51
|
Alimperti S, Andreadis ST. CDH2 and CDH11 act as regulators of stem cell fate decisions. Stem Cell Res 2015; 14:270-82. [PMID: 25771201 DOI: 10.1016/j.scr.2015.02.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/24/2015] [Accepted: 02/10/2015] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence suggests that the mechanical and biochemical signals originating from cell-cell adhesion are critical for stem cell lineage specification. In this review, we focus on the role of cadherin mediated signaling in development and stem cell differentiation, with emphasis on two well-known cadherins, cadherin-2 (CDH2) (N-cadherin) and cadherin-11 (CDH11) (OB-cadherin). We summarize the existing knowledge regarding the role of CDH2 and CDH11 during development and differentiation in vivo and in vitro. We also discuss engineering strategies to control stem cell fate decisions by fine-tuning the extent of cell-cell adhesion through surface chemistry and microtopology. These studies may be greatly facilitated by novel strategies that enable monitoring of stem cell specification in real time. We expect that better understanding of how intercellular adhesion signaling affects lineage specification may impact biomaterial and scaffold design to control stem cell fate decisions in three-dimensional context with potential implications for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Stella Alimperti
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA.
| |
Collapse
|
52
|
Teramura Y. Cell surface modification with ssDNA-PEG-lipid for analysing intercellular interactions between different cells. Biomaterials 2015; 48:119-28. [PMID: 25701037 DOI: 10.1016/j.biomaterials.2015.01.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/09/2015] [Accepted: 01/20/2015] [Indexed: 01/03/2023]
Abstract
Intercellular interactions are important in the development, immune responses, and functions of tissues and organs. Few methods are currently available for experimentally inducing and analysing cell-cell interaction in vitro. Here I propose a method to induce cell-cell attachment by cell surface modification with single-stranded DNA (ssDNA) and poly(ethylene glycol)-conjugated phospholipid (PEG-lipid) derivatives. The incorporation of an ssDNA pair (polyA20 and polyT20) into the cell membranes of two different cells was utilized to attach distinct cells through DNA hybridization. This technique enabled induction of cell-cell attachment between the same cell lines or different cell lines by controlling the contact area of two cells. Using this method, I investigated intercellular interactions, including the cell-in-cell invasion process, without impairing the interaction. I found that the normal cells MCF-10A were internalized into the cancer cells MCF-7, and that the intercellular interactions between them mainly involved the interaction of E-cadherin.
Collapse
Affiliation(s)
- Yuji Teramura
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
53
|
Friedman LG, Benson DL, Huntley GW. Cadherin-based transsynaptic networks in establishing and modifying neural connectivity. Curr Top Dev Biol 2015; 112:415-65. [PMID: 25733148 DOI: 10.1016/bs.ctdb.2014.11.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is tacitly understood that cell adhesion molecules (CAMs) are critically important for the development of cells, circuits, and synapses in the brain. What is less clear is what CAMs continue to contribute to brain structure and function after the early period of development. Here, we focus on the cadherin family of CAMs to first briefly recap their multidimensional roles in neural development and then to highlight emerging data showing that with maturity, cadherins become largely dispensible for maintaining neuronal and synaptic structure, instead displaying new and narrower roles at mature synapses where they critically regulate dynamic aspects of synaptic signaling, structural plasticity, and cognitive function. At mature synapses, cadherins are an integral component of multiprotein networks, modifying synaptic signaling, morphology, and plasticity through collaborative interactions with other CAM family members as well as a variety of neurotransmitter receptors, scaffolding proteins, and other effector molecules. Such recognition of the ever-evolving functions of synaptic cadherins may yield insight into the pathophysiology of brain disorders in which cadherins have been implicated and that manifest at different times of life.
Collapse
Affiliation(s)
- Lauren G Friedman
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Deanna L Benson
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - George W Huntley
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
54
|
Guo Z, Neilson LJ, Zhong H, Murray PS, Zanivan S, Zaidel-Bar R. E-cadherin interactome complexity and robustness resolved by quantitative proteomics. Sci Signal 2014; 7:rs7. [PMID: 25468996 PMCID: PMC4972397 DOI: 10.1126/scisignal.2005473] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
E-cadherin-mediated cell-cell adhesion and signaling plays an essential role in development and maintenance of healthy epithelial tissues. Adhesiveness mediated by E-cadherin is conferred by its extracellular cadherin domains and is regulated by an assembly of intracellular adaptors and enzymes associated with its cytoplasmic tail. We used proximity biotinylation and quantitative proteomics to identify 561 proteins in the vicinity of the cytoplasmic tail of E-cadherin. In addition, we used proteomics to identify proteins associated with E-cadherin-containing adhesion plaques from a cell-glass interface, which enabled the assignment of cellular localization to putative E-cadherin-interacting proteins. Moreover, by tagging identified proteins with GFP (green fluorescent protein), we determined the subcellular localization of 83 putative E-cadherin-proximal proteins and identified 24 proteins that were previously uncharacterized as part of adherens junctions. We constructed and characterized a comprehensive E-cadherin interaction network of 79 published and 394 previously uncharacterized proteins using a structure-informed database of protein-protein interactions. Finally, we found that calcium chelation, which disrupts the interaction of the extracellular E-cadherin domains, did not disrupt most intracellular protein interactions with E-cadherin, suggesting that the E-cadherin intracellular interactome is predominantly independent of cell-cell adhesion.
Collapse
Affiliation(s)
- Zhenhuan Guo
- Mechanobiology Institute of Singapore, National University of Singapore, Singapore 117411, Singapore
| | - Lisa J Neilson
- Vascular Proteomics Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Hang Zhong
- Mechanobiology Institute of Singapore, National University of Singapore, Singapore 117411, Singapore
| | - Paul S Murray
- Departments of Biochemistry and Molecular Biophysics and Systems Biology, and Center of Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA
| | - Sara Zanivan
- Vascular Proteomics Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Ronen Zaidel-Bar
- Mechanobiology Institute of Singapore, National University of Singapore, Singapore 117411, Singapore. Department of Biomedical Engineering, National University of Singapore, Singapore 117575, Singapore.
| |
Collapse
|
55
|
Giant cadherins Fat and Dachsous self-bend to organize properly spaced intercellular junctions. Proc Natl Acad Sci U S A 2014; 111:16011-6. [PMID: 25355906 DOI: 10.1073/pnas.1418990111] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cadherins Fat and Dachsous regulate cell polarity and proliferation via their heterophilic interactions at intercellular junctions. Their ectodomains are unusually large because of repetitive extracellular cadherin (EC) domains, which raises the question of how they fit in regular intercellular spaces. Cadherins typically exhibit a linear topology through the binding of Ca(2+) to the linker between the EC domains. Our electron-microscopic observations of mammalian Fat4 and Dachsous1 ectodomains, however, revealed that, although their N-terminal regions exhibit a linear configuration, the C-terminal regions are kinked with multiple hairpin-like bends. Notably, certain EC-EC linkers in Fat4 and Dachsous1 lost Ca(2+)-binding amino acids. When such non-Ca(2+)-binding linkers were substituted for a normal linker in E-cadherin, the mutant E-cadherins deformed more extensively than the wild-type molecule. To simulate cadherin structures with non-Ca(2+)-binding linkers, we used an elastic network model and confirmed that bent configurations can be generated by deformation of non-Ca(2+)-binding linkers. These findings suggest that Fat and Dachsous self-bend due to the loss of Ca(2+)-binding amino acids from specific EC-EC linkers, and can therefore adapt to confined spaces.
Collapse
|
56
|
Beck TN, Chikwem AJ, Solanki NR, Golemis EA. Bioinformatic approaches to augment study of epithelial-to-mesenchymal transition in lung cancer. Physiol Genomics 2014; 46:699-724. [PMID: 25096367 PMCID: PMC4187119 DOI: 10.1152/physiolgenomics.00062.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/04/2014] [Indexed: 12/22/2022] Open
Abstract
Bioinformatic approaches are intended to provide systems level insight into the complex biological processes that underlie serious diseases such as cancer. In this review we describe current bioinformatic resources, and illustrate how they have been used to study a clinically important example: epithelial-to-mesenchymal transition (EMT) in lung cancer. Lung cancer is the leading cause of cancer-related deaths and is often diagnosed at advanced stages, leading to limited therapeutic success. While EMT is essential during development and wound healing, pathological reactivation of this program by cancer cells contributes to metastasis and drug resistance, both major causes of death from lung cancer. Challenges of studying EMT include its transient nature, its molecular and phenotypic heterogeneity, and the complicated networks of rewired signaling cascades. Given the biology of lung cancer and the role of EMT, it is critical to better align the two in order to advance the impact of precision oncology. This task relies heavily on the application of bioinformatic resources. Besides summarizing recent work in this area, we use four EMT-associated genes, TGF-β (TGFB1), NEDD9/HEF1, β-catenin (CTNNB1) and E-cadherin (CDH1), as exemplars to demonstrate the current capacities and limitations of probing bioinformatic resources to inform hypothesis-driven studies with therapeutic goals.
Collapse
Affiliation(s)
- Tim N Beck
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania; and
| | - Adaeze J Chikwem
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Nehal R Solanki
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Program in Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Erica A Golemis
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Temple University School of Medicine, Philadelphia, Pennsylvania; and Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania; and
| |
Collapse
|
57
|
Abstract
Desmosomes are intercellular junctions that provide strong adhesion or hyper-adhesion in tissues. Here, we discuss the molecular and structural basis of this with particular reference to the desmosomal cadherins (DCs), their isoforms and evolution. We also assess the role of DCs as regulators of epithelial differentiation. New data on the role of desmosomes in development and human disease, especially wound healing and pemphigus, are briefly discussed, and the importance of regulation of the adhesiveness of desmosomes in tissue dynamics is considered.
Collapse
Affiliation(s)
- Mohamed Berika
- Department of Anatomy, Faculty of Medicine, Mansoura University , Mansoura City , Egypt
| | | |
Collapse
|
58
|
Miyaguchi K. Direct imaging electron microscopy (EM) methods in modern structural biology: overview and comparison with X-ray crystallography and single-particle cryo-EM reconstruction in the studies of large macromolecules. Biol Cell 2014; 106:323-45. [PMID: 25040059 DOI: 10.1111/boc.201300081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 07/01/2014] [Indexed: 11/28/2022]
Abstract
Determining the structure of macromolecules is important for understanding their function. The fine structure of large macromolecules is currently studied primarily by X-ray crystallography and single-particle cryo-electron microscopy (EM) reconstruction. Before the development of these techniques, macromolecular structure was often examined by negative-staining, rotary-shadowing and freeze-etching EM, which are categorised here as 'direct imaging EM methods'. In this review, the results are summarised by each of the above techniques and compared with respect to four macromolecules: the ryanodine receptor, cadherin, rhodopsin and the ribosome-translocon complex (RTC). The results of structural analysis of the ryanodine receptor and cadherin are consistent between each technique. The results obtained for rhodopsin vary to some extent within each technique and between the different techniques. Finally, the results for RTC are inconsistent between direct imaging EM and other analytical techniques, especially with respect to the space within RTC, the reasons for which are discussed. Then, the role of direct imaging EM methods in modern structural biology is discussed. Direct imaging methods should support and verify the results obtained by other analytical methods capable of solving three-dimensional molecular architecture, and they should still be used as a primary tool for studying macromolecule structure in vivo.
Collapse
Affiliation(s)
- Katsuyuki Miyaguchi
- Shinsapporokeiaikai Hospital, 5-5-35 Ooyachihigashi, Atsubetsuku, Sapporo, 004-0041, Japan
| |
Collapse
|
59
|
Oxidative Stress and the Use of Antioxidants in Stroke. Antioxidants (Basel) 2014; 3:472-501. [PMID: 26785066 PMCID: PMC4665418 DOI: 10.3390/antiox3030472] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/08/2014] [Accepted: 05/14/2014] [Indexed: 12/12/2022] Open
Abstract
Transient or permanent interruption of cerebral blood flow by occlusion of a cerebral artery gives rise to an ischaemic stroke leading to irreversible damage or dysfunction to the cells within the affected tissue along with permanent or reversible neurological deficit. Extensive research has identified excitotoxicity, oxidative stress, inflammation and cell death as key contributory pathways underlying lesion progression. The cornerstone of treatment for acute ischaemic stroke remains reperfusion therapy with recombinant tissue plasminogen activator (rt-PA). The downstream sequelae of events resulting from spontaneous or pharmacological reperfusion lead to an imbalance in the production of harmful reactive oxygen species (ROS) over endogenous anti-oxidant protection strategies. As such, anti-oxidant therapy has long been investigated as a means to reduce the extent of injury resulting from ischaemic stroke with varying degrees of success. Here we discuss the production and source of these ROS and the various strategies employed to modulate levels. These strategies broadly attempt to inhibit ROS production or increase scavenging or degradation of ROS. While early clinical studies have failed to translate success from bench to bedside, the combination of anti-oxidants with existing thrombolytics or novel neuroprotectants may represent an avenue worthy of clinical investigation. Clearly, there is a pressing need to identify new therapeutic alternatives for the vast majority of patients who are not eligible to receive rt-PA for this debilitating and devastating disease.
Collapse
|
60
|
Resolving the molecular mechanism of cadherin catch bond formation. Nat Commun 2014; 5:3941. [PMID: 24887573 DOI: 10.1038/ncomms4941] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/23/2014] [Indexed: 11/09/2022] Open
Abstract
Classical cadherin Ca(2+)-dependent cell-cell adhesion proteins play key roles in embryogenesis and in maintaining tissue integrity. Cadherins mediate robust adhesion by binding in multiple conformations. One of these adhesive states, called an X-dimer, forms catch bonds that strengthen and become longer lived in the presence of mechanical force. Here we use single-molecule force-clamp spectroscopy with an atomic force microscope along with molecular dynamics and steered molecular dynamics simulations to resolve the molecular mechanisms underlying catch bond formation and the role of Ca(2+) ions in this process. Our data suggest that tensile force bends the cadherin extracellular region such that they form long-lived, force-induced hydrogen bonds that lock X-dimers into tighter contact. When Ca(2+) concentration is decreased, fewer de novo hydrogen bonds are formed and catch bond formation is eliminated.
Collapse
|
61
|
Fichtner D, Lorenz B, Engin S, Deichmann C, Oelkers M, Janshoff A, Menke A, Wedlich D, Franz CM. Covalent and density-controlled surface immobilization of E-cadherin for adhesion force spectroscopy. PLoS One 2014; 9:e93123. [PMID: 24675966 PMCID: PMC3968077 DOI: 10.1371/journal.pone.0093123] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/02/2014] [Indexed: 11/18/2022] Open
Abstract
E-cadherin is a key cell-cell adhesion molecule but the impact of receptor density and the precise contribution of individual cadherin ectodomains in promoting cell adhesion are only incompletely understood. Investigating these mechanisms would benefit from artificial adhesion substrates carrying different cadherin ectodomains at defined surface density. We therefore developed a quantitative E-cadherin surface immobilization protocol based on the SNAP-tag technique. Extracellular (EC) fragments of E-cadherin fused to the SNAP-tag were covalently bound to self-assembled monolayers (SAM) of thiols carrying benzylguanine (BG) head groups. The adhesive functionality of the different E-cadherin surfaces was then assessed using cell spreading assays and single-cell (SCSF) and single-molecule (SMSF) force spectroscopy. We demonstrate that an E-cadherin construct containing only the first and second outmost EC domain (E1-2) is not sufficient for mediating cell adhesion and yields only low single cadherin-cadherin adhesion forces. In contrast, a construct containing all five EC domains (E1-5) efficiently promotes cell spreading and generates strong single cadherin and cell adhesion forces. By varying the concentration of BG head groups within the SAM we determined a lateral distance of 5–11 nm for optimal E-cadherin functionality. Integrating the results from SCMS and SMSF experiments furthermore demonstrated that the dissolution of E-cadherin adhesion contacts involves a sequential unbinding of individual cadherin receptors rather than the sudden rupture of larger cadherin receptor clusters. Our method of covalent, oriented and density-controlled E-cadherin immobilization thus provides a novel and versatile platform to study molecular mechanisms underlying cadherin-mediated cell adhesion under defined experimental conditions.
Collapse
Affiliation(s)
- Dagmar Fichtner
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
| | - Bärbel Lorenz
- University of Göttingen, Institute of Physical Chemistry, Göttingen, Germany
| | - Sinem Engin
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
| | - Christina Deichmann
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
| | - Marieelen Oelkers
- University of Göttingen, Institute of Physical Chemistry, Göttingen, Germany
| | - Andreas Janshoff
- University of Göttingen, Institute of Physical Chemistry, Göttingen, Germany
| | - Andre Menke
- Justus-Liebig-University Gieβen, Molecular Oncology of Solid Tumors, Gieβen, Germany
| | - Doris Wedlich
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
| | - Clemens M. Franz
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
62
|
Takeda H. Effects of Cd2+ on cis-dimer structure of E-cadherin in living cells. Biochem Biophys Res Commun 2014; 444:467-72. [PMID: 24480437 DOI: 10.1016/j.bbrc.2014.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
Abstract
E-cadherin, a calcium (Ca(2+))-dependent cell-cell adhesion molecule, plays a key role in the maintenance of tissue integrity. We have previously demonstrated that E-cadherin functions in vivo as a cis-dimer through chemical cross-linking reagents. Ca(2+) plays an important role in the cis-dimer formation of cadherin. However, the molecular mechanisms by which Ca(2+) interacts with the binding sites that regulate cis-dimer structures have not been completely elucidated. As expected for a Ca(2+) antagonist, cadmium (Cd(2+)) disrupts cadherin function by displacing Ca(2+) from its binding sites on the cadherin molecules. We used Cd(2+) as a probe for investigating the role of Ca(2+) in the dynamics of the E-cadherin extracellular region that involve cis-dimer formation and adhesion. While cell-cell adhesion assembly was completely disrupted in the presence of Cd(2+), the amount of cis-dimers of E-cadherin that formed at the cell surface was not affected. In our "Cd(2+)-switch" experiments, we did not find that Cd(2+)-induced E-cadherin cis-dimer formation in EL cells when they were incubated in low-Ca(2+) medium. In the present study, we demonstrated for the first time the effects of Cd(2+) on the cis-dimer structure of E-cadherin in living cells using a chemical cross-link analysis.
Collapse
Affiliation(s)
- Hiroshi Takeda
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, S-1, W-17, Chuo-ku, Sapporo 060-8556, Japan.
| |
Collapse
|
63
|
Ivanov AI, Naydenov NG. Dynamics and regulation of epithelial adherens junctions: recent discoveries and controversies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:27-99. [PMID: 23445808 DOI: 10.1016/b978-0-12-407697-6.00002-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adherens junctions (AJs) are evolutionarily conserved plasma-membrane structures that mediate cell-cell adhesions in multicellular organisms. They are organized by several types of adhesive integral membrane proteins, most notably cadherins and nectins that are clustered and stabilized by a number of cytoplasmic scaffolds. AJs are key regulators of tissue architecture and dynamics via control of cell proliferation, polarity, shape, motility, and survival. They are absolutely critical for normal tissue morphogenesis and their disruption results in pathological abnormalities in different tissues. Although the field of adherens-junction research dramatically progressed in recent years, a number of important questions remain controversial and poorly understood. This review outlines basic principles that regulate organization of AJs in mammalian epithelia and discusses recent advances and standing controversies in the field. A special attention is paid to the regulation of AJs by vesicle trafficking and the intracellular cytoskeleton as well as roles and mechanisms of adherens-junction disruption during tumor progression and tissue inflammation.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | | |
Collapse
|
64
|
Ritterson RS, Kuchenbecker KM, Michalik M, Kortemme T. Design of a photoswitchable cadherin. J Am Chem Soc 2013; 135:12516-9. [PMID: 23923816 PMCID: PMC3774674 DOI: 10.1021/ja404992r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Indexed: 01/31/2023]
Abstract
There is a growing interest in engineering proteins whose function can be controlled with the spatial and temporal precision of light. Here, we present a novel example of a functional light-triggered switch in the Ca-dependent cell-cell adhesion protein E-cadherin, created using a mechanism-based design strategy. We report an 18-fold change in apparent Ca(2+) binding affinity upon illumination. Our results include a detailed examination of functional switching via linked changes in Ca(2+) binding and cadherin dimerization. This design opens avenues toward controllable tools that could be applied to many long-standing questions about cadherin's biological function in cell-cell adhesion and downstream signaling.
Collapse
Affiliation(s)
- Ryan S Ritterson
- Graduate Group in Biophysics, University of California, San Francisco, San Francisco, California 94158, USA.
| | | | | | | |
Collapse
|
65
|
Körner A, Abuillan W, Deichmann C, Rossetti FF, Köhler A, Konovalov OV, Wedlich D, Tanaka M. Quantitative determination of lateral concentration and depth profile of histidine-tagged recombinant proteins probed by grazing incidence X-ray fluorescence. J Phys Chem B 2013; 117:5002-8. [PMID: 23586470 DOI: 10.1021/jp401869t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have demonstrated that the complementary combination of grazing incidence X-ray fluorescence (GIXF) with specular X-ray reflectivity (XRR) can be used to quantitatively determine the density profiles of Ni(2)(+) ions complexed with chelator headgroups as well as S atoms in recombinant proteins anchored to lipid monolayers at the air/water interface. First, we prepared phospholipid monolayers incorporating chelator lipid anchors at different molar fractions at the air/water interface. The fine-structures perpendicular to the global plane of monolayers were characterized by XRR in the presence of Ni(2)(+) ions, yielding the thickness, roughness, and electron density of the stratified lipid monolayers. X-ray fluorescence intensities from Ni Kα core levels recorded at the incidence angles below and above the critical angle of total reflection allow for the determination of the position and lateral density of Ni(2)(+) ions associated with chelator headgroups with a high spatial accuracy (±5 Å). The coupling of histidine-tagged Xenopus cadherin 11 (Xcad-11) can also be identified by changes in the fines-structures using XRR. Although fluorescence intensities from S Kα level were much weaker than Ni Kα signals, we could detect the location of S atoms in recombinant Xcad-11 proteins.
Collapse
Affiliation(s)
- Alexander Körner
- Physical Chemistry of Biosystems, Physical Chemistry Institute, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Körner A, Deichmann C, Rossetti FF, Köhler A, Konovalov OV, Wedlich D, Tanaka M. Cell differentiation of pluripotent tissue sheets immobilized on supported membranes displaying cadherin-11. PLoS One 2013; 8:e54749. [PMID: 23424619 PMCID: PMC3570561 DOI: 10.1371/journal.pone.0054749] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/14/2012] [Indexed: 12/12/2022] Open
Abstract
Investigating cohesive tissue sheets in controlled cultures still poses a challenge since the complex intercellular interactions are difficult to mimic in in vitro models. We used supported lipid membranes functionalized by the adhesive part of the extracellular domain of the cell adhesion molecule cadherin-11 for the immobilization of pluripotent tissue sheets, the animal cap isolated from Xenopus laevis blastula stage embryos. Cadherin-11 was bound via histidine tag to lipid membranes with chelator head groups. In the first step, quantitative functionalization of the membranes with cadherin-11 was confirmed by quartz crystal microbalance and high energy specular X-ray reflectivity. In the next step, animal cap tissue sheets induced to neural crest cell fate were cultured on the membranes functionalized with cadherin-11. The adhesion of cells within the cohesive tissue was significantly dependent on changes in lateral densities of cadherin-11. The formation of filopodia and lamellipodia in the cohesive tissue verified the viability and sustainability of the culture over several hours. The expression of the transcription factor slug in externally induced tissue demonstrated the applicability of lipid membranes displaying adhesive molecules for controlled differentiation of cohesive pluripotent tissue sheets.
Collapse
Affiliation(s)
- Alexander Körner
- Physical Chemistry of Biosystems, Physical Chemistry Institute, University of Heidelberg, Heidelberg, Germany
| | - Christina Deichmann
- Cell and Developmental Biology, Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Fernanda F. Rossetti
- Physical Chemistry of Biosystems, Physical Chemistry Institute, University of Heidelberg, Heidelberg, Germany
- * E-mail: (FFR); (DW)
| | - Almut Köhler
- Cell and Developmental Biology, Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - Doris Wedlich
- Cell and Developmental Biology, Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- * E-mail: (FFR); (DW)
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Physical Chemistry Institute, University of Heidelberg, Heidelberg, Germany
- Cell Biophysics Laboratory, Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
67
|
Levayer R. [Regulation of intercellular adhesion during epithelial morphogenesis]. Biol Aujourdhui 2012; 206:219-36. [PMID: 23171844 DOI: 10.1051/jbio/2012021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Indexed: 11/14/2022]
Abstract
The epithelium is one of the most abundant tissues in metazoans. It is required to generate stable chemical and mechanical barriers between physiological compartments (fluid matrix/external environment). This function is based on multiple intercellular junctions, which insulate and stabilize cell-cell contacts in the tissue. Despite this apparent robustness, epithelia can be extensively remodeled during wound healing, embryogenesis and tumor progression. The capacity to be remodeled while keeping tissue cohesion requires a perfect balance between stability and plasticity of intercellular junctions. The balance is partially regulated by intercellular adhesion, which is mostly based on adherens junctions and the transmembrane protein E-cadherin. The aim of this review is to report the molecular basis of the balance between plasticity and robustness in the epithelium. We will first present the minimal physical framework used to describe epithelial cell shape. We will then describe the main processes involved in intercellular adhesion regulation and their functions during epithelial morphogenesis. Eventually, we will analyze the relationship and the coupling between adhesive forces and cortical tension.
Collapse
Affiliation(s)
- Romain Levayer
- Institut de Biologie du Developpement de Marseille Luminy, Marseille, France.
| |
Collapse
|
68
|
In vitro functional analyses of arrhythmogenic right ventricular cardiomyopathy-associated desmoglein-2-missense variations. PLoS One 2012; 7:e47097. [PMID: 23071725 PMCID: PMC3468437 DOI: 10.1371/journal.pone.0047097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 09/10/2012] [Indexed: 01/01/2023] Open
Abstract
Background Although numerous sequence variants in desmoglein-2 (DSG2) have been associated with arrhythmogenic right ventricular cardiomyopathy (ARVC), the functional impact of new sequence variations is difficult to estimate. Methodology/Principal Findings To test the functional consequences of DSG2-variants, we established an expression system for the extracellular domain and the full-length DSG2 using the human cell line HT1080. We established new tools to investigate ARVC-associated DSG2 variations and compared wild-type proteins and proteins with one of the five selected variations (DSG2-p.R46Q, -p.D154E, -p.D187G, -p.K294E, -p.V392I) with respect to prodomain cleavage, adhesion properties and cellular localisation. Conclusions/Significance The ARVC-associated DSG2-p.R46Q variation was predicted to be probably damaging by bioinformatics tools and to concern a conserved proprotein convertase cleavage site. In this study an impaired prodomain cleavage and an influence on the DSG2-properties could be demonstrated for the R46Q-variant leading to the classification of the variant as a potential gain-of-function mutant. In contrast, the variants DSG2-p.K294E and -p.V392I, which have an arguable impact on ARVC pathogenesis and are predicted to be benign, did not show functional differences to the wild-type protein in our study. Notably, the variants DSG2-p.D154E and -p.D187G, which were predicted to be damaging by bioinformatics tools, had no detectable effects on the DSG2 protein properties in our study.
Collapse
|
69
|
Lam CH, Hansen EA, Janson C, Bryan A, Hubel A. The characterization of arachnoid cell transport II: paracellular transport and blood-cerebrospinal fluid barrier formation. Neuroscience 2012; 222:228-38. [PMID: 22814001 DOI: 10.1016/j.neuroscience.2012.06.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 01/01/2023]
Abstract
We used an immortalized arachnoid cell line to test the arachnoid barrier properties and paracellular transport. The permeabilities of urea, mannitol, and inulin through monolayers were 2.9 ± 1.1 × 10(-6), 0.8 ± .18 × 10(-6), 1.0 ± .29 × 10(-6)cm/s. Size differential permeability testing with dextran clarified the arachnoidal blood-cerebrospinal fluid (CSF) barrier limit and established a rate of transcellular transport to be about two orders of magnitude slower than paracellular transport in a polyester membrane diffusion chamber. The theoretical pore size for paracellular space is 11Å and the occupancy to length ratio is 0.8 and 0.72 cm(-1) for urea and mannitol respectively. The permeability of the monolayer was not significantly different from apical to basal and vice versa. Gap junctions may have a role in contributing to barrier formation. Although the upregulation of claudin by dexamethasone did not significantly alter paracellular transport, increasing intracellular cAMP decreased mannitol permeability. Calcium modulated paracellular transport, but only selectively with the ion chelator, EDTA, and with disruption of intracellular stores. The blood-CSF barrier at the arachnoid is anatomically and physiologically different from the vascular-based blood-brain barrier, but is similarly subject to modulation. We describe the basic paracellular transport characteristics of this CSF "sink" of the brain which will allow for a better description of mass and constitutive balance within the intracranial compartment.
Collapse
Affiliation(s)
- C H Lam
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States.
| | | | | | | | | |
Collapse
|
70
|
Hoy B, Brandstetter H, Wessler S. The stability and activity of recombinant Helicobacter pylori HtrA under stress conditions. J Basic Microbiol 2012; 53:402-9. [PMID: 22736569 DOI: 10.1002/jobm.201200074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/21/2012] [Indexed: 01/26/2023]
Abstract
The bifunctional protein HtrA displays chaperone and protease activities, enabling bacteria to cope with environmental stress conditions such as heat shock or extreme pH by orchestrating protein folding or degradation. Recently, we added a novel aspect to HtrA functions by identifying HtrA of the human pathogen and class I carcinogen Helicobacter pylori (Hp) as a secreted virulence factor that cleaves the cell adhesion molecule and tumor suppressor E-cadherin. In this study, we analyzed the structural integrity and activity of oligomeric HtrA from Hp under stress conditions. Examining different parameters, HtrA oligomers were investigated by casein zymography and HtrA activity was further analyzed in in vitro cleavage assays using E-cadherin as a substrate. HtrA showed temperature-dependent disintegration of oligomers. Denaturing agents targeting hydrogen bonds within HtrA destabilized HtrA oligomers while reducing agents disrupting disulfide bonds had no effect. Optimal proteolytic activity was dependent on a neutral pH; however, addition of mono- and divalent salts or reducing agents did not interfere with proteolytic activity. These data indicate the HtrA is active under stress conditions which might support Hp colonizing in the gastric environment.
Collapse
Affiliation(s)
- Benjamin Hoy
- Division of Microbiology, Paris-Lodron University, Salzburg, Austria
| | | | | |
Collapse
|
71
|
Brasch J, Harrison OJ, Honig B, Shapiro L. Thinking outside the cell: how cadherins drive adhesion. Trends Cell Biol 2012; 22:299-310. [PMID: 22555008 DOI: 10.1016/j.tcb.2012.03.004] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/19/2012] [Accepted: 03/26/2012] [Indexed: 12/15/2022]
Abstract
Cadherins are a superfamily of cell surface glycoproteins whose ectodomains contain multiple repeats of β-sandwich extracellular cadherin (EC) domains that adopt a similar fold to immunoglobulin domains. The best characterized cadherins are the vertebrate 'classical' cadherins, which mediate adhesion via trans homodimerization between their membrane-distal EC1 domains that extend from apposed cells, and assemble intercellular adherens junctions through cis clustering. To form mature trans adhesive dimers, cadherin domains from apposed cells dimerize in a 'strand-swapped' conformation. This occurs in a two-step binding process involving a fast-binding intermediate called the 'X-dimer'. Trans dimers are less flexible than cadherin monomers, a factor that drives junction assembly following cell-cell contact by reducing the entropic cost associated with the formation of lateral cis oligomers. Cadherins outside the classical subfamily appear to have evolved distinct adhesive mechanisms that are only now beginning to be understood.
Collapse
Affiliation(s)
- Julia Brasch
- Department of Biochemistry and Molecular Biophysics, Columbia University, 1150 Saint Nicholas Avenue, New York, NY 10032, USA
| | | | | | | |
Collapse
|
72
|
Bedzhov I, Liszewska E, Kanzler B, Stemmler MP. Igf1r signaling is indispensable for preimplantation development and is activated via a novel function of E-cadherin. PLoS Genet 2012; 8:e1002609. [PMID: 22479204 PMCID: PMC3315466 DOI: 10.1371/journal.pgen.1002609] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/05/2012] [Indexed: 01/26/2023] Open
Abstract
Insulin-like growth factor I receptor (Igf1r) signaling controls proliferation, differentiation, growth, and cell survival in many tissues; and its deregulated activity is involved in tumorigenesis. Although important during fetal growth and postnatal life, a function for the Igf pathway during preimplantation development has not been described. We show that abrogating Igf1r signaling with specific inhibitors blocks trophectoderm formation and compromises embryo survival during murine blastocyst formation. In normal embryos total Igf1r is present throughout the membrane, whereas the activated form is found exclusively at cell contact sites, colocalizing with E-cadherin. Using genetic domain switching, we show a requirement for E-cadherin to maintain proper activation of Igf1r. Embryos expressing exclusively a cadherin chimera with N-cadherin extracellular and E-cadherin intracellular domains (NcEc) fail to form a trophectoderm and cells die by apoptosis. In contrast, homozygous mutant embryos expressing a reverse-structured chimera (EcNc) show trophectoderm survival and blastocoel cavitation, indicating a crucial and non-substitutable role of the E-cadherin ectodomain for these processes. Strikingly, blastocyst formation can be rescued in homozygous NcEc embryos by restoring Igf1r signaling, which enhances cell survival. Hence, perturbation of E-cadherin extracellular integrity, independent of its cell-adhesion function, blocked Igf1r signaling and induced cell death in the trophectoderm. Our results reveal an important and yet undiscovered function of Igf1r during preimplantation development mediated by a unique physical interaction between Igf1r and E-cadherin indispensable for proper receptor activation and anti-apoptotic signaling. We provide novel insights into how ligand-dependent Igf1r activity is additionally gated to sense developmental potential in utero and into a bifunctional role of adhesion molecules in contact formation and signaling. One of the most important steps during mammalian development is the formation of a blastocyst before implantation. Proper blastocyst development is fundamentally reliant on the function of the E-cadherin adhesion molecule, which cannot be replaced by another highly related member of the cadherin family. We have addressed the question of how E-cadherin unfolds its unique function during this central embryonic process. We generated mouse mutants that allow specific domain swapping of extra- and intracellular protein domains of E-cadherin with the corresponding portion of N-cadherin. Upon E-cadherin (Cdh1) depletion, apoptosis is induced in cells that are required to form the trophectoderm, the outer cells of a functional blastocyst. Uncoupling of the two E-cadherin domains demonstrated that specifically the presence of the extracellular domain is indispensable in providing essential survival cues. To establish a proper trophectoderm the insulin-like growth factor I receptor (Igf1r) is intimately connected to the E-cadherin–mediated suppression of apoptosis. By interaction of the two proteins Igf1r is efficiently activated to allow embryo survival, blastocyst formation, and implantation. This novel and adhesion-independent function of E-cadherin may serve as paradigm for bifunctionality of adhesion molecules and how they are particularly utilized to interpret signal transduction activities in specific cellular contexts.
Collapse
Affiliation(s)
| | | | | | - Marc P. Stemmler
- Department of Molecular Embryology, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- * E-mail:
| |
Collapse
|
73
|
Abstract
Since the identification of cadherins and the publication of the first crystal structures, the mechanism of cadherin adhesion, and the underlying structural basis have been studied with a number of different experimental techniques, different classical cadherin subtypes, and cadherin fragments. Earlier studies based on biophysical measurements and structure determinations resulted in seemingly contradictory findings regarding cadherin adhesion. However, recent experimental data increasingly reveal parallels between structures, solution binding data, and adhesion-based biophysical measurements that are beginning to both reconcile apparent differences and generate a more comprehensive model of cadherin-mediated cell adhesion. This chapter summarizes the functional, structural, and biophysical findings relevant to cadherin junction assembly and adhesion. We emphasize emerging parallels between findings obtained with different experimental approaches. Although none of the current models accounts for all of the available experimental and structural data, this chapter discusses possible origins of apparent discrepancies, highlights remaining gaps in current knowledge, and proposes challenges for further study.
Collapse
Affiliation(s)
- Deborah Leckband
- Department of Chemistry, Department of Chemical and Biomolecular Engineering, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, 61801, Urbana, IL, USA,
| | | |
Collapse
|
74
|
Abstract
The cadherin-catenin complex is the major building block of the adherens junction. It is responsible for coupling Ca(2+)-dependent intercellular junctions with various intracellular events, including actin dynamics and signaling pathways. Determination of three-dimensional structures of cadherins, p120 catenin, β-catenin and α-catenin at atomic-level resolution has allowed us to examine how the structure and function of cell adhesion molecules are further modulated by protein-protein interactions. Structural studies of cadherins revealed the strand-swap-dependent and -independent trans-dimerization mechanisms, as well as a potential mechanism for lateral clustering of cadherin trans-dimers. Crystallographic and NMR analyses of p120 catenin revealed that it regulates the stability of cadherin-mediated cell-cell adhesion by associating with the majority of the E-cadherin juxtamembrane domain, including residues implicated in clathrin-mediated endocytosis and Hakai-dependent ubiquitination. Crystal structures of the β-catenin/E-cadherin complex and the β-/α-catenin chimera revealed extensive interactions necessary to form the cadherin/β-catenin/α-catenin ternary complex. Structural characterization of α-catenin has revealed conformational changes within the N-terminal and modulatory domains that are crucial for its role as a mechanosensor of cell-cell adhesion. Further insights into the connection between the cadherin-catenin complex and the actin cytoskeleton are integral to better understand how adjoining cells communicate through cell-cell adhesion.
Collapse
Affiliation(s)
- Noboru Ishiyama
- Ontario Cancer Institute, 610 University Avenue, M5G 2M9, Toronto, ON, Canada
| | | |
Collapse
|
75
|
Kazmierczak P, Müller U. Sensing sound: molecules that orchestrate mechanotransduction by hair cells. Trends Neurosci 2011; 35:220-9. [PMID: 22177415 DOI: 10.1016/j.tins.2011.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/25/2011] [Accepted: 10/27/2011] [Indexed: 01/19/2023]
Abstract
Animals use acoustic signals to communicate and to obtain information about their environment. The processing of acoustic signals is initiated at auditory sense organs, where mechanosensory hair cells convert sound-induced vibrations into electrical signals. Although the biophysical principles underlying the mechanotransduction process in hair cells have been characterized in much detail over the past 30 years, the molecular building-blocks of the mechanotransduction machinery have proved to be difficult to determine. We review here recent studies that have both identified some of these molecules and established the mechanisms by which they regulate the activity of the still-elusive mechanotransduction channel.
Collapse
Affiliation(s)
- Piotr Kazmierczak
- Dorris Neuroscience Center, Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
76
|
Vunnam N, Pedigo S. Calcium-Induced Strain in the Monomer Promotes Dimerization in Neural Cadherin. Biochemistry 2011; 50:8437-44. [DOI: 10.1021/bi200902s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nagamani Vunnam
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi
38677, United States
| | - Susan Pedigo
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi
38677, United States
| |
Collapse
|
77
|
Oda H, Takeichi M. Evolution: structural and functional diversity of cadherin at the adherens junction. ACTA ACUST UNITED AC 2011; 193:1137-46. [PMID: 21708975 PMCID: PMC3216324 DOI: 10.1083/jcb.201008173] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adhesion between cells is essential to the evolution of multicellularity. Indeed, morphogenesis in animals requires firm but flexible intercellular adhesions that are mediated by subcellular structures like the adherens junction (AJ). A key component of AJs is classical cadherins, a group of transmembrane proteins that maintain dynamic cell-cell associations in many animal species. An evolutionary reconstruction of cadherin structure and function provides a comprehensive framework with which to appreciate the diversity of morphogenetic mechanisms in animals.
Collapse
Affiliation(s)
- Hiroki Oda
- JT Biohistory Research Hall, Takatsuki, Osaka 569-1125, Japan.
| | | |
Collapse
|
78
|
Vunnam N, Pedigo S. Prolines in βA-sheet of neural cadherin act as a switch to control the dynamics of the equilibrium between monomer and dimer. Biochemistry 2011; 50:6959-65. [PMID: 21721556 DOI: 10.1021/bi2007788] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neural cadherins dimerize through the formation of calcium-dependent strand-crossover structures. Dimerization of cadherins leads to cell-cell adhesion in multicellular organisms. Strand-crossover dimer forms exclusively between the first N-terminal extracellular modules (EC1) of the adhesive partners via swapping of their βA-sheets and docking of tryptophan-2 in the hydrophobic pocket. In the apo-state wild-type cadherin is predominantly monomer, which indicates that the dimerization is energetically unfavorable in the absence of calcium. Addition of calcium favors dimer formation by creating strain in the monomer and lowering the energetic barrier between monomer and dimer. Dynamics of the monomer-dimer equilibrium is vital for plasticity of synapses. Prolines recurrently occur in proteins that form strand-crossover dimer and are believed to be the source of the strain in the monomer. N-cadherins have two proline residues in the βA-sheet. We focused our studies on the role of these two prolines in calcium-dependent dimerization. Spectroscopic, electrophoretic, and chromatopgraphic studies showed that mutations of both prolines to alanines increased the dimerization affinity by ~20-fold and relieved the requirement of calcium in dimerization. The P5A and P6A mutant formed very stable dimers that required denaturation of protein to disassemble in the apo conditions. In summary, the proline residues act as a switch to control the dynamics of the equilibrium between monomer and dimer which is crucial for the plasticity of synapses.
Collapse
Affiliation(s)
- Nagamani Vunnam
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | | |
Collapse
|
79
|
Niessen CM, Leckband D, Yap AS. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 2011; 91:691-731. [PMID: 21527735 DOI: 10.1152/physrev.00004.2010] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains, the regulation of cadherin expression at the cell surface, cooperation between cadherins and the actin cytoskeleton, and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields.
Collapse
Affiliation(s)
- Carien M Niessen
- Department of Dermatology, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| | | | | |
Collapse
|
80
|
Calcium-dependent dynamics of cadherin interactions at cell-cell junctions. Proc Natl Acad Sci U S A 2011; 108:9857-62. [PMID: 21613566 DOI: 10.1073/pnas.1019003108] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cadherins play a key role in the dynamics of cell-cell contact formation and remodeling of junctions and tissues. Cadherin-cadherin interactions are gated by extracellular Ca(2+), which serves to rigidify the cadherin extracellular domains and promote trans junctional interactions. Here we describe the direct visualization and quantification of spatiotemporal dynamics of N-cadherin interactions across intercellular junctions in living cells using a genetically encodable FRET reporter system. Direct measurements of transjunctional cadherin interactions revealed a sudden, but partial, loss of homophilic interactions (τ = 1.17 ± 0.06 s(-1)) upon chelation of extracellular Ca(2+). A cadherin mutant with reduced adhesive activity (W2A) exhibited a faster, more substantial loss of homophilic interactions (τ = 0.86 ± 0.02 s(-1)), suggesting two types of native cadherin interactions--one that is rapidly modulated by changes in extracellular Ca(2+) and another with relatively stable adhesive activity that is Ca(2+) independent. The Ca(2+)-sensitive dynamics of cadherin interactions were transmitted to the cell interior where β-catenin translocated to N-cadherin at the junction in both cells. These data indicate that cadherins can rapidly convey dynamic information about the extracellular environment to both cells that comprise a junction.
Collapse
|
81
|
Vendome J, Posy S, Jin X, Bahna F, Ahlsen G, Shapiro L, Honig B. Molecular design principles underlying β-strand swapping in the adhesive dimerization of cadherins. Nat Struct Mol Biol 2011; 18:693-700. [PMID: 21572446 PMCID: PMC3113550 DOI: 10.1038/nsmb.2051] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 02/24/2011] [Indexed: 02/02/2023]
Abstract
Cell adhesion by classical cadherins is mediated by dimerization of their EC1 domains through the “swapping” of N-terminal β-strands. We use molecular simulations, measurements of binding affinities, and x-ray crystallography to provide a detailed picture of the structural and energetic factors that control the adhesive dimerization of cadherins. We show that strand swapping in EC1 is driven by conformational strain in cadherin monomers which arises from the anchoring of their short N-terminal strand at one end by the conserved Trp2 and at the other by ligation to Ca2+ ions. We also demonstrate that a conserved pro-pro motif functions to avoid the formation of an overly tight interface where affinity differences between different cadherins, crucial at the cellular level, are lost. We use these findings to design site-directed mutations which transform a monomeric EC2-EC3 domain cadherin construct, into a strand-swapped dimer.
Collapse
Affiliation(s)
- Jeremie Vendome
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA. Center for Computational Biology and Bioinformatics, Columbia University, New York, New York, USA. Howard Hughes Medical Institute, Columbia University, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Vunnam N, Pedigo S. Sequential binding of calcium leads to dimerization in neural cadherin. Biochemistry 2011; 50:2973-82. [PMID: 21366346 DOI: 10.1021/bi101872b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neural cadherin (N-cadherin) is a calcium-dependent homophilic cell-adhesive molecule and critical for synaptogenesis and synapse maintenance. The extracellular region plays an important role in cadherin-mediated cell adhesion and has five tandemly repeated ectodomains (EC1-EC5) with three calcium-binding sites situated between each of these domains. Adhesive dimer formation is significantly dependent on binding of calcium such that mutations in the calcium-binding sites adversely affect cell adhesion. To investigate the relative significance of the calcium-binding sites at the EC1-EC2 interface in calcium-induced dimerization, we mutated three important amino acids, D134, D136, and D103, in NCAD12, a construct containing EC1 and EC2. Spectroscopic and chromatographic experiments showed that all three mutations affected calcium binding and dimerization. Mutation of D134, a bidentate chelator in site 3, severely impaired the binding of calcium to all three sites. These findings confirm that binding to site 3 is required for binding to occur at site 2 and site 1. Interestingly, while the D103A mutation diminished only the affinity for calcium, it completely eliminated dimerization. Equilibrium dialysis experiments showed a stoichiometry of 3 at 2 mM calcium for D103A, but no dimerization was apparent even at 10 mM calcium. These results indicate that calcium binding alone is not sufficient for dimerization but requires cooperativity between calcium-binding sites. In summary, our findings confirm that the calcium-binding sites are occupied sequentially in the order of site 3, then site 2 and site 1, and that cooperativity between site 2 and site 1 is essential for formation of adhesive dimers by N-cadherin.
Collapse
Affiliation(s)
- Nagamani Vunnam
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | | |
Collapse
|
83
|
Oroz J, Valbuena A, Vera AM, Mendieta J, Gómez-Puertas P, Carrión-Vázquez M. Nanomechanics of the cadherin ectodomain: "canalization" by Ca2+ binding results in a new mechanical element. J Biol Chem 2011; 286:9405-18. [PMID: 21177864 PMCID: PMC3058956 DOI: 10.1074/jbc.m110.170399] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/13/2010] [Indexed: 11/06/2022] Open
Abstract
Cadherins form a large family of calcium-dependent cell-cell adhesion receptors involved in development, morphogenesis, synaptogenesis, differentiation, and carcinogenesis through signal mechanotransduction using an adaptor complex that connects them to the cytoskeleton. However, the molecular mechanisms underlying mechanotransduction through cadherins remain unknown, although their extracellular region (ectodomain) is thought to be critical in this process. By single molecule force spectroscopy, molecular dynamics simulations, and protein engineering, here we have directly examined the nanomechanics of the C-cadherin ectodomain and found it to be strongly dependent on the calcium concentration. In the presence of calcium, the ectodomain extends through a defined ("canalized") pathway that involves two mechanical resistance elements: a mechanical clamp from the cadherin domains and a novel mechanostable component from the interdomain calcium-binding regions ("calcium rivet") that is abolished by magnesium replacement and in a mutant intended to impede calcium coordination. By contrast, in the absence of calcium, the mechanical response of the ectodomain becomes largely "decanalized" and destabilized. The cadherin ectodomain may therefore behave as a calcium-switched "mechanical antenna" with very different mechanical responses depending on calcium concentration (which would affect its mechanical integrity and force transmission capability). The versatile mechanical design of the cadherin ectodomain and its dependence on extracellular calcium facilitate a variety of mechanical responses that, we hypothesize, could influence the various adhesive properties mediated by cadherins in tissue morphogenesis, synaptic plasticity, and disease. Our work represents the first step toward the mechanical characterization of the cadherin system, opening the door to understanding the mechanical bases of its mechanotransduction.
Collapse
Affiliation(s)
- Javier Oroz
- From the Instituto Cajal/Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), and Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Avenida Doctor Arce 37, E-28002 Madrid, Spain
| | - Alejandro Valbuena
- From the Instituto Cajal/Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), and Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Avenida Doctor Arce 37, E-28002 Madrid, Spain
| | - Andrés Manuel Vera
- From the Instituto Cajal/Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), and Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Avenida Doctor Arce 37, E-28002 Madrid, Spain
| | - Jesús Mendieta
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, E-28049 Madrid, Spain, and
- Biomol-Informatics SL, E-28049 Madrid, Spain
| | - Paulino Gómez-Puertas
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, E-28049 Madrid, Spain, and
| | - Mariano Carrión-Vázquez
- From the Instituto Cajal/Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), and Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Avenida Doctor Arce 37, E-28002 Madrid, Spain
| |
Collapse
|
84
|
Förtsch C, Hupp S, Ma J, Mitchell TJ, Maier E, Benz R, Iliev AI. Changes in astrocyte shape induced by sublytic concentrations of the cholesterol-dependent cytolysin pneumolysin still require pore-forming capacity. Toxins (Basel) 2011; 3:43-62. [PMID: 22069689 PMCID: PMC3210454 DOI: 10.3390/toxins3010043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/30/2010] [Accepted: 01/04/2011] [Indexed: 11/21/2022] Open
Abstract
Streptococcus pneumoniae is a common pathogen that causes various infections, such as sepsis and meningitis. A major pathogenic factor of S. pneumoniae is the cholesterol-dependent cytolysin, pneumolysin. It produces cell lysis at high concentrations and apoptosis at lower concentrations. We have shown that sublytic amounts of pneumolysin induce small GTPase-dependent actin cytoskeleton reorganization and microtubule stabilization in human neuroblastoma cells that are manifested by cell retraction and changes in cell shape. In this study, we utilized a live imaging approach to analyze the role of pneumolysin’s pore-forming capacity in the actin-dependent cell shape changes in primary astrocytes. After the initial challenge with the wild-type toxin, a permeabilized cell population was rapidly established within 20-40 minutes. After the initial rapid permeabilization, the size of the permeabilized population remained unchanged and reached a plateau. Thus, we analyzed the non-permeabilized (non-lytic) population, which demonstrated retraction and shape changes that were inhibited by actin depolymerization. Despite the non-lytic nature of pneumolysin treatment, the toxin’s lytic capacity remained critical for the initiation of cell shape changes. The non-lytic pneumolysin mutants W433F-pneumolysin and delta6-pneumolysin, which bind the cell membrane with affinities similar to that of the wild-type toxin, were not able to induce shape changes. The initiation of cell shape changes and cell retraction by the wild-type toxin were independent of calcium and sodium influx and membrane depolarization, which are known to occur following cellular challenge and suggested to result from the ion channel-like properties of the pneumolysin pores. Excluding the major pore-related phenomena as the initiation mechanism of cell shape changes, the existence of a more complex relationship between the pore-forming capacity of pneumolysin and the actin cytoskeleton reorganization is suggested.
Collapse
Affiliation(s)
- Christina Förtsch
- DFG Membrane, Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (C.F.); (S.H.)
| | - Sabrina Hupp
- DFG Membrane, Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (C.F.); (S.H.)
| | - Jiangtao Ma
- Division of Infection and Immunity, Level 2, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK; (J.M.); (T.J.M.)
| | - Timothy J. Mitchell
- Division of Infection and Immunity, Level 2, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK; (J.M.); (T.J.M.)
| | - Elke Maier
- Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (E.M.); (R.B.)
| | - Roland Benz
- Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (E.M.); (R.B.)
| | - Asparouh I. Iliev
- DFG Membrane, Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (C.F.); (S.H.)
- Author to whom correspondence should be addressed; ; Tel.: +49-931-20148997; Fax: +49-931-20148539
| |
Collapse
|
85
|
Lie PPY, Cheng CY, Mruk DD. The biology of the desmosome-like junction a versatile anchoring junction and signal transducer in the seminiferous epithelium. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:223-69. [PMID: 21199783 PMCID: PMC4381909 DOI: 10.1016/b978-0-12-385859-7.00005-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mammalian spermatogenesis, a complex process that involves the movement of developing germ cells across the seminiferous epithelium, entails extensive restructuring of Sertoli-Sertoli and Sertoli-germ cell junctions. Presently, it is not entirely clear how zygotene spermatocytes gain entry into the adluminal compartment of the seminiferous epithelium, which is sealed off from the systemic circulation by the Sertoli cell component of the blood-testis barrier, without compromising barrier integrity. To begin to address this question, it is critical that we first have a good understanding of the biology and the regulation of different types of Sertoli-Sertoli and Sertoli-germ cell junctions in the testis. Supported by recent studies in the field, we discuss how crosstalk between different types of junctions contributes to their restructuring during germ cell movement across the blood-testis barrier. We place special emphasis on the emerging role of desmosome-like junctions as signal transducers during germ cell movement across the seminiferous epithelium.
Collapse
Affiliation(s)
- Pearl P Y Lie
- Population Council, Center for Biomedical Research, New York, New York, USA
| | | | | |
Collapse
|
86
|
Shi Q, Maruthamuthu V, Li F, Leckband D. Allosteric cross talk between cadherin extracellular domains. Biophys J 2010; 99:95-104. [PMID: 20655837 DOI: 10.1016/j.bpj.2010.03.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/11/2010] [Accepted: 03/31/2010] [Indexed: 12/22/2022] Open
Abstract
Atomic force microscopy and surface force apparatus measurements determined the functional impact of the cadherin point mutation W2A and domain deletion mutations on C-cadherin binding signatures. Direct comparison of results obtained using both experimental approaches demonstrates that C-cadherin ectodomains form multiple independent bonds that require different structural regions. The results presented reveal significant interdomain cross talk. They further demonstrate that the mutation W2A not only abolishes adhesion between N-terminal domains, but allosterically modulates other binding states that require functional domains distal to the N-terminal binding site. Such allosteric effects may play a prominent role in modulating adhesion by Type I classic cadherins, cadherin oligomerization at junctional contacts, and propagation of binding information to the cytoplasmic region.
Collapse
Affiliation(s)
- Quanming Shi
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | |
Collapse
|
87
|
Abstract
Classical cadherins mediate specific adhesion at intercellular adherens junctions. Interactions between cadherin ectodomains from apposed cells mediate cell-cell contact, whereas the intracellular region functionally links cadherins to the underlying cytoskeleton. Structural, biophysical, and biochemical studies have provided important insights into the mechanism and specificity of cell-cell adhesion by classical cadherins and their interplay with the cytoskeleton. Adhesive binding arises through exchange of beta strands between the first extracellular cadherin domains (EC1) of partner cadherins from adjacent cells. This "strand-swap" binding mode is common to classical and desmosomal cadherins, but sequence alignments suggest that other cadherins will bind differently. The intracellular region of classical cadherins binds to p120 and beta-catenin, and beta-catenin binds to the F-actin binding protein alpha-catenin. Rather than stably bridging beta-catenin to actin, it appears that alpha-catenin actively regulates the actin cytoskeleton at cadherin-based cell-cell contacts.
Collapse
|
88
|
Nakazora S, Matsumine A, Iino T, Hasegawa M, Kinoshita A, Uemura K, Niimi R, Uchida A, Sudo A. The cleavage of N-cadherin is essential for chondrocyte differentiation. Biochem Biophys Res Commun 2010; 400:493-9. [PMID: 20735983 DOI: 10.1016/j.bbrc.2010.08.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/17/2010] [Indexed: 11/29/2022]
Abstract
The aggregation of chondroprogenitor mesenchymal cells into precartilage condensation represents one of the earliest events in chondrogenesis. N-cadherin is a key cell adhesion molecule implicated in chondrogenic differentiation. Recently, ADAM10-mediated cleavage of N-cadherin has been reported to play an important role in cell adhesion, migration, development and signaling. However, the significance of N-cadherin cleavage in chondrocyte differentiation has not been determined. In the present study, we found that the protein turnover of N-cadherin is accelerated during the early phase of chondrogenic differentiation in ATDC5 cells. Therefore, we generated the subclones of ATDC5 cells overexpressing wild-type N-cadherin, and two types of subclones overexpressing a cleavage-defective N-cadherin mutant, and examined the response of these cells to insulin stimulation. The ATDC5 cells overexpressing cleavage-defective mutants severely prevented the formation of cartilage aggregates, proteoglycan production and the induction of chondrocyte marker gene expression, such as type II collagen, aggrecan and type X collagen. These results suggested that the cleavage of N-cadherin is essential for chondrocyte differentiation.
Collapse
Affiliation(s)
- Shigeto Nakazora
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu-city, Mie 514-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Subnanometre single-molecule localization, registration and distance measurements. Nature 2010; 466:647-51. [DOI: 10.1038/nature09163] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Accepted: 05/07/2010] [Indexed: 01/21/2023]
|
90
|
Exploring the Nature of Desmosomal Cadherin Associations in 3D. Dermatol Res Pract 2010; 2010:930401. [PMID: 20672011 PMCID: PMC2905946 DOI: 10.1155/2010/930401] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/17/2010] [Accepted: 04/16/2010] [Indexed: 12/01/2022] Open
Abstract
Desmosomes are a complex assembly of protein molecules that mediate adhesion between adjacent cells. Desmosome composition is well established and spatial relationships between components have been identified. Intercellular cell-cell adhesion is created by the interaction of extracellular domains of desmosomal cadherins, namely, desmocollins and desmogleins. High-resolution methods have provided insight into the structural interactions between cadherins. However, there is a lack of understanding about the architecture of the intact desmosomes and the physical principles behind their adhesive strength are unclear. Electron Tomography (ET) studies have offered three-dimensional visual data of desmosomal cadherin associations at molecular resolution. This review discusses the merits of two cadherin association models represented using ET. We discuss the possible role of sample preparation on the structural differences seen between models and the possibility of adaptive changes in the structure as a direct consequence of mechanical stress and stratification.
Collapse
|
91
|
Structure of the N terminus of cadherin 23 reveals a new adhesion mechanism for a subset of cadherin superfamily members. Proc Natl Acad Sci U S A 2010; 107:10708-12. [PMID: 20498078 DOI: 10.1073/pnas.1006284107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The cadherin superfamily encodes more than 100 receptors with diverse functions in tissue development and homeostasis. Classical cadherins mediate adhesion by binding interactions that depend on their N-terminal extracellular cadherin (EC) domains, which swap N-terminal beta-strands. Sequence alignments suggest that the strand-swap binding mode is not commonly used by functionally divergent cadherins. Here, we have determined the structure of the EC1-EC2 domains of cadherin 23 (CDH23), which binds to protocadherin 15 (PCDH15) to form tip links of mechanosensory hair cells. Unlike classical cadherins, the CDH23 N terminus contains polar amino acids that bind Ca(2+). The N terminus of PCDH15 also contains polar amino acids. Mutations in polar amino acids within EC1 of CDH23 and PCDH15 abolish interaction between the two cadherins. PCDH21 and PCDH24 contain similarly charged N termini, suggesting that a subset of cadherins share a common interaction mechanism that differs from the strand-swap binding mode of classical cadherins.
Collapse
|
92
|
Sotomayor M, Weihofen WA, Gaudet R, Corey DP. Structural determinants of cadherin-23 function in hearing and deafness. Neuron 2010; 66:85-100. [PMID: 20399731 DOI: 10.1016/j.neuron.2010.03.028] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2010] [Indexed: 12/28/2022]
Abstract
The hair-cell tip link, a fine filament directly conveying force to mechanosensitive transduction channels, is composed of two proteins, protocadherin-15 and cadherin-23, whose mutation causes deafness. However, their molecular structure, elasticity, and deafness-related structural defects are unknown. We present crystal structures of the first and second extracellular cadherin repeats of cadherin-23. Overall, structures show typical cadherin folds, but reveal an elongated N terminus that precludes classical cadherin interactions and contributes to an N-terminal Ca(2+)-binding site. The deafness mutation D101G, in the linker region between the repeats, causes a slight bend between repeats and decreases Ca(2+) affinity. Molecular dynamics simulations suggest that cadherin-23 repeats are stiff and that either removing Ca(2+) or mutating Ca(2+)-binding residues reduces rigidity and unfolding strength. The structures define an uncharacterized cadherin family and, with simulations, suggest mechanisms underlying inherited deafness and how cadherin-23 may bind with itself and with protocadherin-15 to form the tip link.
Collapse
Affiliation(s)
- Marcos Sotomayor
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
93
|
Ciatto C, Bahna F, Zampieri N, VanSteenhouse HC, Katsamba PS, Ahlsen G, Harrison OJ, Brasch J, Jin X, Posy S, Vendome J, Ranscht B, Jessell TM, Honig B, Shapiro L. T-cadherin structures reveal a novel adhesive binding mechanism. Nat Struct Mol Biol 2010; 17:339-47. [PMID: 20190755 DOI: 10.1038/nsmb.1781] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 11/24/2009] [Indexed: 11/09/2022]
Abstract
Vertebrate genomes encode 19 classical cadherins and about 100 nonclassical cadherins. Adhesion by classical cadherins depends on binding interactions in their N-terminal EC1 domains, which swap N-terminal beta-strands between partner molecules from apposing cells. However, strand-swapping sequence signatures are absent from nonclassical cadherins, raising the question of how these proteins function in adhesion. Here, we show that T-cadherin, a glycosylphosphatidylinositol (GPI)-anchored cadherin, forms dimers through an alternative nonswapped interface near the EC1-EC2 calcium-binding sites. Mutations within this interface ablate the adhesive capacity of T-cadherin. These nonadhesive T-cadherin mutants also lose the ability to regulate neurite outgrowth from T-cadherin-expressing neurons. Our findings reveal the likely molecular architecture of the T-cadherin homophilic interface and its requirement for axon outgrowth regulation. The adhesive binding mode used by T-cadherin may also be used by other nonclassical cadherins.
Collapse
Affiliation(s)
- Carlo Ciatto
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Lee EH, Hsin J, Sotomayor M, Comellas G, Schulten K. Discovery through the computational microscope. Structure 2010; 17:1295-306. [PMID: 19836330 DOI: 10.1016/j.str.2009.09.001] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 09/01/2009] [Accepted: 09/03/2009] [Indexed: 11/17/2022]
Abstract
All-atom molecular dynamics simulations have become increasingly popular as a tool to investigate protein function and dynamics. However, researchers are concerned about the short time scales covered by simulations, the apparent impossibility to model large and integral biomolecular systems, and the actual predictive power of the molecular dynamics methodology. Here we review simulations that were in the past both hotly disputed and considered key successes, namely of proteins with mainly mechanical functions (titin, fibrinogen, ankyrin, and cadherin). The simulation work covered shows how state-of-the-art modeling alleviates some of the prior concerns and how unrefuted discoveries are made through the "computational microscope."
Collapse
Affiliation(s)
- Eric H Lee
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
95
|
Kyung Chang S, Gu Z, Brenner MB. Fibroblast-like synoviocytes in inflammatory arthritis pathology: the emerging role of cadherin-11. Immunol Rev 2010; 233:256-66. [DOI: 10.1111/j.0105-2896.2009.00854.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
96
|
Feng D, Kim T, Ozkan E, Light M, Torkin R, Teng KK, Hempstead BL, Garcia KC. Molecular and structural insight into proNGF engagement of p75NTR and sortilin. J Mol Biol 2009; 396:967-84. [PMID: 20036257 PMCID: PMC2847487 DOI: 10.1016/j.jmb.2009.12.030] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 12/15/2009] [Indexed: 12/21/2022]
Abstract
Nerve growth factor (NGF) is initially synthesized as a precursor, proNGF, that is cleaved to release its C-terminal mature form. Recent studies suggested that proNGF is not an inactive precursor but acts as a signaling ligand distinct from its mature counterpart. proNGF and mature NGF initiate opposing biological responses by utilizing both distinct and shared receptor components. In this study, we carried out structural and biochemical characterization of proNGF interactions with p75NTR and sortilin. We crystallized proNGF complexed to p75NTR and present the structure at 3.75-A resolution. The structure reveals a 2:2 symmetric binding mode, as compared with the asymmetric structure of a previously reported crystal structure of mature NGF complexed to p75NTR and the 2:2 symmetric complex of neurotrophin-3 (NT-3) and p75NTR. Here, we discuss the possible origins and implications of the different stoichiometries. In the proNGF-p75NTR complex, the pro regions of proNGF are mostly disordered and two hairpin loops (loop 2) at the top of the NGF dimer have undergone conformational changes in comparison with mature NT structures, suggesting possible interactions with the propeptide. We further explored the binding characteristics of proNGF to sortilin using surface plasmon resonance and cell-based assays and determined that calcium ions promote the formation of a stable ternary complex of proNGF-sortilin-p75NTR. These results, together with those of previous structural and mechanistic studies of NT-receptor interactions, suggest the potential for distinct signaling activities through p75NTR mediated by different NT-induced conformational changes.
Collapse
Affiliation(s)
- Dan Feng
- Department of Cellular and Molecular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Raptis L, Arulanandam R, Vultur A, Geletu M, Chevalier S, Feracci H. Beyond structure, to survival: activation of Stat3 by cadherin engagement. Biochem Cell Biol 2009; 87:835-43. [DOI: 10.1139/o09-061] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cells in normal tissues or in tumors have extensive opportunities for adhesion to their neighbors and the importance of cell to cell contact in the study of fundamental cellular processes is beginning to emerge. In this review, we discuss recent evidence of dramatic changes in the activity of an important signal transducer found to be profoundly affected by cell to cell adhesion, the signal transducer and activator of transcription-3 (Stat3). Direct cadherin engagement, growth of cells to postconfluence, or formation of multicellular aggregates were found to induce a striking increase in the levels of Stat3 activity, Rac1/Cdc42, and members of the IL6 receptor family in different settings. This activation was specific to Stat3, in that the levels of the extracellular signal regulated kinase (Erk1/2), a signal transducer often coordinately activated with Stat3 by a number of growth factors or oncogenes, remained unaffected by cell density. Density-dependent Stat3 activation may play a key role in survival, and could contribute to the establishment of cell polarity. It is clear that at any given time the total Stat3 activity levels in a cell are the sum of the effects of cell to cell adhesion plus the conventional Stat3 activating factors present.
Collapse
Affiliation(s)
- Leda Raptis
- Department of Microbiology and Immunology, Department of Pathology and Molecular Medicine, and Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6
- Université Bordeaux 1, Centre de Recherche Paul Pascal, CNRS UPR 8641, 33600 Pessac, France
| | - Rozanne Arulanandam
- Department of Microbiology and Immunology, Department of Pathology and Molecular Medicine, and Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6
- Université Bordeaux 1, Centre de Recherche Paul Pascal, CNRS UPR 8641, 33600 Pessac, France
| | - Adina Vultur
- Department of Microbiology and Immunology, Department of Pathology and Molecular Medicine, and Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6
- Université Bordeaux 1, Centre de Recherche Paul Pascal, CNRS UPR 8641, 33600 Pessac, France
| | - Mulu Geletu
- Department of Microbiology and Immunology, Department of Pathology and Molecular Medicine, and Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6
- Université Bordeaux 1, Centre de Recherche Paul Pascal, CNRS UPR 8641, 33600 Pessac, France
| | - Sébastien Chevalier
- Department of Microbiology and Immunology, Department of Pathology and Molecular Medicine, and Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6
- Université Bordeaux 1, Centre de Recherche Paul Pascal, CNRS UPR 8641, 33600 Pessac, France
| | - Hélène Feracci
- Department of Microbiology and Immunology, Department of Pathology and Molecular Medicine, and Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6
- Université Bordeaux 1, Centre de Recherche Paul Pascal, CNRS UPR 8641, 33600 Pessac, France
| |
Collapse
|
98
|
Meng W, Takeichi M. Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol 2009; 1:a002899. [PMID: 20457565 DOI: 10.1101/cshperspect.a002899] [Citation(s) in RCA: 389] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The adherens junction (AJ) is an element of the cell-cell junction in which cadherin receptors bridge the neighboring plasma membranes via their homophilic interactions. Cadherins associate with cytoplasmic proteins, called catenins, which in turn bind to cytoskeletal components, such as actin filaments and microtubules. These molecular complexes further interact with other proteins, including signaling molecules, rendering the AJs into highly dynamic and regulatable structures. The AJs of such nature contribute to the physical linking of cells, as well as to the regulation of cell-cell contacts, which is essential for morphogenesis and remodeling of tissues and organs. Thus, elucidating the molecular architecture of the AJs and their regulatory mechanisms are crucial for understanding how the multicellular system is organized.
Collapse
Affiliation(s)
- Wenxiang Meng
- RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan
| | | |
Collapse
|
99
|
Yakovlev S, Medved L. Interaction of fibrin(ogen) with the endothelial cell receptor VE-cadherin: localization of the fibrin-binding site within the third extracellular VE-cadherin domain. Biochemistry 2009; 48:5171-9. [PMID: 19413351 DOI: 10.1021/bi900487d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interaction of fibrin with endothelial cells through their receptor VE-cadherin has been implicated in modulation of angiogenesis and inflammation. Previous studies identified the VE-cadherin-binding site in the fibrin betaN-domains formed by the NH(2)-terminal regions of fibrin beta chains and revealed that the recombinant dimeric (beta15-66)(2) fragment mimicking these domains preserves the VE-cadherin-binding properties of fibrin. To test if the other fibrin(ogen) regions/domains are involved in this interaction and localize the complementary fibrin-binding site in VE-cadherin, we prepared several recombinant fragments containing individual extracellular domains of VE-cadherin or combinations thereof, as well as several fragments corresponding to various fibrin(ogen) regions, and tested the interactions between them by ELISA and surface plasmon resonance. The experiments revealed that the betaN-domains are the only fibrin(ogen) regions involved in the interaction with VE-cadherin. They also localized the fibrin-binding site to the third extracellular domain of VE-cadherin and established that the fibrin-binding properties of this domain are not influenced by the presence or absence of the neighboring domains. In addition, the experiments confirmed that calcium ions, which are required to maintain proper conformation and adhesive properties of VE-cadherin, do not influence the fibrin-binding properties of the latter.
Collapse
Affiliation(s)
- Sergiy Yakovlev
- Center for Vascular and Inflammatory Diseases and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
100
|
Asuri S, Yan J, Paranavitana NC, Quilliam LA. E-cadherin dis-engagement activates the Rap1 GTPase. J Cell Biochem 2009; 105:1027-37. [PMID: 18767072 DOI: 10.1002/jcb.21902] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
E-cadherin based adherens junctions are finely regulated by multiple cellular signaling events. Here we show that the Ras-related Rap1 GTPase is enriched in regions of nascent cell-cell contacts and strengthens E-cadherin junctions: constitutively active Rap1 expressing MDCK cells exhibit increased junctional contact and resisted calcium depletion-induced cell-cell junction disruption. E-cadherin disengagement activated Rap1 and this correlated with E-cadherin association with the Rap GEFs, C3G and PDZ-GEF I. PDZ-GEF I associated with E-cadherin and beta-catenin whereas C3G interaction with E-cadherin did not involve beta-catenin. Knockdown of PDZ-GEF I in MDCK cells decreased Rap1 activity following E-cadherin junction disruption. We hereby show that Rap1 plays a role in the maintenance and repair of E-cadherin junctions and is activated via an "outside-in" signaling pathway initiated by E-cadherin and mediated at least in part by PDZ-GEF I.
Collapse
Affiliation(s)
- Sirisha Asuri
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine and Walther Oncology Center, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|