51
|
Van Hove JLK, Lohr NJ. Metabolic and monogenic causes of seizures in neonates and young infants. Mol Genet Metab 2011; 104:214-30. [PMID: 21839663 DOI: 10.1016/j.ymgme.2011.04.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 04/20/2011] [Accepted: 04/20/2011] [Indexed: 11/22/2022]
Abstract
Seizures in neonates or young infants present a frequent diagnostic challenge. After exclusion of acquired causes, disturbances of the internal homeostasis and brain malformations, the physician must evaluate for inborn errors of metabolism and for other non-malformative genetic disorders as the cause of seizures. The metabolic causes can be categorized into disorders of neurotransmitter metabolism, disorders of energy production, and synthetic or catabolic disorders associated with brain malformation, dysfunction and degeneration. Other genetic conditions involve channelopathies, and disorders resulting in abnormal growth, differentiation and formation of neuronal populations. These conditions are important given their potential for treatment and the risk for recurrence in the family. In this paper, we will succinctly review the metabolic and genetic non-malformative causes of seizures in neonates and infants less than 6 months of age. We will then provide differential diagnostic clues and a practical paradigm for their evaluation.
Collapse
Affiliation(s)
- Johan L K Van Hove
- Department of Pediatrics, University of Colorado, Clinical Genetics, Aurora, CO 80045, USA.
| | | |
Collapse
|
52
|
Abstract
Rett syndrome is a neurodevelopmental disorder caused by mutations in methyl-CpG-binding protein 2 (MECP2), a transcriptional regulator. In addition to cognitive, communication, and motor problems, affected individuals have abnormalities in autonomic function and respiratory control that may contribute to premature lethality. Mice lacking Mecp2 die early and recapitulate the autonomic and respiratory phenotypes seen in humans. The association of autonomic and respiratory deficits with premature death suggests that Mecp2 is critical within autonomic and respiratory control centers for survival. To test this, we compared the autonomic and respiratory phenotypes of mice with a null allele of Mecp2 to mice with Mecp2 removed from their brainstem and spinal cord. We found that MeCP2 is necessary within the brainstem and spinal cord for normal lifespan, normal control of heart rate, and respiratory response to hypoxia. Restoration of MeCP2 in a subset of the cells in this same region is sufficient to rescue abnormal heart rate and abnormal respiratory response to hypoxia. Furthermore, restoring MeCP2 function in neural centers critical for autonomic and respiratory function alleviates the lethality associated with loss of MeCP2 function, supporting the notion of targeted therapy toward treating Rett syndrome.
Collapse
|
53
|
Ravn K, Roende G, Duno M, Fuglsang K, Eiklid KL, Tümer Z, Nielsen JB, Skjeldal OH. Two new Rett syndrome families and review of the literature: expanding the knowledge of MECP2 frameshift mutations. Orphanet J Rare Dis 2011; 6:58. [PMID: 21878110 PMCID: PMC3173288 DOI: 10.1186/1750-1172-6-58] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 08/30/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rett syndrome (RTT) is an X-linked dominant neurodevelopmental disorder, which is usually caused by de novo mutations in the MECP2 gene. More than 70% of the disease causing MECP2 mutations are eight recurrent C to T transitions, which almost exclusively arise on the paternally derived X chromosome. About 10% of the RTT cases have a C-terminal frameshift deletion in MECP2. Only few RTT families with a segregating MECP2 mutation, which affects female carriers with a phenotype of mental retardation or RTT, have been reported in the literature. In this study we describe two new RTT families with three and four individuals, respectively, and review the literature comparing the type of mutations and phenotypes observed in RTT families with those observed in sporadic cases. Based on these observations we also investigated origin of mutation segregation to further improve genetic counselling. METHODS MECP2 mutations were identified by direct sequencing. XCI studies were performed using the X-linked androgen receptor (AR) locus. The parental origin of de novo MECP2 frameshift mutations was investigated using intronic SNPs. RESULTS In both families a C-terminal frameshift mutation segregates. Clinical features of the mutation carriers vary from classical RTT to mild mental retardation. XCI profiles of the female carriers correlate to their respective geno-/phenotypes. The majority of the de novo frameshift mutations occur on the paternally derived X chromosome (7/9 cases), without a paternal age effect. CONCLUSIONS The present study suggests a correlation between the intrafamilial phenotypic differences observed in RTT families and their respective XCI pattern in blood, in contrast to sporadic RTT cases where a similar correlation has not been demonstrated. Furthermore, we found de novo MECP2 frameshift mutations frequently to be of paternal origin, although not with the same high paternal occurrence as in sporadic cases with C to T transitions. This suggests further investigations of more families. This study emphasizes the need for thorough genetic counselling of families with a newly diagnosed RTT patient.
Collapse
Affiliation(s)
- Kirstine Ravn
- Center for Rett syndrome, Kennedy Center, Glostrup, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
|
55
|
Abstract
Methyl-CpG binding protein 2 (MeCP2) was first identified in 1992 as a protein that binds specifically to methylated DNA. Mutations in the MECP2 gene were later found to be the cause of an autism spectrum disorder, Rett syndrome. Despite almost 20 years of research into the molecular mechanisms of MeCP2 function, many questions are yet to be answered conclusively. This review considers several key questions and attempts to evaluate the current state of evidence. For example, is MeCP2 just a methyl-CpG binding protein? Is it a multifunctional protein or primarily a transcriptional repressor? We also consider whether MeCP2, as a chromosome-binding protein, acts at specific sites within the genome or more globally, and in which cell types it is functionally important. Finally, we consider two alternative views of MeCP2 in the brain: as a regulator of brain development or as a factor that helps maintain neuronal/glial function.
Collapse
Affiliation(s)
- Jacky Guy
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom.
| | | | | | | |
Collapse
|
56
|
Song G, Tin C, Giacometti E, Poon CS. Habituation without NMDA Receptor-Dependent Desensitization of Hering-Breuer Apnea Reflex in a Mecp2 Mutant Mouse Model of Rett Syndrome. Front Integr Neurosci 2011; 5:6. [PMID: 21629824 PMCID: PMC3096835 DOI: 10.3389/fnint.2011.00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 04/12/2011] [Indexed: 01/20/2023] Open
Abstract
Non-associative learning is a basic neuroadaptive behavior exhibited in almost all animal species and sensory modalities but its functions and mechanisms in the mammalian brain are poorly understood. Previous studies have identified two distinct forms of non-associative learning in the classic Hering-Breuer inflation reflex (HBIR) induced apnea in rats: NMDA receptor (NMDAR)-independent habituation in a primary vagal pathway and NMDAR-dependent desensitization in a secondary pontine pathway. Here, we show that abnormal non-associative learning of the HBIR may underlie the endophenotypic tachypnea in an animal model of Rett syndrome (RTT), an autism-spectrum disorder caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MECP2). Mecp2(+/-) symptomatic mice on a mixed-strain background demonstrated significantly increased resting respiratory frequency with shortened expiration and normal inspiratory duration compared with asymptomatic mutants and wild-type controls, a phenotype that is characteristic of girls with RTT. Low-intensity electrical stimulation of the vagus nerve elicited fictive HBIR with time-dependent habituation in both Mecp2(+/-) and wild-type mice. However, time-dependent desensitization of the HBIR was evidenced only in wild-type controls and asymptomatic mutant mice but was absent or suppressed in Mecp2(+/-) symptomatic mice or in wild-type mice after blockade of NMDAR with dizocilpine. Remarkably, ∼50% of the Mecp2(+/-) mice developed these X-linked phenotypes despite somatic mosaicism. Such RTT-like respiratory endophenotypes in mixed-strain Mecp2(+/-) mice differed from those previously reported in Mecp2(-/y) mice on pure C57BL/6J background. These findings provide the first evidence indicating that impaired NMDAR-dependent desensitization of the HBIR may contribute to the endophenotypic tachypnea in RTT.
Collapse
Affiliation(s)
- Gang Song
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology Cambridge, MA, USA
| | | | | | | |
Collapse
|
57
|
Cheung AYL, Horvath LM, Grafodatskaya D, Pasceri P, Weksberg R, Hotta A, Carrel L, Ellis J. Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum Mol Genet 2011; 20:2103-15. [PMID: 21372149 PMCID: PMC3090191 DOI: 10.1093/hmg/ddr093] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental autism spectrum disorder that affects girls due primarily to mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). The majority of RTT patients carry missense and nonsense mutations leading to a hypomorphic MECP2, while null mutations leading to the complete absence of a functional protein are rare. MECP2 is an X-linked gene subject to random X-chromosome inactivation resulting in mosaic expression of mutant MECP2. The lack of human brain tissue motivates the need for alternative human cellular models to study RTT. Here we report the characterization of a MECP2 mutation in a classic female RTT patient involving rearrangements that remove exons 3 and 4 creating a functionally null mutation. To generate human neuron models of RTT, we isolated human induced pluripotent stem (hiPS) cells from RTT patient fibroblasts. RTT-hiPS cells retained the MECP2 mutation, are pluripotent and fully reprogrammed, and retained an inactive X-chromosome in a nonrandom pattern. Taking advantage of the latter characteristic, we obtained a pair of isogenic wild-type and mutant MECP2 expressing RTT-hiPS cell lines that retained this MECP2 expression pattern upon differentiation into neurons. Phenotypic analysis of mutant RTT-hiPS cell-derived neurons demonstrated a reduction in soma size compared with the isogenic control RTT-hiPS cell-derived neurons from the same RTT patient. Analysis of isogenic control and mutant hiPS cell-derived neurons represents a promising source for understanding the pathogenesis of RTT and the role of MECP2 in human neurons.
Collapse
Affiliation(s)
- Aaron Y L Cheung
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Pratte M, Panayotis N, Ghata A, Villard L, Roux JC. Progressive motor and respiratory metabolism deficits in post-weaning Mecp2-null male mice. Behav Brain Res 2011; 216:313-20. [DOI: 10.1016/j.bbr.2010.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 07/30/2010] [Accepted: 08/08/2010] [Indexed: 12/11/2022]
|
59
|
Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS One 2010; 5:e15497. [PMID: 21124738 PMCID: PMC2993964 DOI: 10.1371/journal.pone.0015497] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/03/2010] [Indexed: 01/22/2023] Open
Abstract
Inducible gene expression plays a central role in neuronal plasticity, learning, and memory, and dysfunction of the underlying molecular events can lead to severe neuronal disorders. In addition to coding transcripts (mRNAs), non-coding microRNAs (miRNAs) appear to play a role in these processes. For instance, the CREB-regulated miRNA miR132 has been shown to affect neuronal structure in an activity-dependent manner, yet the details of its physiological effects and the behavioral consequences in vivo remain unclear. To examine these questions, we employed a transgenic mouse strain that expresses miR132 in forebrain neurons. Morphometric analysis of hippocampal neurons revealed that transgenic miR132 triggers a marked increase in dendritic spine density. Additionally, miR132 transgenic mice exhibited a decrease in the expression of MeCP2, a protein implicated in Rett Syndrome and other disorders of mental retardation. Consistent with these findings, miR132 transgenic mice displayed significant deficits in novel object recognition. Together, these data support a role for miR132 as a regulator of neuronal structure and function, and raise the possibility that dysregulation of miR132 could contribute to an array of cognitive disorders.
Collapse
|
60
|
Psoni S, Sofocleous C, Traeger-Synodinos J, Kitsiou-Tzeli S, Kanavakis E, Fryssira-Kanioura H. Phenotypic and genotypic variability in four males with MECP2 gene sequence aberrations including a novel deletion. Pediatr Res 2010; 67:551-6. [PMID: 20098342 DOI: 10.1203/pdr.0b013e3181d4ecf7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The MECP2 gene mutations cause Rett syndrome (RTT) (OMIM: 312750), an X-linked dominant disorder primarily affecting girls. Until RTT was considered lethal in males, although now approximately 60 cases have been reported. Males with MECP2 mutations present with a broad spectrum of phenotypes ranging from neonatal encephalopathy to nonsyndromic mental retardation (MR). Four boys (aged, 3-11 y) were evaluated for MR. Patient 1 had autistic features. Patients 2 and 3 were brothers both presenting with psychomotor delay. Patient 4 showed dysmorphic features and behavioral problems reminiscent of FXS. All patients had a normal 46, XY karyotype and three were tested for FXS with negative results. MECP2 gene analysis of exons 3 and 4 was performed using methods based on the PCR, including Enzymatic Cleavage Mismatched Analysis (ECMA) and direct sequencing. Patient 1 presented somatic mosaicism for the classic RTT p.R106W mutation and patient 4 carried the p.T203M polymorphism. Analysis of the mothers in both cases revealed normal DNA sequences. Patients 2 and 3 had a novel deletion (c.1140del86) inherited from their unaffected mother. MECP2 gene mutations may be considered a rare cause of MR in males although great phenotypic variation hinders genotype-phenotype correlation.
Collapse
Affiliation(s)
- Stavroula Psoni
- Department of Medical Genetics, University of Athens School of Medicine, Choremio Research Laboratory, Aghia Sophia Children's Hospital, Athens 11527, Greece
| | | | | | | | | | | |
Collapse
|
61
|
Condie J, Goldstein J, Wainwright MS. Acquired microcephaly, regression of milestones, mitochondrial dysfunction, and episodic rigidity in a 46,XY male with a de novo MECP2 gene mutation. J Child Neurol 2010; 25:633-6. [PMID: 20142466 DOI: 10.1177/0883073809342004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report a case of acquired microcephaly in a male infant. Testing for mutations in the MECP2 gene identified a de novo hemizygous c.378-3C>G mutation at a highly conserved 3' splice site, consistent with Rett syndrome. Other distinctive features included periodic hypertonicity, decreased mitochondrial complex III activity, and abnormal magnetic resonance imaging (MRI) T2 signal in the pons. Rett syndrome was originally described in females with a clinical phenotype of deceleration of head growth, abnormal hand movements, and developmental regression. The clinical diagnosis can now be supported by genetic testing for MECP2 mutations, and the phenotype of disorder has expanded. Cases of Rett syndrome in males are rare and a total of 17 such cases have been reported. This case extends the clinical phenotype of Rett syndrome in males and associates this mutation with mitochondrial dysfunction.
Collapse
Affiliation(s)
- John Condie
- Department of Pediatrics, Division of Neurology, Children's Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | | | | |
Collapse
|
62
|
Kishi N, Macklis JD. MeCP2 functions largely cell-autonomously, but also non-cell-autonomously, in neuronal maturation and dendritic arborization of cortical pyramidal neurons. Exp Neurol 2009; 222:51-8. [PMID: 20025874 DOI: 10.1016/j.expneurol.2009.12.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 12/02/2009] [Accepted: 12/05/2009] [Indexed: 12/21/2022]
Abstract
Rett syndrome is a human neurodevelopmental disorder presenting almost exclusively in female infants; it is the second most common cause of mental retardation in girls, after Down's syndrome. The identification in 1999 that mutation of the methyl-CpG-binding protein 2 (MECP2) gene on the X chromosome causes Rett syndrome has led to a rapid increase in understanding of the neurobiological basis of the disorder. However, much about the functional role of MeCP2, and the cellular phenotype of both patients with Rett syndrome and mutant Mecp2 mouse models, remains unclear. Building on prior work in which we demonstrated that cortical layer 2/3 pyramidal neurons (primarily interhemispheric "callosal projection neurons" (CPN)) have reduced dendritic complexity and smaller somata in Mecp2-null mice, here we investigate whether Mecp2 loss-of-function affects neuronal maturation cell-autonomously and/or non-cell-autonomously by creating physical chimeras. We transplanted Mecp2-null or wild-type (wt) E17-18 cortical neuroblasts and immature neurons from mice constitutively expressing enhanced green fluorescent protein (eGFP) into wt P2-3 mouse cortices to generate chimeric cortices. Mecp2-null layer 2/3 pyramidal neurons in both Mecp2-null and wt neonatal cortices exhibit equivalent reduction in dendritic complexity, and are smaller than transplanted wt neurons, independent of recipient environment. These results indicate that the phenotype of Mecp2-null pyramidal neurons results largely from cell-autonomous mechanisms, with additional non-cell-autonomous effects. Dysregulation of MeCP2 target genes in individual neuronal populations such as CPN is likely centrally involved in Rett syndrome pathogenesis. Our results indicating MeCP2 function in the centrally affected projection neuron population of CPN themselves provide a foundation and motivation for identification of transcriptionally regulated MeCP2 target genes in developing CPN.
Collapse
Affiliation(s)
- Noriyuki Kishi
- MGH-HMS Center for Nervous System Repair, Departments of Neurosurgery and Neurology, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
63
|
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by loss-of-function mutations in the Methyl-CpG-binding protein-2 (MECP2) gene and is characterized by derangements in cognition, behavior, motor control, respiration and autonomic homeostasis, as well as seizures. Deficits in norepinephrine (NE) are thought to contribute to RTT pathogenesis, but little is known about how MeCP2 regulates function of noradrenergic neurons. We therefore characterized morphological, electrical, and neurochemical properties of neurons in the locus ceruleus (LC), the major source of noradrenergic innervation to the central neuraxis, in Mecp2 mutant mice. We found that MeCP2 null LC neurons are electrically hyperexcitable, smaller in size, and express less of the NE-synthesizing enzyme tyrosine hydroxylase (TH) compared with wild-type neurons. Increased excitability of mutant neurons is associated with reductions in passive membrane conductance and the amplitude of the slow afterhyperpolarization. Studies in Mecp2 heterozygotes, which are mosaic for the null allele, demonstrated that electrical hyperexcitability and reduced neuronal size are cell-autonomous consequences of MeCP2 loss, whereas reduced TH expression appears to reflect both cell-autonomous and non-autonomous influences. Finally, we found reduced levels of TH and norepinephrine in cingulate cortex, a forebrain target of the LC. Thus, genetic loss of MeCP2 results in a somewhat paradoxical LC neuron phenotype, characterized by both electrical hyperexcitability and reduced indices of noradrenergic function. Given the importance of the LC in modulating activity in brainstem and forebrain networks, we hypothesize that dysregulation of LC function in the absence of MeCP2 plays a key role in the pathophysiology of RTT.
Collapse
|
64
|
A common MECP2 haplotype associates with reduced cortical surface area in humans in two independent populations. Proc Natl Acad Sci U S A 2009; 106:15483-8. [PMID: 19717458 DOI: 10.1073/pnas.0901866106] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gene MECP2 is a well-known determinant of brain structure. Mutations in the MECP2 protein cause microencephalopathy and are associated with several neurodevelopmental disorders that affect both brain morphology and cognition. Although mutations in MECP2 result in severe neurological phenotypes, the effect of common variation in this genetic region is unknown. We find that common sequence variations in a region in and around MECP2 show association with structural brain size measures in 2 independent cohorts, a discovery sample from the Thematic Organized Psychosis research group, and a replication sample from the Alzheimer's Disease Neuroimaging Initiative. The most statistically significant replicated association (P < 0.025 in both cohorts) involved the minor allele of SNP rs2239464 with reduced cortical surface area, and the finding was specific to male gender in both populations. Variations in the MECP2 region were associated with cortical surface area but not cortical thickness. Secondary analysis showed that this allele was also associated with reduced surface area in specific cortical regions (cuneus, fusiform gyrus, pars triangularis) in both populations.
Collapse
|
65
|
De Felice C, Ciccoli L, Leoncini S, Signorini C, Rossi M, Vannuccini L, Guazzi G, Latini G, Comporti M, Valacchi G, Hayek J. Systemic oxidative stress in classic Rett syndrome. Free Radic Biol Med 2009; 47:440-8. [PMID: 19464363 DOI: 10.1016/j.freeradbiomed.2009.05.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/03/2009] [Accepted: 05/13/2009] [Indexed: 11/22/2022]
Abstract
Rett syndrome (RS), a progressive severe neurodevelopmental disorder mainly caused by de novo mutations in the X-chromosomal MeCP2 gene encoding the transcriptional regulator methyl-CpG-binding protein 2, is a leading cause of mental retardation with autistic features in females. However, its pathogenesis remains incompletely understood, and no effective therapy is available to date. We hypothesized that a systemic oxidative stress may play a key role in the pathogenesis of classic RS. Patients with classic RS (n=59) and control subjects (n=43) were evaluated. Oxidative stress markers included intraerythrocyte non-protein-bound iron (NPBI; i.e., free iron), plasma NPBI, F2-isoprostanes (F2-IsoPs, as free, esterified, and total forms), and protein carbonyls. Lung ventilation/perfusion (V/Q) ratio was assessed using a portable gas analyzer, and RS clinical severity was evaluated using standard scales. Significantly increased intraerythrocyte NPBI (2.73-fold), plasma NPBI (x 6.0), free F(2)-IsoP (x1.85), esterified F2-IsoP (x 1.69), total F2-IsoP (x 1.66), and protein carbonyl (x 4.76) concentrations were evident in RS subjects and associated with reduced (-10.53%) arterial oxygen levels compared to controls. Biochemical evidence of oxidative stress was related to clinical phenotype severity and lower peripheral and arterial oxygen levels. Pulmonary V/Q mismatch was found in the majority of the RS population. These data identify hypoxia-induced oxidative stress as a key factor in the pathogenesis of classic RS and suggest new therapeutic approaches based on oxidative stress modulation.
Collapse
Affiliation(s)
- Claudio De Felice
- Neonatal Intensive Care Unit, University Hospital AOUS of Siena, I-53100 Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Chapleau CA, Calfa GD, Lane MC, Albertson AJ, Larimore JL, Kudo S, Armstrong DL, Percy AK, Pozzo-Miller L. Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations. Neurobiol Dis 2009; 35:219-33. [PMID: 19442733 PMCID: PMC2722110 DOI: 10.1016/j.nbd.2009.05.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 05/01/2009] [Accepted: 05/04/2009] [Indexed: 10/20/2022] Open
Abstract
Rett syndrome (RTT) is an X chromosome-linked neurodevelopmental disorder associated with the characteristic neuropathology of dendritic spines common in diseases presenting with mental retardation (MR). Here, we present the first quantitative analyses of dendritic spine density in postmortem brain tissue from female RTT individuals, which revealed that hippocampal CA1 pyramidal neurons have lower spine density than age-matched non-MR female control individuals. The majority of RTT individuals carry mutations in MECP2, the gene coding for a methylated DNA-binding transcriptional regulator. While altered synaptic transmission and plasticity has been demonstrated in Mecp2-deficient mouse models of RTT, observations regarding dendritic spine density and morphology have produced varied results. We investigated the consequences of MeCP2 dysfunction on dendritic spine structure by overexpressing ( approximately twofold) MeCP2-GFP constructs encoding either the wildtype (WT) protein, or missense mutations commonly found in RTT individuals. Pyramidal neurons within hippocampal slice cultures transfected with either WT or mutant MECP2 (either R106W or T158M) showed a significant reduction in total spine density after 48 h of expression. Interestingly, spine density in neurons expressing WT MECP2 for 96 h was comparable to that in control neurons, while neurons expressing mutant MECP2 continued to have lower spine density than controls after 96 h of expression. Knockdown of endogenous Mecp2 with a specific small hairpin interference RNA (shRNA) also reduced dendritic spine density, but only after 96 h of expression. On the other hand, the consequences of manipulating MeCP2 levels for dendritic complexity in CA3 pyramidal neurons were only minor. Together, these results demonstrate reduced dendritic spine density in hippocampal pyramidal neurons from RTT patients, a distinct dendritic phenotype also found in neurons expressing RTT-associated MECP2 mutations or after shRNA-mediated endogenous Mecp2 knockdown, suggesting that this phenotype represent a cell-autonomous consequence of MeCP2 dysfunction.
Collapse
Affiliation(s)
- Christopher A. Chapleau
- Department of Neurobiology, Evelyn McKnight Brain Institute, Civitan International Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL 35294-2182, USA
| | - Gaston D. Calfa
- Department of Neurobiology, Evelyn McKnight Brain Institute, Civitan International Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL 35294-2182, USA
| | - Meredith C. Lane
- Department of Neurobiology, Evelyn McKnight Brain Institute, Civitan International Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL 35294-2182, USA
| | - Asher J. Albertson
- Department of Neurobiology, Evelyn McKnight Brain Institute, Civitan International Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL 35294-2182, USA
| | - Jennifer L. Larimore
- Department of Neurobiology, Evelyn McKnight Brain Institute, Civitan International Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL 35294-2182, USA
| | - Shinichi Kudo
- Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819, Japan
| | - Dawna L. Armstrong
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030
| | - Alan K. Percy
- Department of Pediatrics, UAB, Birmingham, AL 35294-2182, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Evelyn McKnight Brain Institute, Civitan International Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL 35294-2182, USA
| |
Collapse
|
67
|
Jülich K, Horn D, Burfeind P, Erler T, Auber B. A novel MECP2 mutation in a boy with neonatal encephalopathy and facial dysmorphism. J Pediatr 2009; 155:140-3. [PMID: 19559301 DOI: 10.1016/j.jpeds.2009.01.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 12/19/2008] [Accepted: 01/09/2009] [Indexed: 11/26/2022]
Abstract
Methly-CpG-binding protein 2 (MECP2) mutations cause Rett syndrome in females. Here we report on a male infant with neonatal encephalopathy, myoclonic jerks, and irregular breathing patterns caused by a novel frameshift mutation in the MECP2 gene. In addition he has facial dysmorphisms previously not described in these patients.
Collapse
Affiliation(s)
- Kristina Jülich
- Department of Pediatric Neurology, Charité-University Medical Center, Berlin, Germany.
| | | | | | | | | |
Collapse
|
68
|
Belichenko PV, Wright EE, Belichenko NP, Masliah E, Li HH, Mobley WC, Francke U. Widespread changes in dendritic and axonal morphology in Mecp2-mutant mouse models of Rett syndrome: evidence for disruption of neuronal networks. J Comp Neurol 2009; 514:240-58. [PMID: 19296534 DOI: 10.1002/cne.22009] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the X-linked gene MECP2. Girls with RTT show dramatic changes in brain function, but relatively few studies have explored the structure of neural circuits. Examining two mouse models of RTT (Mecp2B and Mecp2J), we previously documented changes in brain anatomy. Herein, we use confocal microscopy to study the effects of MeCP2 deficiency on the morphology of dendrites and axons in the fascia dentata (FD), CA1 area of hippocampus, and motor cortex following Lucifer yellow microinjection or carbocyanine dye tracing. At 3 weeks of age, most (33 of 41) morphological parameters were significantly altered in Mecp2B mice; fewer (23 of 39) were abnormal in Mecp2J mice. There were striking changes in the density and size of the dendritic spines and density and orientation of axons. In Mecp2B mice, dendritic spine density was decreased in the FD (approximately 11%), CA1 (14-22%), and motor cortex (approximately 16%). A decreased spine head size (approximately 9%) and an increased spine neck length (approximately 12%) were found in Mecp2B FD. In addition, axons in the motor cortex were disorganized. In Mecp2J mice, spine density was significantly decreased in CA1 (14-26%). In both models, dendritic swelling and elongated spine necks were seen in all areas studied. Marked variation in the type and extent of changes was noted in dendrites of adjacent neurons. Electron microscopy confirmed abnormalities in dendrites and axons and showed abnormal mitochondria. Our findings document widespread abnormalities of dendrites and axons that recapitulate those seen in RTT.
Collapse
Affiliation(s)
- Pavel V Belichenko
- Neuroscience Institute at Stanford University, Stanford, CA 94305-5489, USA.
| | | | | | | | | | | | | |
Collapse
|
69
|
Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci U S A 2009; 106:2029-34. [PMID: 19208815 DOI: 10.1073/pnas.0812394106] [Citation(s) in RCA: 420] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Rett Syndrome (RTT) is a severe form of X-linked mental retardation caused by mutations in the gene coding for methyl CpG-binding protein 2 (MECP2). Mice deficient in MeCP2 have a range of physiological and neurological abnormalities that mimic the human syndrome. Here we show that systemic treatment of MeCP2 mutant mice with an active peptide fragment of Insulin-like Growth Factor 1 (IGF-1) extends the life span of the mice, improves locomotor function, ameliorates breathing patterns, and reduces irregularity in heart rate. In addition, treatment with IGF-1 peptide increases brain weight of the mutant mice. Multiple measurements support the hypothesis that RTT results from a deficit in synaptic maturation in the brain: MeCP2 mutant mice have sparse dendritic spines and reduced PSD-95 in motor cortex pyramidal neurons, reduced synaptic amplitude in the same neurons, and protracted cortical plasticity in vivo. Treatment with IGF-1 peptide partially restores spine density and synaptic amplitude, increases PSD-95, and stabilizes cortical plasticity to wild-type levels. Our results thus strongly suggest IGF-1 as a candidate for pharmacological treatment of RTT and potentially of other CNS disorders caused by delayed synapse maturation.
Collapse
|