51
|
Phelan JK, McCabe ER. Mutations in NR0B1 (DAX1) and NR5A1 (SF1) responsible for adrenal hypoplasia congenita. Hum Mutat 2001; 18:472-87. [PMID: 11748841 DOI: 10.1002/humu.1225] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adrenal hypoplasia congenita (AHC) causes primary adrenal insufficiency due to the failure of development of the adrenal cortex. Clinical and pedigree data indicate that the condition is genetically heterogeneous. The predominant adrenal hypoplasia congenita locus, however, is the NR0B1 gene, at Xp21, encoding the protein DAX1. In this article, we present a compendium of published NR0B1 mutations and polymorphisms, and discuss them in the contexts of known biology and clinical applicability. The recent descriptions of patients with primary adrenal insufficiency due to mutations of NR5A1, which encodes SF1, are also discussed.
Collapse
Affiliation(s)
- J K Phelan
- Department of Pediatrics, UCLA School of Medicine, Los Angeles, California 90095-1752, USA
| | | |
Collapse
|
52
|
Yang Z, Privalsky ML. Isoform-specific transcriptional regulation by thyroid hormone receptors: hormone-independent activation operates through a steroid receptor mode of co-activator interaction. Mol Endocrinol 2001; 15:1170-85. [PMID: 11435616 DOI: 10.1210/mend.15.7.0656] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormone receptors (T3Rs) are hormone-regulated transcription factors that play important roles in vertebrate homeostasis, differentiation, and development. T3Rs are synthesized as multiple isoforms that display tissue-specific expression patterns and distinct transcriptional properties. Most T3R isoforms associate with co-activator proteins and mediate transcriptional activation only in the presence of thyroid hormone. The pituitary-specific T3Rbeta-2 isoform departs from this general rule and is able to interact with p160 co-activators, and to mediate transcriptional activation in both the absence and presence of hormone. We report here that this hormone-independent activation is mediated by contacts between the unique N terminus of T3Rbeta-2 and an internal interaction domain in the SRC-1 (steroid receptor co-activator-1) and GRIP-1 (glucocorticoid receptor interacting protein 1) co-activators. These hormone-independent contacts between T3Rbeta-2 and the p160 co-activators are distinct in sequence and function from the LXXLL motifs that mediate hormone-dependent transcriptional activation and resemble instead a mode of co-activator recruitment previously observed only for the steroid hormone receptors and only in the presence of steroid hormone. Our results suggest that the transcriptional properties of the different T3R isoforms represent a combinatorial mixture of repression, antirepression, and hormone-independent and hormone-dependent activation functions that operate in conjunction to determine the ultimate transcriptional outcome.
Collapse
Affiliation(s)
- Z Yang
- Section of Microbiology Division of Biological Chemistry University of California at Davis Davis, California 95616, USA
| | | |
Collapse
|
53
|
Abstract
Drug discovery using intracellular receptors (IRs) as targets presents its own set of unique complications and advantages. The natural ligands for these receptors are, in many cases, already used as drugs. To effectively exploit these targets, newer molecules must have either increased receptor selectivity or increased tissue or gene selectivity to reduce side effects. The search for these molecules will yield new therapeutics as well as new insights into the mechanism of action of these receptors and their ligands.
Collapse
Affiliation(s)
- J N Miner
- Endocrine Research, Ligand Pharmaceuticals, San Diego, California 92121, USA
| | | |
Collapse
|
54
|
Yoh SM, Privalsky ML. Transcriptional repression by thyroid hormone receptors. A role for receptor homodimers in the recruitment of SMRT corepressor. J Biol Chem 2001; 276:16857-67. [PMID: 11278601 DOI: 10.1074/jbc.m010022200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear hormone receptors, such as the thyroid hormone receptors (T3Rs) and retinoid X receptors (RXRs), are ligand-regulated transcription factors that control key aspects of metazoan gene expression. T3Rs can bind to DNA either as receptor homodimers or as heterodimers with RXRs. Once bound to DNA, nuclear hormone receptors regulate target gene expression by recruiting auxiliary proteins, denoted corepressors and coactivators. We report here that T3R homodimers assembled on DNA exhibit particularly strong interactions with the SMRT corepressor, whereas T3R.RXR heterodimers are inefficient at binding to SMRT. Mutants of T3R that exhibit enhanced repression properties, such as the v-Erb A oncoprotein or the T3Rbeta-Delta432 mutant found in human resistance to thyroid hormone syndrome, display enhanced homodimerization properties and exhibit unusually strong interactions with the SMRT corepressor. Significantly, the topology of a DNA binding site can determine whether that site recruits primarily homodimers or heterodimers and therefore whether corepressor is efficiently or inefficiently recruited to the resulting receptor-DNA complex. We suggest that T3R homodimers, and not heterodimers, may be important mediators of transcriptional repression and that the nature of the DNA binding site, by selecting for receptor homodimers or heterodimers, can influence the ability of the receptor to recruit corepressor.
Collapse
Affiliation(s)
- S M Yoh
- Section of Microbiology, Division of Biological Sciences, University of California, Davis, California 95616, USA
| | | |
Collapse
|
55
|
Zhou Y, Gross W, Hong SH, Privalsky ML. The SMRT corepressor is a target of phosphorylation by protein kinase CK2 (casein kinase II). Mol Cell Biochem 2001; 220:1-13. [PMID: 11451368 PMCID: PMC2655343 DOI: 10.1023/a:1011087910699] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Silencing-Mediator for Retinoid/Thyroid hormone receptors (SMRT) interacts with, and mediates transcriptional repression by, a variety of eukaryotic transcription factors, including the nuclear hormone receptors. The ability of SMRT to function as a transcriptional 'corepressor' is regulated by a variety of signal transduction pathways. We report here that SMRT is a phosphoprotein in vivo, and is also phosphorylated in vitro by unfractionated cell extracts. A major site of phosphorylation of SMRT is a protein kinase CK2 motif centered on serine 1492, and located within a C-terminal SMRT domain that mediates interaction of the corepressor with the nuclear hormone receptors. Phosphorylation of SMRT by CK2 stabilizes the ability of the SMRT protein to interact with nuclear hormone receptors. Our results indicate that SMRT is a member of an expanding family of transcriptional regulators that are modified, and potentially regulated, in response to protein kinase CK2.
Collapse
Affiliation(s)
- Y Zhou
- Division of Biological Sciences, University of California at Davis, 95616, USA
| | | | | | | |
Collapse
|
56
|
Ye HF, O'Reilly KE, Koh JT. A subtype-selective thyromimetic designed to bind a mutant thyroid hormone receptor implicated in resistance to thyroid hormone. J Am Chem Soc 2001; 123:1521-2. [PMID: 11456736 DOI: 10.1021/ja003442j] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- H F Ye
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
57
|
Baxter JD, Dillmann WH, West BL, Huber R, Furlow JD, Fletterick RJ, Webb P, Apriletti JW, Scanlan TS. Selective modulation of thyroid hormone receptor action. J Steroid Biochem Mol Biol 2001; 76:31-42. [PMID: 11384861 DOI: 10.1016/s0960-0760(01)00052-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Thyroid hormones have some actions that might be useful therapeutically, but others that are deleterious. Potential therapeutically useful actions include those to induce weight loss and lower plasma cholesterol levels. Potential deleterious actions are those on the heart to induce tachycardia and arrhythmia, on bone to decrease mineral density, and on muscle to induce wasting. There have been successes in selectively modulating the actions of other classes of hormones through various means, including the use of pharmaceuticals that have enhanced affinities for certain receptor isoforms. Thus, there is reason to pursue selective modulation of thyroid hormone receptor (TR) function, and several agents have been shown to have some beta-selective, hepatic selective and/or cardiac sparring activities, although development of these was largely not based on detailed understanding of mechanisms for the specificity. The possibility of selectively targeting the TRbeta was suggested by the findings that there are alpha- and beta-TR forms and that the TRalpha-forms may preferentially regulate the heart rate, whereas many other actions of these hormones are mediated by the TRbeta. We determined X-ray crystal structures of the TRalpha and TRbeta ligand-binding domains (LBDs) complexed with the thyroid hormone analog 3,5,3'-triiodithyroacetic acid (Triac). The data suggested that a single amino acid difference in the ligand-binding cavities of the two receptors could affect hydrogen bonding in the receptor region, where the ligand's 1-position substituent fits and might be exploited to generate beta-selective ligands. The compound GC-1, with oxoacetate in the 1-position instead of acetate as in Triac, exhibited TRbeta-selective binding and actions in cultured cells. An X-ray crystal structure of the GC-1-TRbeta LBD complex suggests that the oxoacetate does participate in a network of hydrogen bonding in the TR LBD polar pocket. GC-1 displayed actions in tadpoles that were TRbeta-selective. When administered to mice, GC-1 was as effective in lowering plasma cholesterol levels as T(3), and was more effective than T(3) in lowering plasma triglyceride levels. At these doses, GC-1 did not increase the heart rate. GC-1 was also less active than T(3) in modulating activities of several other cardiac parameters, and especially a cardiac pacemaker channel such as HCN-2, which may participate in regulation of the heart rate. GC-1 showed intermediate activity in suppressing plasma thyroid stimulating hormone (TSH) levels. The tissue/plasma ratio for GC-1 in heart was also less than for the liver. These data suggest that compounds can be generated that are TR-selective and that compounds with this property and/or that exhibit selective uptake, might have clinical utility as selective TR modulators.
Collapse
Affiliation(s)
- J D Baxter
- Metabolic Research Unit, Department of Medicine, University of California, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Lee SK, Lee B, Lee JW. Mutations in retinoid X receptor that impair heterodimerization with specific nuclear hormone receptor. J Biol Chem 2000; 275:33522-6. [PMID: 10948200 DOI: 10.1074/jbc.m006418200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoid X receptor (RXR) serves as a promiscuous heterodimerization partner for many nuclear receptors through the identity box, a 40-amino acid subregion within the ligand binding domain. In this study, we randomly mutated two specific residues within the human RXRalpha identity box region previously identified as important determinants in heterodimerization (i.e. Ala(416) and Arg(421)). Interestingly, most of these mutants still retained wild type interactions with thyroid hormone receptor (TR), retinoic acid receptor, peroxisome proliferator-activated receptor alpha, small heterodimer partner, and constitutive androstane receptor. However, RXR-A416D and R421L were specifically impaired for interactions with TR, whereas RXR-A416K lost both TR and retinoic acid receptor interactions. Accordingly, RXR-A416D did not support T3 transactivation in mammalian cells, whereas RXR-A416K was not supportive of transactivation by retinoids or T3. These results provide a basis upon which to further design mutant RXRs highly selective in heterodimerization, potentially useful tools to probe nuclear receptor function in vivo.
Collapse
Affiliation(s)
- S K Lee
- Center for Ligand and Transcription, Department of Biology, and Hormone Research Center, Chonnam National University, Kwangju 500-757, Korea
| | | | | |
Collapse
|
59
|
Abstract
Thyroid hormone is essential for normal development, differentiation, and metabolic balance. Thyroid hormone action is mediated by multiple thyroid hormone receptor isoforms derived from two distinct genes. The thyroid hormone receptors belong to a nuclear receptor superfamily that also includes receptors for other small lipophilic hormones. Thyroid hormone receptors function by binding to specific thyroid hormone-responsive sequences in promoters of target genes and by regulating transcription. Thyroid hormone receptors often form heterodimers with retinoid X receptors. Heterodimerization is regulated through distinct mechanisms that together determine the specificity and flexibility of the sequence recognition. Amino-terminal regions appear to modulate thyroid hormone receptor function in an isoform-dependent manner. Unliganded thyroid hormone receptor represses transcription through recruitment of a corepressor complex, which also includes Sin3A and histone deacetylase. Ligand binding alters the conformation of the thyroid hormone receptor in such a way as to release the corepressor complex and recruit a coactivator complex that includes multiple histone acetyltransferases, including a steroid receptor family coactivator, p300/CREB-binding protein-associated factor (PCAF), and CREB binding protein (CBP). The existence of histone-modifying activities in the transcriptional regulatory complexes indicates an important role of chromatin structure. Stoichiometric, structural, and sequence-specific rules for coregulator interaction are beginning to be understood, as are aspects of the tissue specificity of hormone action. Moreover, knockout studies suggest that the products of two thyroid hormone receptor genes mediate distinct functions in vivo. The increased understanding of the structure and function of thyroid hormone receptors and their interacting proteins has markedly clarified the molecular mechanisms of thyroid hormone action.
Collapse
Affiliation(s)
- J Zhang
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
60
|
Hong SH, Privalsky ML. The SMRT corepressor is regulated by a MEK-1 kinase pathway: inhibition of corepressor function is associated with SMRT phosphorylation and nuclear export. Mol Cell Biol 2000; 20:6612-25. [PMID: 10938135 PMCID: PMC86146 DOI: 10.1128/mcb.20.17.6612-6625.2000] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SMRT (silencing mediator of retinoic acid and thyroid hormone receptor) corepressor participates in the repression of target gene expression by a variety of transcription factors, including the nuclear hormone receptors, promyelocytic leukemia zinc finger protein, and B-cell leukemia protein 6. The ability of SMRT to associate with these transcription factors and thereby to mediate repression is strongly inhibited by activation of tyrosine kinase signaling pathways, such as that represented by the epidermal growth factor receptor. We report here that SMRT function is potently inhibited by a mitogen-activated protein kinase (MAPK) kinase kinase (MAPKKK) cascade that operates downstream of this growth factor receptor. Intriguingly, the SMRT protein is a substrate for phosphorylation by protein kinases operating at multiple levels in this MAPKKK pathway, including the MAPKs, MAPK-extracellular signal-regulated kinase 1 (MEK-1), and MEK-1 kinase (MEKK-1). Phosphorylation of SMRT by MEKK-1 and, to a lesser extent, MEK-1 inhibits the ability of SMRT to physically tether to its transcription factor partners. Notably, activation of MEKK-1 or MEK-1 signaling in transfected cells also leads to a redistribution of the SMRT protein from a nuclear compartment to a more perinuclear or cytoplasmic compartment. We suggest that SMRT-mediated repression is regulated by the MAPKKK cascade and that changes both in the affinity of SMRT for its transcription factors and in the subcellular distribution of SMRT contribute to the loss of SMRT function that is observed in response to kinase signal transduction.
Collapse
Affiliation(s)
- S H Hong
- Section of Microbiology, University of California at Davis, Davis, California 95616, USA
| | | |
Collapse
|
61
|
Billoni N, Buan B, Gautier B, Gaillard O, Mahé YF, Bernard BA. Thyroid hormone receptor beta1 is expressed in the human hair follicle. Br J Dermatol 2000; 142:645-52. [PMID: 10792213 DOI: 10.1046/j.1365-2133.2000.03408.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To understand better the mechanisms by which thyroid hormone can exert its effects on the hair follicle, we looked for the expression of members of the thyroid hormone receptor (TR) family in human hair follicles. Immunoreactive TRs were detected in both dermal and epithelial compartments of the human pilosebaceous unit. Using reverse transcriptase-polymerase chain reaction, we established that TRbeta1 was the predominant form of TR expressed in the human hair follicle. In addition, we investigated the effects of 3,3', 5-triiodo-L-thyronine (T3) on the survival of human hair follicles in vitro, to understand the role of this thyroid hormone on hair follicle homeostasis. A physiological level of free T3 significantly enhanced human hair survival in vitro.
Collapse
Affiliation(s)
- N Billoni
- Life Sciences, L'OREAL Advanced Research Laboratories, L'OREAL Hair Biology Group, 90 rue du général Roguet, 92583 Clichy cedex, France
| | | | | | | | | | | |
Collapse
|
62
|
Goldman JM, Laws SC, Balchak SK, Cooper RL, Kavlock RJ. Endocrine-disrupting chemicals: prepubertal exposures and effects on sexual maturation and thyroid activity in the female rat. A focus on the EDSTAC recommendations. Crit Rev Toxicol 2000; 30:135-96. [PMID: 10759430 DOI: 10.1080/10408440091159185] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In 1996, the US Environmental Protection Agency was given a mandate by Congress to develop a screening program that would evaluate whether variously identified compounds could affect human health by mimicking or interfering with normal endocrine regulatory functions. Toward this end, the Agency chartered the Endocrine Disruptor Screening and Testing Advisory Committee in October of that year that would serve to recommend a series of in vitro and in vivo protocols designed to provide a comprehensive assessment of a chemical's potential endocrine-disrupting activity. A number of these protocols have undergone subsequent modification by EPA, and this review focuses specifically on the revised in vivo screening procedure recommended under the title Research Protocol for Assessment of Pubertal Development and Thyroid Function in Juvenile Female Rats. Background literature has been provided that summarizes what is currently known about pubertal development in the female rat and the influence of various forms of pharmaceutical and toxicological insult on this process and on thyroid activity. Finally, a section is included that discusses technical issues that should be considered if the specified pubertal endpoints are to be measured and successfully evaluated.
Collapse
Affiliation(s)
- J M Goldman
- Reproductive Toxicology Division, National Health & Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | | | | | | |
Collapse
|