51
|
Wang C, Han J, Korir NK, Wang X, Liu H, Li X, Leng X, Fang J. Characterization of target mRNAs for grapevine microRNAs with an integrated strategy of modified RLM-RACE, newly developed PPM-RACE and qPCRs. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:943-57. [PMID: 23582890 DOI: 10.1016/j.jplph.2013.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 05/10/2023]
Abstract
MicroRNAs (miRNAs) regulate target gene expression by mediating target gene cleavage or inhibition of translation at transcriptional and post-transcriptional levels in higher plants. Until now, many grapevine microRNAs (Vv-miRNAs) have been identified and quite a number of miRNA target genes were also verified by various analysis. However, global interaction of miRNAs with their target genes still remained to perform more research. We reported experimental validation of a number of miRNA target genes in table grapevine that had been previously identified by bioinformatics in our earlier studies. To verify more predicted target genes of Vv-miRNAs and elucidate the modes by which these Vv-miRNAs work on their target genes, 31 unverified potential target genes for 18 Vv-miRNAs were experimentally verified by a new integrated strategy employing a modified 5'-RLM-RACE (RNA ligase-mediated 5' rapid amplification of cDNA ends), 3'-PPM-RACE (poly(A) polymerase-mediated 3' rapid amplification of cDNA ends) and qRT-PCRs of cleavage products. The results showed that these Vv-miRNAs negatively regulated expression of their target messenger RNAs (mRNAs) through guiding corresponding target mRNA cleavage, of which about 94.4% Vv-miRNAs cleaved their target mRNAs mainly at the tenth nucleotide of 5'-end of miRNAs. Expression levels of both miRNAs and their target mRNAs in eight tissues exhibited inverse relationships, and expressions both of cleaved targets and miRNAs indicated a cleavage mode of Vv-miRNAs on their target genes. Our results confirm the importance of Vv-miRNAs in grapevine growth and development, and suggest more study on Vv-miRNAs and targets can enrich the knowledge of miRNA mediated-regulation in grapevine.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Mathiyalagan R, Subramaniyam S, Natarajan S, Kim YJ, Sun MS, Kim SY, Kim YJ, Yang DC. Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer). J Ginseng Res 2013; 37:227-47. [PMID: 23717176 PMCID: PMC3659641 DOI: 10.5142/jgr.2013.37.227] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/20/2012] [Accepted: 12/10/2012] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of recently discovered non-coding small RNA molecules, on average approximately 21 nucleotides in length, which underlie numerous important biological roles in gene regulation in various organisms. The miRNA database (release 18) has 18,226 miRNAs, which have been deposited from different species. Although miRNAs have been identified and validated in many plant species, no studies have been reported on discovering miRNAs in Panax ginseng Meyer, which is a traditionally known medicinal plant in oriental medicine, also known as Korean ginseng. It has triterpene ginseng saponins called ginsenosides, which are responsible for its various pharmacological activities. Predicting conserved miRNAs by homology-based analysis with available expressed sequence tag (EST) sequences can be powerful, if the species lacks whole genome sequence information. In this study by using the EST based computational approach, 69 conserved miRNAs belonging to 44 miRNA families were identified in Korean ginseng. The digital gene expression patterns of predicted conserved miRNAs were analyzed by deep sequencing using small RNA sequences of flower buds, leaves, and lateral roots. We have found that many of the identified miRNAs showed tissue specific expressions. Using the insilico method, 346 potential targets were identified for the predicted 69 conserved miRNAs by searching the ginseng EST database, and the predicted targets were mainly involved in secondary metabolic processes, responses to biotic and abiotic stress, and transcription regulator activities, as well as a variety of other metabolic processes.
Collapse
Affiliation(s)
- Ramya Mathiyalagan
- Korean Ginseng Center and Ginseng Resource Bank, Kyung Hee University, Yongin 449-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Hou H, Li J, Gao M, Singer SD, Wang H, Mao L, Fei Z, Wang X. Genomic organization, phylogenetic comparison and differential expression of the SBP-box family genes in grape. PLoS One 2013; 8:e59358. [PMID: 23527172 PMCID: PMC3601960 DOI: 10.1371/journal.pone.0059358] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/13/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The SBP-box gene family is specific to plants and encodes a class of zinc finger-containing transcription factors with a broad range of functions. Although SBP-box genes have been identified in numerous plants including green algae, moss, silver birch, snapdragon, Arabidopsis, rice and maize, there is little information concerning SBP-box genes, or the corresponding miR156/157, function in grapevine. METHODOLOGY/PRINCIPAL FINDINGS Eighteen SBP-box gene family members were identified in Vitis vinifera, twelve of which bore sequences that were complementary to miRNA156/157. Phylogenetic reconstruction demonstrated that plant SBP-domain proteins could be classified into seven subgroups, with the V. vinifera SBP-domain proteins being more closely related to SBP-domain proteins from dicotyledonous angiosperms than those from monocotyledonous angiosperms. In addition, synteny analysis between grape and Arabidopsis demonstrated that homologs of several grape SBP genes were found in corresponding syntenic blocks of Arabidopsis. Expression analysis of the grape SBP-box genes in various organs and at different stages of fruit development in V. quinquangularis 'Shang-24' revealed distinct spatiotemporal patterns. While the majority of the grape SBP-box genes lacking a miR156/157 target site were expressed ubiquitously and constitutively, most genes bearing a miR156/157 target site exhibited distinct expression patterns, possibly due to the inhibitory role of the microRNA. Furthermore, microarray data mining and quantitative real-time RT-PCR analysis identified several grape SBP-box genes that are potentially involved in the defense against biotic and abiotic stresses. CONCLUSION The results presented here provide a further understanding of SBP-box gene function in plants, and yields additional insights into the mechanism of stress management in grape, which may have important implications for the future success of this crop.
Collapse
Affiliation(s)
- Hongmin Hou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Stacy D. Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Hao Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Linyong Mao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, United States of America
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, United States of America
- USDA Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
54
|
Zhang Y, Bai Y, Han J, Chen M, Kayesh E, Jiang W, Fang J. Bioinformatics prediction of miRNAs in the Prunus persica genome with validation of their precise sequences by miR-RACE. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:80-92. [PMID: 23107282 DOI: 10.1016/j.jplph.2012.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/17/2012] [Accepted: 08/21/2012] [Indexed: 06/01/2023]
Abstract
We predicted 262 potential MicroRNAs (miRNAs) belonging to 70 miRNA families from the peach (Prunus persica) genome and two specific 5' and 3' miRNA rapid amplification of cDNA ends (miR-RACE) PCR reactions and sequence-directed cloning were employed to accurately validate 61 unique P. persica miRNAs (Ppe-miRNAs) sequences belonging to 61 families comprising 97 Ppe-miRNAs. Validation of the termini nucleotides in particular can define the real sequences of the Ppe-miRNAs on peach genome. Comparison between predicted and validated Ppe-miRNAs through alignment revealed that 43 unique orthologous sequences were identical, while the remaining 18 exhibited some divergences at their termini nucleotides. Quantitative real-time polymerase chain reaction (qRT-PCR) was further employed to analyze the expression of all the 61 miRNAs and 10 putative targets of 8 randomly selected Ppe-miRNAs in peach leaves, flowers and fruits at different stages of development, where both the miRNAs and the putative target genes showed tissue-specific expression.
Collapse
Affiliation(s)
- Yanping Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
55
|
Alabi OJ, Zheng Y, Jagadeeswaran G, Sunkar R, Naidu RA. High-throughput sequence analysis of small RNAs in grapevine (Vitis vinifera L.) affected by grapevine leafroll disease. MOLECULAR PLANT PATHOLOGY 2012; 13:1060-76. [PMID: 22827483 PMCID: PMC6638782 DOI: 10.1111/j.1364-3703.2012.00815.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Grapevine leafroll disease (GLRD) is one of the most economically important virus diseases of grapevine (Vitis spp.) worldwide. In this study, we used high-throughput sequencing of cDNA libraries made from small RNAs (sRNAs) to compare profiles of sRNA populations recovered from own-rooted Merlot grapevines with and without GLRD symptoms. The data revealed the presence of sRNAs specific to Grapevine leafroll-associated virus 3, Hop stunt viroid (HpSVd), Grapevine yellow speckle viroid 1 (GYSVd-1) and Grapevine yellow speckle viroid 2 (GYSVd-2) in symptomatic grapevines and sRNAs specific only to HpSVd, GYSVd-1 and GYSVd-2 in nonsymptomatic grapevines. In addition to 135 previously identified conserved microRNAs in grapevine (Vvi-miRs), we identified 10 novel and several candidate Vvi-miRs in both symptomatic and nonsymptomatic grapevine leaves based on the cloning of miRNA star sequences. Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of selected conserved Vvi-miRs indicated that individual members of an miRNA family are differentially expressed in symptomatic and nonsymptomatic leaves. The high-resolution mapping of sRNAs specific to an ampelovirus and three viroids in mixed infections, the identification of novel Vvi-miRs and the modulation of certain conserved Vvi-miRs offers resources for the further elucidation of compatible host-pathogen interactions and for the provision of ecologically relevant information to better understand host-pathogen-environment interactions in a perennial fruit crop.
Collapse
Affiliation(s)
- Olufemi J Alabi
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| | | | | | | | | |
Collapse
|
56
|
Kim J, Park JH, Lim CJ, Lim JY, Ryu JY, Lee BW, Choi JP, Kim WB, Lee HY, Choi Y, Kim D, Hur CG, Kim S, Noh YS, Shin C, Kwon SY. Small RNA and transcriptome deep sequencing proffers insight into floral gene regulation in Rosa cultivars. BMC Genomics 2012; 13:657. [PMID: 23171001 PMCID: PMC3527192 DOI: 10.1186/1471-2164-13-657] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 10/22/2012] [Indexed: 12/21/2022] Open
Abstract
Background Roses (Rosa sp.), which belong to the family Rosaceae, are the most economically important ornamental plants—making up 30% of the floriculture market. However, given high demand for roses, rose breeding programs are limited in molecular resources which can greatly enhance and speed breeding efforts. A better understanding of important genes that contribute to important floral development and desired phenotypes will lead to improved rose cultivars. For this study, we analyzed rose miRNAs and the rose flower transcriptome in order to generate a database to expound upon current knowledge regarding regulation of important floral characteristics. A rose genetic database will enable comprehensive analysis of gene expression and regulation via miRNA among different Rosa cultivars. Results We produced more than 0.5 million reads from expressed sequences, totalling more than 110 million bp. From these, we generated 35,657, 31,434, 34,725, and 39,722 flower unigenes from Rosa hybrid: ‘Vital’, ‘Maroussia’, and ‘Sympathy’ and Rosa rugosa Thunb. , respectively. The unigenes were assigned functional annotations, domains, metabolic pathways, Gene Ontology (GO) terms, Plant Ontology (PO) terms, and MIPS Functional Catalogue (FunCat) terms. Rose flower transcripts were compared with genes from whole genome sequences of Rosaceae members (apple, strawberry, and peach) and grape. We also produced approximately 40 million small RNA reads from flower tissue for Rosa, representing 267 unique miRNA tags. Among identified miRNAs, 25 of them were novel and 242 of them were conserved miRNAs. Statistical analyses of miRNA profiles revealed both shared and species-specific miRNAs, which presumably effect flower development and phenotypes. Conclusions In this study, we constructed a Rose miRNA and transcriptome database, and we analyzed the miRNAs and transcriptome generated from the flower tissues of four Rosa cultivars. The database provides a comprehensive genetic resource which can be used to better understand rose flower development and to identify candidate genes for important phenotypes.
Collapse
Affiliation(s)
- Jungeun Kim
- Green Bio Research Center, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Guzman F, Almerão MP, Körbes AP, Loss-Morais G, Margis R. Identification of microRNAs from Eugenia uniflora by high-throughput sequencing and bioinformatics analysis. PLoS One 2012; 7:e49811. [PMID: 23166775 PMCID: PMC3499529 DOI: 10.1371/journal.pone.0049811] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/17/2012] [Indexed: 11/27/2022] Open
Abstract
Background microRNAs or miRNAs are small non-coding regulatory RNAs that play important functions in the regulation of gene expression at the post-transcriptional level by targeting mRNAs for degradation or inhibiting protein translation. Eugenia uniflora is a plant native to tropical America with pharmacological and ecological importance, and there have been no previous studies concerning its gene expression and regulation. To date, no miRNAs have been reported in Myrtaceae species. Results Small RNA and RNA-seq libraries were constructed to identify miRNAs and pre-miRNAs in Eugenia uniflora. Solexa technology was used to perform high throughput sequencing of the library, and the data obtained were analyzed using bioinformatics tools. From 14,489,131 small RNA clean reads, we obtained 1,852,722 mature miRNA sequences representing 45 conserved families that have been identified in other plant species. Further analysis using contigs assembled from RNA-seq allowed the prediction of secondary structures of 25 known and 17 novel pre-miRNAs. The expression of twenty-seven identified miRNAs was also validated using RT-PCR assays. Potential targets were predicted for the most abundant mature miRNAs in the identified pre-miRNAs based on sequence homology. Conclusions This study is the first large scale identification of miRNAs and their potential targets from a species of the Myrtaceae family without genomic sequence resources. Our study provides more information about the evolutionary conservation of the regulatory network of miRNAs in plants and highlights species-specific miRNAs.
Collapse
Affiliation(s)
- Frank Guzman
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mauricio P. Almerão
- PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana P. Körbes
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Guilherme Loss-Morais
- PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rogerio Margis
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Biofisica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
58
|
Zhang C, Li G, Wang J, Fang J. Identification of trans-acting siRNAs and their regulatory cascades in grapevine. Bioinformatics 2012; 28:2561-8. [DOI: 10.1093/bioinformatics/bts500] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
59
|
Small RNA profiling of virus-infected grapevines: evidences for virus infection-associated and variety-specific miRNAs. Funct Integr Genomics 2012; 12:659-69. [DOI: 10.1007/s10142-012-0292-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 12/11/2022]
|
60
|
Gao Z, Shi T, Luo X, Zhang Z, Zhuang W, Wang L. High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with pistil development in Japanese apricot. BMC Genomics 2012; 13:371. [PMID: 22863067 PMCID: PMC3464595 DOI: 10.1186/1471-2164-13-371] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 07/25/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of endogenous, small, non-coding RNAs that regulate gene expression by mediating gene silencing at transcriptional and post-transcriptional levels in high plants. However, the diversity of miRNAs and their roles in floral development in Japanese apricot (Prunus mume Sieb. et Zucc) remains largely unexplored. Imperfect flowers with pistil abortion seriously decrease production yields. To understand the role of miRNAs in pistil development, pistil development-related miRNAs were identified by Solexa sequencing in Japanese apricot. RESULTS Solexa sequencing was used to identify and quantitatively profile small RNAs from perfect and imperfect flower buds of Japanese apricot. A total of 22,561,972 and 24,952,690 reads were sequenced from two small RNA libraries constructed from perfect and imperfect flower buds, respectively. Sixty-one known miRNAs, belonging to 24 families, were identified. Comparative profiling revealed that seven known miRNAs exhibited significant differential expression between perfect and imperfect flower buds. A total of 61 potentially novel miRNAs/new members of known miRNA families were also identified by the presence of mature miRNAs and corresponding miRNA*s in the sRNA libraries. Comparative analysis showed that six potentially novel miRNAs were differentially expressed between perfect and imperfect flower buds. Target predictions of the 13 differentially expressed miRNAs resulted in 212 target genes. Gene ontology (GO) annotation revealed that high-ranking miRNA target genes are those implicated in the developmental process, the regulation of transcription and response to stress. CONCLUSIONS This study represents the first comparative identification of miRNAomes between perfect and imperfect Japanese apricot flowers. Seven known miRNAs and six potentially novel miRNAs associated with pistil development were identified, using high-throughput sequencing of small RNAs. The findings, both computationally and experimentally, provide valuable information for further functional characterisation of miRNAs associated with pistil development in plants.
Collapse
Affiliation(s)
- Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing, P R China.
| | | | | | | | | | | |
Collapse
|
61
|
Wang C, Han J, Liu C, Kibet KN, Kayesh E, Shangguan L, Li X, Fang J. Identification of microRNAs from Amur grape (Vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics. BMC Genomics 2012. [PMID: 22455456 DOI: 10.1186/1471‐2164‐13‐122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNA (miRNA) is a class of functional non-coding small RNA with 19-25 nucleotides in length while Amur grape (Vitis amurensis Rupr.) is an important wild fruit crop with the strongest cold resistance among the Vitis species, is used as an excellent breeding parent for grapevine, and has elicited growing interest in wine production. To date, there is a relatively large number of grapevine miRNAs (vv-miRNAs) from cultivated grapevine varieties such as Vitis vinifera L. and hybrids of V. vinifera and V. labrusca, but there is no report on miRNAs from Vitis amurensis Rupr, a wild grapevine species. RESULTS A small RNA library from Amur grape was constructed and Solexa technology used to perform deep sequencing of the library followed by subsequent bioinformatics analysis to identify new miRNAs. In total, 126 conserved miRNAs belonging to 27 miRNA families were identified, and 34 known but non-conserved miRNAs were also found. Significantly, 72 new potential Amur grape-specific miRNAs were discovered. The sequences of these new potential va-miRNAs were further validated through miR-RACE, and accumulation of 18 new va-miRNAs in seven tissues of grapevines confirmed by real time RT-PCR (qRT-PCR) analysis. The expression levels of va-miRNAs in flowers and berries were found to be basically consistent in identity to those from deep sequenced sRNAs libraries of combined corresponding tissues. We also describe the conservation and variation of va-miRNAs using miR-SNPs and miR-LDs during plant evolution based on comparison of orthologous sequences, and further reveal that the number and sites of miR-SNP in diverse miRNA families exhibit distinct divergence. Finally, 346 target genes for the new miRNAs were predicted and they include a number of Amur grape stress tolerance genes and many genes regulating anthocyanin synthesis and sugar metabolism. CONCLUSIONS Deep sequencing of short RNAs from Amur grape flowers and berries identified 72 new potential miRNAs and 34 known but non-conserved miRNAs, indicating that specific miRNAs exist in Amur grape. These results show that a number of regulatory miRNAs exist in Amur grape and play an important role in Amur grape growth, development, and response to abiotic or biotic stress.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Wang C, Han J, Liu C, Kibet KN, Kayesh E, Shangguan L, Li X, Fang J. Identification of microRNAs from Amur grape (Vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics. BMC Genomics 2012; 13:122. [PMID: 22455456 PMCID: PMC3353164 DOI: 10.1186/1471-2164-13-122] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 03/29/2012] [Indexed: 12/20/2022] Open
Abstract
Background MicroRNA (miRNA) is a class of functional non-coding small RNA with 19-25 nucleotides in length while Amur grape (Vitis amurensis Rupr.) is an important wild fruit crop with the strongest cold resistance among the Vitis species, is used as an excellent breeding parent for grapevine, and has elicited growing interest in wine production. To date, there is a relatively large number of grapevine miRNAs (vv-miRNAs) from cultivated grapevine varieties such as Vitis vinifera L. and hybrids of V. vinifera and V. labrusca, but there is no report on miRNAs from Vitis amurensis Rupr, a wild grapevine species. Results A small RNA library from Amur grape was constructed and Solexa technology used to perform deep sequencing of the library followed by subsequent bioinformatics analysis to identify new miRNAs. In total, 126 conserved miRNAs belonging to 27 miRNA families were identified, and 34 known but non-conserved miRNAs were also found. Significantly, 72 new potential Amur grape-specific miRNAs were discovered. The sequences of these new potential va-miRNAs were further validated through miR-RACE, and accumulation of 18 new va-miRNAs in seven tissues of grapevines confirmed by real time RT-PCR (qRT-PCR) analysis. The expression levels of va-miRNAs in flowers and berries were found to be basically consistent in identity to those from deep sequenced sRNAs libraries of combined corresponding tissues. We also describe the conservation and variation of va-miRNAs using miR-SNPs and miR-LDs during plant evolution based on comparison of orthologous sequences, and further reveal that the number and sites of miR-SNP in diverse miRNA families exhibit distinct divergence. Finally, 346 target genes for the new miRNAs were predicted and they include a number of Amur grape stress tolerance genes and many genes regulating anthocyanin synthesis and sugar metabolism. Conclusions Deep sequencing of short RNAs from Amur grape flowers and berries identified 72 new potential miRNAs and 34 known but non-conserved miRNAs, indicating that specific miRNAs exist in Amur grape. These results show that a number of regulatory miRNAs exist in Amur grape and play an important role in Amur grape growth, development, and response to abiotic or biotic stress.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Chi X, Yang Q, Chen X, Wang J, Pan L, Chen M, Yang Z, He Y, Liang X, Yu S. Identification and characterization of microRNAs from peanut (Arachis hypogaea L.) by high-throughput sequencing. PLoS One 2011; 6:e27530. [PMID: 22110666 PMCID: PMC3217988 DOI: 10.1371/journal.pone.0027530] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/18/2011] [Indexed: 11/18/2022] Open
Abstract
Background MicroRNAs (miRNAs) are noncoding RNAs of approximately 21 nt that regulate gene expression in plants post-transcriptionally by endonucleolytic cleavage or translational inhibition. miRNAs play essential roles in numerous developmental and physiological processes and many of them are conserved across species. Extensive studies of miRNAs have been done in a few model plants; however, less is known about the diversity of these regulatory RNAs in peanut (Arachis hypogaea L.), one of the most important oilseed crops cultivated worldwide. Results A library of small RNA from peanut was constructed for deep sequencing. In addition to 126 known miRNAs from 33 families, 25 novel peanut miRNAs were identified. The miRNA* sequences of four novel miRNAs were discovered, providing additional evidence for the existence of miRNAs. Twenty of the novel miRNAs were considered to be species-specific because no homolog has been found for other plant species. qRT-PCR was used to analyze the expression of seven miRNAs in different tissues and in seed at different developmental stages and some showed tissue- and/or growth stage-specific expression. Furthermore, potential targets of these putative miRNAs were predicted on the basis of the sequence homology search. Conclusions We have identified large numbers of miRNAs and their related target genes through deep sequencing of a small RNA library. This study of the identification and characterization of miRNAs in peanut can initiate further study on peanut miRNA regulation mechanisms, and help toward a greater understanding of the important roles of miRNAs in peanut.
Collapse
Affiliation(s)
- Xiaoyuan Chi
- Shandong Peanut Research Institute, Qingdao, People's Republic of China
| | - Qingli Yang
- Shandong Peanut Research Institute, Qingdao, People's Republic of China
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, People's Republic of China
| | - Jinyan Wang
- Shandong Peanut Research Institute, Qingdao, People's Republic of China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Lijuan Pan
- Shandong Peanut Research Institute, Qingdao, People's Republic of China
| | - Mingna Chen
- Shandong Peanut Research Institute, Qingdao, People's Republic of China
| | - Zhen Yang
- Shandong Peanut Research Institute, Qingdao, People's Republic of China
| | - Yanan He
- Shandong Peanut Research Institute, Qingdao, People's Republic of China
| | - Xuanqiang Liang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, People's Republic of China
| | - Shanlin Yu
- Shandong Peanut Research Institute, Qingdao, People's Republic of China
- * E-mail:
| |
Collapse
|