Rita A. Luu
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| | - Joshua D. Kootstra
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| | - Vasyl Nesteryuk
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| | - Ceanne N. Brunton
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| | - Juanito V. Parales
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| | - Jayna L. Ditty
- Department of Biology; University of St. Thomas; St. Paul MN USA
| | - Rebecca E. Parales
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| |
Collapse
|
52
|
Fernando E, Keshavarz T, Kyazze G. Complete degradation of the azo dye Acid Orange-7 and bioelectricity generation in an integrated microbial fuel cell, aerobic two-stage bioreactor system in continuous flow mode at ambient temperature. BIORESOURCE TECHNOLOGY 2014; 156:155-62. [PMID: 24495541 DOI: 10.1016/j.biortech.2014.01.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 05/12/2023]
Abstract
In this study, the commercially used model azo dye Acid Orange-7 (AO-7) was fully degraded into less toxic intermediates using an integrated microbial fuel cell (MFC) and aerobic bioreactor system. The integrated bioreactor system was operated at ambient temperature and continuous-flow mode. AO-7 loading rate was varied during experiments from 70gm(-3)day(-1) to 210gm(-3)day(-1). Colour and soluble COD removal rates reached>90% under all AO-7 loading rates. The MFC treatment stage prompted AO-7 to undergo reductive degradation into its constituent aromatic amines. HPLC-MS analysis of metabolite extracts from the aerobic stage of the bioreactor system indicated further oxidative degradation of the resulting aromatic amines into simpler compounds. Bioluminescence based Vibrio fischeri ecotoxicity testing demonstrated that aerobic stage effluent exhibited toxicity reductions of approximately fivefold and ten-fold respectively compared to the dye wastewater influent and MFC-stage effluent.
Collapse
Affiliation(s)
- Eustace Fernando
- Faculty of Science and Technology, Applied Biotechnology Research Group, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK.
| | - Taj Keshavarz
- Faculty of Science and Technology, Applied Biotechnology Research Group, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK.
| | - Godfrey Kyazze
- Faculty of Science and Technology, Applied Biotechnology Research Group, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK.
| |
Collapse
|
53
|
Jiménez JI, Pérez-Pantoja D, Chavarría M, Díaz E, de Lorenzo V. A second chromosomal copy of thecatAgene endowsPseudomonas putida mt-2 with an enzymatic safety valve for excess of catechol. Environ Microbiol 2014; 16:1767-78. [DOI: 10.1111/1462-2920.12361] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 12/10/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Jose I. Jiménez
- Centro de Investigaciones Biológicas; Consejo Superior de Investigaciones Científicas; 28049 Madrid Spain
- Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas; 28049 Madrid Spain
| | - Danilo Pérez-Pantoja
- Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas; 28049 Madrid Spain
| | - Max Chavarría
- Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas; 28049 Madrid Spain
| | - Eduardo Díaz
- Centro de Investigaciones Biológicas; Consejo Superior de Investigaciones Científicas; 28049 Madrid Spain
| | - Víctor de Lorenzo
- Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas; 28049 Madrid Spain
| |
Collapse
|
54
|
Mazurkewich S, Wang W, Seah SYK. Biochemical and structural analysis of RraA proteins to decipher their relationships with 4-hydroxy-4-methyl-2-oxoglutarate/4-carboxy-4-hydroxy-2-oxoadipate aldolases. Biochemistry 2014; 53:542-53. [PMID: 24359411 DOI: 10.1021/bi401486g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
4-Hydroxy-4-methyl-2-oxoglutarate (HMG)/4-carboxy-4-hydroxy-2-oxoadipate (CHA) aldolases are class II (divalent metal ion dependent) pyruvate aldolases from the meta cleavage pathways of protocatechuate and gallate. The enzyme from Pseudomonas putida F1 is structurally similar to a group of proteins termed regulators of RNase E activity A (RraA) that bind to the regulatory domain of RNase E and inhibit the ribonuclease activity in certain bacteria. Analysis of homologous RraA-like proteins from varying species revealed that they share sequence conservation within the active site of HMG/CHA aldolase. In particular, the P. putida F1 HMG/CHA aldolase has a D-X20-R-D motif, whereas a G-X20-R-D-X2-E/D motif is observed in the structures of the RraA-like proteins from Thermus thermophilus HB8 (TtRraA) and Saccharomyces cerevisiae S288C (Yer010Cp) that may support metal binding. TtRraA and Yer010Cp were found to contain HMG aldolase and oxaloacetate decarboxylase activities. Similar to the P. putida F1 HMG/CHA aldolase, both TtRraA and Yer010Cp enzymes required divalent metal ions for activity and were competitively inhibited by oxalate, a pyruvate enolate analogue, suggesting a common mechanism among the enzymes. The RraA from Escherichia coli (EcRraA) lacked detectable C-C lyase activity. Upon restoration of the G-X20-R-D-X2-E/D motif, by site-specific mutagenesis, the EcRraA variant was able to catalyze oxaloacetate decarboxylation. Sequence analysis of RraA-like gene products found across all the domains of life revealed conservation of the metal binding motifs that can likely support a divalent metal ion-dependent enzyme reaction either in addition to or in place of the putative RraA function.
Collapse
Affiliation(s)
- Scott Mazurkewich
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada N1G 5E9
| | | | | |
Collapse
|
55
|
Abstract
Burkholderia cenocepacia and Burkholderia multivorans are opportunistic drug-resistant pathogens that account for the majority of Burkholderia cepacia complex infections in cystic fibrosis patients and also infect other immunocompromised individuals. While they share similar genetic compositions, B. cenocepacia and B. multivorans exhibit important differences in pathogenesis. We have developed reconciled genome-scale metabolic network reconstructions of B. cenocepacia J2315 and B. multivorans ATCC 17616 in parallel (designated iPY1537 and iJB1411, respectively) to compare metabolic abilities and contextualize genetic differences between species. The reconstructions capture the metabolic functions of the two species and give insight into similarities and differences in their virulence and growth capabilities. The two reconstructions have 1,437 reactions in common, and iPY1537 and iJB1411 have 67 and 36 metabolic reactions unique to each, respectively. After curating the extensive reservoir of metabolic genes in Burkholderia, we identified 6 genes essential to growth that are unique to iPY1513 and 13 genes uniquely essential to iJB1411. The reconstructions were refined and validated by comparing in silico growth predictions to in vitro growth capabilities of B. cenocepacia J2315, B. cenocepacia K56-2, and B. multivorans ATCC 17616 on 104 carbon sources. Overall, we identified functional pathways that indicate B. cenocepacia can produce a wider array of virulence factors compared to B. multivorans, which supports the clinical observation that B. cenocepacia is more virulent than B. multivorans. The reconciled reconstructions provide a framework for generating and testing hypotheses on the metabolic and virulence capabilities of these two related emerging pathogens.
Collapse
|
56
|
Jiménez N, Curiel JA, Reverón I, de Las Rivas B, Muñoz R. Uncovering the Lactobacillus plantarum WCFS1 gallate decarboxylase involved in tannin degradation. Appl Environ Microbiol 2013; 79:4253-63. [PMID: 23645198 PMCID: PMC3697502 DOI: 10.1128/aem.00840-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/29/2013] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus plantarum is a lactic acid bacterium able to degrade tannins by the subsequent action of tannase and gallate decarboxylase enzymes. The gene encoding tannase had previously been identified, whereas the gene encoding gallate decarboxylase is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of gallic-acid induced L. plantarum extracts showed a 54-kDa protein which was absent in the uninduced cells. This protein was identified as Lp_2945, putatively annotated UbiD. Homology searches identified ubiD-like genes located within three-gene operons which encoded the three subunits of nonoxidative aromatic acid decarboxylases. L. plantarum is the only bacterium in which the lpdC (lp_2945) gene and the lpdB and lpdD (lp_0271 and lp_0272) genes are separated in the chromosome. Combination of extracts from recombinant Escherichia coli cells expressing the lpdB, lpdC, and lpdC genes demonstrated that LpdC is the only protein required to yield gallate decarboxylase activity. However, the disruption of these genes in L. plantarum revealed that the lpdB and lpdC gene products are essential for gallate decarboxylase activity. Similar to L. plantarum tannase, which exhibited activity only in esters derived from gallic and protocatechuic acids, purified His6-LpdC protein from E. coli showed decarboxylase activity against gallic and protocatechuic acids. In contrast to the tannase activity, gallate decarboxylase activity is widely present among lactic acid bacteria. This study constitutes the first genetic characterization of a gallate decarboxylase enzyme and provides new insights into the role of the different subunits of bacterial nonoxidative aromatic acid decarboxylases.
Collapse
Affiliation(s)
- Natalia Jiménez
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, Madrid, Spain
| | | | | | | | | |
Collapse
|
57
|
Díaz E, Jiménez JI, Nogales J. Aerobic degradation of aromatic compounds. Curr Opin Biotechnol 2013; 24:431-42. [DOI: 10.1016/j.copbio.2012.10.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/04/2012] [Accepted: 10/09/2012] [Indexed: 12/21/2022]
|
58
|
Luque-Almagro VM, Acera F, Igeño MI, Wibberg D, Roldán MD, Sáez LP, Hennig M, Quesada A, Huertas MJ, Blom J, Merchán F, Escribano MP, Jaenicke S, Estepa J, Guijo MI, Martínez-Luque M, Macías D, Szczepanowski R, Becerra G, Ramirez S, Carmona MI, Gutiérrez O, Manso I, Pühler A, Castillo F, Moreno-Vivián C, Schlüter A, Blasco R. Draft whole genome sequence of the cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344. Environ Microbiol 2012; 15:253-70. [PMID: 22998548 DOI: 10.1111/j.1462-2920.2012.02875.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/15/2012] [Accepted: 08/19/2012] [Indexed: 11/30/2022]
Abstract
Pseudomonas pseudoalcaligenes CECT5344 is a Gram-negative bacterium able to tolerate cyanide and to use it as the sole nitrogen source. We report here the first draft of the whole genome sequence of a P. pseudoalcaligenes strain that assimilates cyanide. Three aspects are specially emphasized in this manuscript. First, some generalities of the genome are shown and discussed in the context of other Pseudomonadaceae genomes, including genome size, G + C content, core genome and singletons among other features. Second, the genome is analysed in the context of cyanide metabolism, describing genes probably involved in cyanide assimilation, like those encoding nitrilases, and genes related to cyanide resistance, like the cio genes encoding the cyanide insensitive oxidases. Finally, the presence of genes probably involved in other processes with a great biotechnological potential like production of bioplastics and biodegradation of pollutants also is discussed.
Collapse
Affiliation(s)
- Víctor M Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, 14071, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Ni B, Zhang Y, Chen DW, Wang BJ, Liu SJ. Assimilation of aromatic compounds by Comamonas testosteroni: characterization and spreadability of protocatechuate 4,5-cleavage pathway in bacteria. Appl Microbiol Biotechnol 2012; 97:6031-41. [DOI: 10.1007/s00253-012-4402-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/25/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
|
60
|
Hernández-Arranz S, Moreno R, Rojo F. The translational repressor Crc controls the Pseudomonas putida benzoate and alkane catabolic pathways using a multi-tier regulation strategy. Environ Microbiol 2012; 15:227-41. [PMID: 22925411 DOI: 10.1111/j.1462-2920.2012.02863.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/27/2012] [Accepted: 07/29/2012] [Indexed: 11/28/2022]
Abstract
Metabolically versatile bacteria usually perceive aromatic compounds and hydrocarbons as non-preferred carbon sources, and their assimilation is inhibited if more preferable substrates are available. This is achieved via catabolite repression. In Pseudomonas putida, the expression of the genes allowing the assimilation of benzoate and n-alkanes is strongly inhibited by catabolite repression, a process controlled by the translational repressor Crc. Crc binds to and inhibits the translation of benR and alkS mRNAs, which encode the transcriptional activators that induce the expression of the benzoate and alkane degradation genes respectively. However, sequences similar to those recognized by Crc in benR and alkS mRNAs exist as well in the translation initiation regions of the mRNA of several structural genes of the benzoate and alkane pathways, which suggests that Crc may also regulate their translation. The present results show that some of these sites are functional, and that Crc inhibits the induction of both pathways by limiting not only the translation of their transcriptional activators, but also that of genes coding for the first enzyme in each pathway. Crc may also inhibit the translation of a gene involved in benzoate uptake. This multi-tier approach probably ensures the rapid regulation of pathway genes, minimizing the assimilation of non-preferred substrates when better options are available. A survey of possible Crc sites in the mRNAs of genes associated with other catabolic pathways suggested that targeting substrate uptake, pathway induction and/or pathway enzymes may be a common strategy to control the assimilation of non-preferred compounds.
Collapse
Affiliation(s)
- Sofía Hernández-Arranz
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
61
|
Pérez-Pantoja D, Donoso R, Agulló L, Córdova M, Seeger M, Pieper DH, González B. Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environ Microbiol 2011; 14:1091-117. [PMID: 22026719 DOI: 10.1111/j.1462-2920.2011.02613.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The relevance of the β-proteobacterial Burkholderiales order in the degradation of a vast array of aromatic compounds, including several priority pollutants, has been largely assumed. In this review, the presence and organization of genes encoding oxygenases involved in aromatics biodegradation in 80 Burkholderiales genomes is analysed. This genomic analysis underscores the impressive catabolic potential of this bacterial lineage, comprising nearly all of the central ring-cleavage pathways reported so far in bacteria and most of the peripheral pathways involved in channelling of a broad diversity of aromatic compounds. The more widespread pathways in Burkholderiales include protocatechuate ortho ring-cleavage, catechol ortho ring-cleavage, homogentisate ring-cleavage and phenylacetyl-CoA ring-cleavage pathways found in at least 60% of genomes analysed. In general, a genus-specific pattern of positional ordering of biodegradative genes is observed in the catabolic clusters of these pathways indicating recent events in its evolutionary history. In addition, a significant bias towards secondary chromosomes, now termed chromids, is observed in the distribution of catabolic genes across multipartite genomes, which is consistent with a genus-specific character. Strains isolated from environmental sources such as soil, rhizosphere, sediment or sludge show a higher content of catabolic genes in their genomes compared with strains isolated from human, animal or plant hosts, but no significant difference is found among Alcaligenaceae, Burkholderiaceae and Comamonadaceae families, indicating that habitat is more of a determinant than phylogenetic origin in shaping aromatic catabolic versatility.
Collapse
Affiliation(s)
- Danilo Pérez-Pantoja
- Center for Advanced Studies in Ecology and Biodiversity, Millennium Nucleus in Plant Functional Genomics, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|