51
|
Zhang H, Menguy N, Wang F, Benzerara K, Leroy E, Liu P, Liu W, Wang C, Pan Y, Chen Z, Li J. Magnetotactic Coccus Strain SHHC-1 Affiliated to Alphaproteobacteria Forms Octahedral Magnetite Magnetosomes. Front Microbiol 2017; 8:969. [PMID: 28611762 PMCID: PMC5447723 DOI: 10.3389/fmicb.2017.00969] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
Magnetotactic bacteria (MTB) are morphologically and phylogenetically diverse prokaryotes. They can form intracellular chain-assembled magnetite (Fe3O4) or greigite (Fe3S4) nanocrystals each enveloped by a lipid bilayer membrane called a magnetosome. Magnetotactic cocci have been found to be the most abundant morphotypes of MTB in various aquatic environments. However, knowledge on magnetosome biomineralization within magnetotactic cocci remains elusive due to small number of strains that have been cultured. By using a coordinated fluorescence and scanning electron microscopy method, we discovered a unique magnetotactic coccus strain (tentatively named SHHC-1) in brackish sediments collected from the estuary of Shihe River in Qinhuangdao city, eastern China. It phylogenetically belongs to the Alphaproteobacteria class. Transmission electron microscopy analyses reveal that SHHC-1 cells formed many magnetite-type magnetosomes organized as two bundles in each cell. Each bundle contains two parallel chains with smaller magnetosomes generally located at the ends of each chain. Unlike most magnetotactic alphaproteobacteria that generally form magnetosomes with uniform crystal morphologies, SHHC-1 magnetosomes display a more diverse variety of crystal morphology even within a single cell. Most particles have rectangular and rhomboidal projections, whilst others are triangular, or irregular. High resolution transmission electron microscopy observations coupled with morphological modeling indicate an idealized model-elongated octahedral crystals, a form composed of eight {111} faces. Furthermore, twins, multiple twins and stack dislocations are frequently observed in the SHHC-1 magnetosomes. This suggests that biomineralization of strain SHHC-1 magnetosome might be less biologically controlled than other magnetotactic alphaproteobacteria. Alternatively, SHHC-1 is more sensitive to the unfavorable environments under which it lives, or a combination of both factors may have controlled the magnetosome biomineralization process within this unique MTB.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Life Science and Technology, Heilongjiang Bayi Agricultural UniversityDaqing, China.,Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China.,France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of SciencesBeijing, China
| | - Nicolas Menguy
- France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of SciencesBeijing, China.,IMPMC, Centre National de la Recherche Scientifique, UMR 7590, Sorbonne Universités, MNHN, UPMC, IRD UMR 206Paris, France
| | - Fuxian Wang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China.,France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of SciencesBeijing, China
| | - Karim Benzerara
- IMPMC, Centre National de la Recherche Scientifique, UMR 7590, Sorbonne Universités, MNHN, UPMC, IRD UMR 206Paris, France
| | - Eric Leroy
- France Chimie Me'tallurgique des Terres Rares, ICMPE, UMR 7182, Centre National de la Recherche ScientifiqueThiais, France
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China.,France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of SciencesBeijing, China
| | - Wenqi Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China.,France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of SciencesBeijing, China
| | - Chunli Wang
- Department of Life Science and Technology, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing, China.,France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of SciencesBeijing, China
| | - Zhibao Chen
- Department of Life Science and Technology, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China.,France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
52
|
Abstract
Magnetotactic bacteria derive their magnetic orientation from magnetosomes, which are unique organelles that contain nanometre-sized crystals of magnetic iron minerals. Although these organelles have evident potential for exciting biotechnological applications, a lack of genetically tractable magnetotactic bacteria had hampered the development of such tools; however, in the past decade, genetic studies using two model Magnetospirillum species have revealed much about the mechanisms of magnetosome biogenesis. In this Review, we highlight these new insights and place the molecular mechanisms of magnetosome biogenesis in the context of the complex cell biology of Magnetospirillum spp. Furthermore, we discuss the diverse properties of magnetosome biogenesis in other species of magnetotactic bacteria and consider the value of genetically 'magnetizing' non-magnetotactic bacteria. Finally, we discuss future prospects for this highly interdisciplinary and rapidly advancing field.
Collapse
|
53
|
Lefèvre CT, Howse PA, Schmidt ML, Sabaty M, Menguy N, Luther GW, Bazylinski DA. Growth of magnetotactic sulfate-reducing bacteria in oxygen concentration gradient medium. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:1003-1015. [PMID: 27701830 DOI: 10.1111/1758-2229.12479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Although dissimilatory sulfate-reducing bacteria (SRB) are generally described as strictly anaerobic organisms with regard to growth, several reports have shown that some SRB, particularly Desulfovibrio species, are quite resistant to O2 . For example, SRB remain viable in many aerobic environments while some even reduce O2 to H2 O. However, reproducible aerobic growth of SRB has not been unequivocally documented. Desulfovibrio magneticus is a SRB that is also a magnetotactic bacterium (MTB). MTB biomineralize magnetosomes which are intracellular, membrane-bounded, magnetic iron mineral crystals. The ability of D. magneticus to grow aerobically in several different media under air where an O2 concentration gradient formed, or under O2 -free N2 gas was tested. Under air, cells grew as a microaerophilic band of cells at the oxic-anoxic interface in media lacking sulfate. These results show that D. magneticus is capable of aerobic growth with O2 as a terminal electron acceptor. This is the first report of consistent, reproducible aerobic growth of SRB. This finding is critical in determining important ecological roles SRB play in the environment. Interestingly, the crystal structure of the magnetite crystals of D. magneticus grown under microaerobic conditions showed significant differences compared with those produced anaerobically providing more evidence that environmental parameters influence magnetosome formation.
Collapse
Affiliation(s)
- Christopher T Lefèvre
- CNRS/CEA/Aix-Marseille Université UMR7265 Institut de biosciences et biotechnologies Laboratoire de Bioénergétique Cellulaire, Saint Paul lez Durance, 13108, France
| | - Paul A Howse
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Marian L Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Monique Sabaty
- CNRS/CEA/Aix-Marseille Université UMR7265 Institut de biosciences et biotechnologies Laboratoire de Bioénergétique Cellulaire, Saint Paul lez Durance, 13108, France
| | - Nicolas Menguy
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, Université Pierre et Marie Curie, UMR 7590 CNRS, Institut de Recherche pour le Développement UMR 206, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - George W Luther
- School of Marine Science and Policy, University of Delaware, 700 Pilottown Rd. Lewes, DE, 19958, USA
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, 89154-4004, USA
| |
Collapse
|
54
|
North-Seeking Magnetotactic Gammaproteobacteria in the Southern Hemisphere. Appl Environ Microbiol 2016; 82:5595-602. [PMID: 27401974 DOI: 10.1128/aem.01545-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/29/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Magnetotactic bacteria (MTB) comprise a phylogenetically diverse group of prokaryotes capable of orienting and navigating along magnetic field lines. Under oxic conditions, MTB in natural environments in the Northern Hemisphere generally display north-seeking (NS) polarity, swimming parallel to the Earth's magnetic field lines, while those in the Southern Hemisphere generally swim antiparallel to magnetic field lines (south-seeking [SS] polarity). Here, we report a population of an uncultured, monotrichously flagellated, and vibrioid MTB collected from a brackish lagoon in Brazil in the Southern Hemisphere that consistently exhibits NS polarity. Cells of this organism were mainly located below the oxic-anoxic interface (OAI), suggesting it is capable of some type of anaerobic metabolism. Magnetosome crystalline habit and composition were consistent with elongated prismatic magnetite (Fe3O4) particles. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that this organism belongs to a distinct clade of the Gammaproteobacteria class. The presence of NS MTB in the Southern Hemisphere and the previously reported finding of SS MTB in the Northern Hemisphere reinforce the idea that magnetotaxis is more complex than we currently understand and may be modulated by factors other than O2 concentration and redox gradients in sediments and water columns. IMPORTANCE Magnetotaxis is a navigational mechanism used by magnetotactic bacteria to move along geomagnetic field lines and find an optimal position in chemically stratified sediments. For that, magnetotactic bacteria swim parallel to the geomagnetic field lines under oxic conditions in the Northern Hemisphere, whereas those in the Southern Hemisphere swim antiparallel to magnetic field lines. A population of uncultured vibrioid magnetotactic bacteria was discovered in a brackish lagoon in the Southern Hemisphere that consistently swim northward, i.e., the opposite of the overwhelming majority of other Southern Hemisphere magnetotactic bacteria. This finding supports the idea that magnetotaxis is more complex than previously thought.
Collapse
|
55
|
Probst AJ, Castelle CJ, Singh A, Brown CT, Anantharaman K, Sharon I, Hug LA, Burstein D, Emerson JB, Thomas BC, Banfield JF. Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO 2 concentrations. Environ Microbiol 2016; 19:459-474. [PMID: 27112493 DOI: 10.1111/1462-2920.13362] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As in many deep underground environments, the microbial communities in subsurface high-CO2 ecosystems remain relatively unexplored. Recent investigations based on single-gene assays revealed a remarkable variety of organisms from little studied phyla in Crystal Geyser (Utah, USA), a site where deeply sourced CO2 -saturated fluids are erupted at the surface. To provide genomic resolution of the metabolisms of these organisms, we used a novel metagenomic approach to recover 227 high-quality genomes from 150 microbial species affiliated with 46 different phylum-level lineages. Bacteria from two novel phylum-level lineages have the capacity for CO2 fixation. Analyses of carbon fixation pathways in all studied organisms revealed that the Wood-Ljungdahl pathway and the Calvin-Benson-Bassham Cycle occurred with the highest frequency, whereas the reverse TCA cycle was little used. We infer that this, and selection for form II RuBisCOs, are adaptions to high CO2 -concentrations. However, many autotrophs can also grow mixotrophically, a strategy that confers metabolic versatility. The assignment of 156 hydrogenases to 90 different organisms suggests that H2 is an important inter-species energy currency even under gaseous CO2 -saturation. Overall, metabolic analyses at the organism level provided insight into the biochemical cycles that support subsurface life under the extreme condition of CO2 saturation.
Collapse
Affiliation(s)
- Alexander J Probst
- Department of Earth and Planetary Sciences, University of California, Berkeley, 307 McCone Hall, CA, 94720, USA
| | - Cindy J Castelle
- Department of Earth and Planetary Sciences, University of California, Berkeley, 307 McCone Hall, CA, 94720, USA
| | - Andrea Singh
- Department of Earth and Planetary Sciences, University of California, Berkeley, 307 McCone Hall, CA, 94720, USA
| | - Christopher T Brown
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Karthik Anantharaman
- Department of Earth and Planetary Sciences, University of California, Berkeley, 307 McCone Hall, CA, 94720, USA
| | - Itai Sharon
- Department of Earth and Planetary Sciences, University of California, Berkeley, 307 McCone Hall, CA, 94720, USA
| | - Laura A Hug
- Department of Earth and Planetary Sciences, University of California, Berkeley, 307 McCone Hall, CA, 94720, USA
| | - David Burstein
- Department of Earth and Planetary Sciences, University of California, Berkeley, 307 McCone Hall, CA, 94720, USA
| | - Joanne B Emerson
- Department of Earth and Planetary Sciences, University of California, Berkeley, 307 McCone Hall, CA, 94720, USA
| | - Brian C Thomas
- Department of Earth and Planetary Sciences, University of California, Berkeley, 307 McCone Hall, CA, 94720, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, 307 McCone Hall, CA, 94720, USA.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA.,Earth Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| |
Collapse
|
56
|
Abreu F, Carolina A, Araujo V, Leão P, Silva KT, Carvalho FMD, Cunha ODL, Almeida LG, Geurink C, Farina M, Rodelli D, Jovane L, Pellizari VH, Vasconcelos ATD, Bazylinski DA, Lins U. Culture‐independent characterization of novel psychrophilic magnetotactic cocci from Antarctic marine sediments. Environ Microbiol 2016; 18:4426-4441. [DOI: 10.1111/1462-2920.13388] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/20/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro21941‐902Rio de Janeiro RJ Brazil
| | | | - V. Araujo
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro21941‐902Rio de Janeiro RJ Brazil
| | - Pedro Leão
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro21941‐902Rio de Janeiro RJ Brazil
| | - Karen Tavares Silva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro21941‐902Rio de Janeiro RJ Brazil
| | | | - Oberdan de Lima Cunha
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica25651‐070Petrópolis RJ Brazil
| | - Luiz Gonzaga Almeida
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica25651‐070Petrópolis RJ Brazil
| | - Corey Geurink
- School of Life SciencesUniversity of Nevada at Las VegasLas Vegas NV89154‐4004 USA
| | - Marcos Farina
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro21941‐902Rio de Janeiro RJ Brazil
| | - Daniel Rodelli
- Instituto Oceanográfico, Universidade de São Paulo05508‐900São Paulo SP Brazil
| | - Luigi Jovane
- Instituto Oceanográfico, Universidade de São Paulo05508‐900São Paulo SP Brazil
| | - Vivian H. Pellizari
- Instituto Oceanográfico, Universidade de São Paulo05508‐900São Paulo SP Brazil
| | - Ana Tereza de Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica25651‐070Petrópolis RJ Brazil
| | - Dennis A. Bazylinski
- School of Life SciencesUniversity of Nevada at Las VegasLas Vegas NV89154‐4004 USA
| | - Ulysses Lins
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro21941‐902Rio de Janeiro RJ Brazil
| |
Collapse
|
57
|
Dong Y, Li J, Zhang W, Zhang W, Zhao Y, Xiao T, Wu LF, Pan H. The detection of magnetotactic bacteria in deep sea sediments from the east Pacific Manganese Nodule Province. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:239-249. [PMID: 26742990 DOI: 10.1111/1758-2229.12374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Magnetotactic bacteria (MTB) are distributed ubiquitously in sediments from coastal environments to the deep sea. The Pacific Manganese Nodule Province contains numerous polymetallic nodules mainly composed of manganese, iron, cobalt, copper and nickel. In the present study we used Illumina MiSeq sequencing technology to assess the communities of putative MTB in deep sea surface sediments at nine stations in the east Pacific Manganese Nodule Province. A total of 402 sequence reads from MTB were classified into six operational taxonomic units (OTUs). Among these, OTU113 and OTU759 were affiliated with the genus Magnetospira, OTU2224 and OTU2794 were affiliated with the genus Magnetococcus and Magnetovibrio, respectively, OTU3017 had no known genus affiliation, and OTU2556 was most similar to Candidatus Magnetananas. Interestingly, OTU759 was widely distributed, occurring at all study sites. Magnetism measurements revealed that all sediments were dominated by low coercivity, non-interacting single domain magnetic minerals. Transmission electron microscopy confirmed that the magnetic minerals were magnetosomes. Our data suggest that diverse putative MTB are widely distributed in deep sea surface sediments from the east Pacific Manganese Nodule Province.
Collapse
Affiliation(s)
- Yi Dong
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| | - Wuchang Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenyan Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| | - Yuan Zhao
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| | - Tian Xiao
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| | - Long-Fei Wu
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
- Laboratoire de Chimie Bactérienne, UMR7283, Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, CNRS, F-13402, Marseille, France
| | - Hongmiao Pan
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), CNRS, F-13402, Marseille, France
| |
Collapse
|
58
|
Chen YR, Zhang WY, Zhou K, Pan HM, Du HJ, Xu C, Xu JH, Pradel N, Santini CL, Li JH, Huang H, Pan YX, Xiao T, Wu LF. Novel species and expanded distribution of ellipsoidal multicellular magnetotactic prokaryotes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:218-226. [PMID: 26711721 DOI: 10.1111/1758-2229.12371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
Multicellular magnetotactic prokaryotes (MMPs) are a peculiar group of magnetotactic bacteria, each comprising approximately 10-100 cells of the same phylotype. Two morphotypes of MMP have been identified, including several species of globally distributed spherical mulberry-like MMPs (s-MMPs), and two species of ellipsoidal pineapple-like MMPs (e-MMPs) from China (Qingdao and Rongcheng cities). We recently collected e-MMPs from Mediterranean Sea sediments (Six-Fours-les-Plages) and Drummond Island, in the South China Sea. Phylogenetic analysis revealed that the MMPs from Six-Fours-les-Plages and the previously reported e-MMP Candidatus Magnetananas rongchenensis have 98.5% sequence identity and are the same species, while the MMPs from Drummond Island appear to be a novel species, having > 7.1% sequence divergence from the most closely related e-MMP, Candidatus Magnetananas tsingtaoensis. Identification of the novel species expands the distribution of e-MMPs to Tropical Zone. Comparison of nine physical and chemical parameters revealed that sand grain size and the content of inorganic nitrogen (nitrate, ammonium and nitrite) in the sediments from Rongcheng City and Six-Fours-les-Plages were similar, and lower than found for sediments from the other two sampling sites. The results of the study reveal broad diversity and wide distribution of e-MMPs.
Collapse
Affiliation(s)
- Yi-ran Chen
- Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- CNRS, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille cedex 20, F13402, Marseille, France
- Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Ecology and Environmental Science, Qingdao, 266071, China
| | - Wen-yan Zhang
- Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- CNRS, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille cedex 20, F13402, Marseille, France
- Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Ecology and Environmental Science, Qingdao, 266071, China
| | - Ke Zhou
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hong-miao Pan
- Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- CNRS, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille cedex 20, F13402, Marseille, France
- Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Ecology and Environmental Science, Qingdao, 266071, China
| | - Hai-jian Du
- Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- CNRS, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille cedex 20, F13402, Marseille, France
- Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Ecology and Environmental Science, Qingdao, 266071, China
| | - Cong Xu
- Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-hong Xu
- Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Nathalie Pradel
- CNRS, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille cedex 20, F13402, Marseille, France
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, UM110, Mediterranean Institute of Oceanography (MIO), Marseille, F-13288, France
| | - Claire-Lise Santini
- CNRS, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille cedex 20, F13402, Marseille, France
- Aix Marseille Université, CNRS, LCB UMR 7257, Institut de Microbiologie de la Méditerranée, 31, chemin Joseph Aiguier, Marseille CEDEX20, Marseille, F-13402, France
| | - Jin-hua Li
- Paleomagnetism and Geochronology Lab, Key Laboratory of the Earth's Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Hui Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yong-xin Pan
- Paleomagnetism and Geochronology Lab, Key Laboratory of the Earth's Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Tian Xiao
- Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- CNRS, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille cedex 20, F13402, Marseille, France
- Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Ecology and Environmental Science, Qingdao, 266071, China
| | - Long-fei Wu
- CNRS, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille cedex 20, F13402, Marseille, France
- Aix Marseille Université, CNRS, LCB UMR 7257, Institut de Microbiologie de la Méditerranée, 31, chemin Joseph Aiguier, Marseille CEDEX20, Marseille, F-13402, France
| |
Collapse
|
59
|
Wong HL, Ahmed-Cox A, Burns BP. Molecular Ecology of Hypersaline Microbial Mats: Current Insights and New Directions. Microorganisms 2016; 4:microorganisms4010006. [PMID: 27681900 PMCID: PMC5029511 DOI: 10.3390/microorganisms4010006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022] Open
Abstract
Microbial mats are unique geobiological ecosystems that form as a result of complex communities of microorganisms interacting with each other and their physical environment. Both the microorganisms present and the network of metabolic interactions govern ecosystem function therein. These systems are often found in a range of extreme environments, and those found in elevated salinity have been particularly well studied. The purpose of this review is to briefly describe the molecular ecology of select model hypersaline mat systems (Guerrero Negro, Shark Bay, S’Avall, and Kiritimati Atoll), and any potentially modulating effects caused by salinity to community structure. In addition, we discuss several emerging issues in the field (linking function to newly discovered phyla and microbial dark matter), which illustrate the changing paradigm that is seen as technology has rapidly advanced in the study of these extreme and evolutionally significant ecosystems.
Collapse
Affiliation(s)
- Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.
- Australian Centre for Astrobiology, University of New South Wales, Sydney 2052, Australia.
| | - Aria Ahmed-Cox
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.
| | - Brendan Paul Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.
- Australian Centre for Astrobiology, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
60
|
Barber-Zucker S, Keren-Khadmy N, Zarivach R. From invagination to navigation: The story of magnetosome-associated proteins in magnetotactic bacteria. Protein Sci 2015; 25:338-51. [PMID: 26457474 DOI: 10.1002/pro.2827] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/07/2015] [Indexed: 11/11/2022]
Abstract
Magnetotactic bacteria (MTB) are a group of Gram-negative microorganisms that are able to sense and change their orientation in accordance with the geomagnetic field. This unique capability is due to the presence of a special suborganelle called the magnetosome, composed of either a magnetite or gregite crystal surrounded by a lipid membrane. MTB were first detected in 1975 and since then numerous efforts have been made to clarify the special mechanism of magnetosome formation at the molecular level. Magnetosome formation can be divided into several steps, beginning with vesicle invagination from the cell membrane, through protein sorting, followed by the combined steps of iron transportation, biomineralization, and the alignment of magnetosomes into a chain. The magnetosome-chain enables the sensing of the magnetic field, and thus, allows the MTB to navigate. It is known that magnetosome formation is tightly controlled by a distinctive set of magnetosome-associated proteins that are encoded mainly in a genomically conserved region within MTB called the magnetosome island (MAI). Most of these proteins were shown to have an impact on the magnetism of MTB. Here, we describe the process in which the magnetosome is formed with an emphasis on the different proteins that participate in each stage of the magnetosome formation scheme.
Collapse
Affiliation(s)
- Shiran Barber-Zucker
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Noa Keren-Khadmy
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Raz Zarivach
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| |
Collapse
|
61
|
Lefèvre CT. Genomic insights into the early-diverging magnetotactic bacteria. Environ Microbiol 2015; 18:1-3. [PMID: 26286101 DOI: 10.1111/1462-2920.12989] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 07/15/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Christopher T Lefèvre
- CNRS/CEA/Aix-Marseille Université, UMR7265 Institut de Biologie Environnementale et Biotechnologie, Laboratoire de Bioénergétique Cellulaire, Saint Paul lez Durance, France
| |
Collapse
|
62
|
Kolinko S, Richter M, Glöckner FO, Brachmann A, Schüler D. Single-cell genomics of uncultivated deep-branching magnetotactic bacteria reveals a conserved set of magnetosome genes. Environ Microbiol 2015; 18:21-37. [PMID: 26060021 DOI: 10.1111/1462-2920.12907] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/10/2015] [Accepted: 05/14/2015] [Indexed: 11/26/2022]
Abstract
While magnetosome biosynthesis within the magnetotactic Proteobacteria is increasingly well understood, much less is known about the genetic control within deep-branching phyla, which have a unique ultrastructure and biosynthesize up to several hundreds of bullet-shaped magnetite magnetosomes arranged in multiple bundles of chains, but have no cultured representatives. Recent metagenomic analysis identified magnetosome genes in the genus 'Candidatus Magnetobacterium' homologous to those in Proteobacteria. However, metagenomic analysis has been limited to highly abundant members of the community, and therefore only little is known about the magnetosome biosynthesis, ecophysiology and metabolic capacity in deep-branching MTB. Here we report the analysis of single-cell derived draft genomes of three deep-branching uncultivated MTB. Single-cell sorting followed by whole genome amplification generated draft genomes of Candidatus Magnetobacterium bavaricum and Candidatus Magnetoovum chiemensis CS-04 of the Nitrospirae phylum. Furthermore, we present the first, nearly complete draft genome of a magnetotactic representative from the candidate phylum Omnitrophica, tentatively named Candidatus Omnitrophus magneticus SKK-01. Besides key metabolic features consistent with a common chemolithoautotrophic lifestyle, we identified numerous, partly novel genes most likely involved in magnetosome biosynthesis of bullet-shaped magnetosomes and their arrangement in multiple bundles of chains.
Collapse
Affiliation(s)
- Sebastian Kolinko
- Department of Biology I, LMU Biozentrum, Ludwig-Maximilians University Munich, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Michael Richter
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, 28359, Germany
| | - Frank-Oliver Glöckner
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, 28359, Germany.,Department of Life Sciences & Chemistry, Jacobs University Bremen, Campus Ring 1, Bremen, 28759, Germany
| | - Andreas Brachmann
- Department of Biology I, LMU Biozentrum, Ludwig-Maximilians University Munich, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Dirk Schüler
- Department of Biology I, LMU Biozentrum, Ludwig-Maximilians University Munich, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany.,Department of Microbiology, University Bayreuth, Bayreuth, Germany
| |
Collapse
|
63
|
Zeytuni N, Cronin S, Lefèvre CT, Arnoux P, Baran D, Shtein Z, Davidov G, Zarivach R. MamA as a Model Protein for Structure-Based Insight into the Evolutionary Origins of Magnetotactic Bacteria. PLoS One 2015; 10:e0130394. [PMID: 26114501 PMCID: PMC4482739 DOI: 10.1371/journal.pone.0130394] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/20/2015] [Indexed: 02/01/2023] Open
Abstract
MamA is a highly conserved protein found in magnetotactic bacteria (MTB), a diverse group of prokaryotes capable of navigating according to magnetic fields – an ability known as magnetotaxis. Questions surround the acquisition of this magnetic navigation ability; namely, whether it arose through horizontal or vertical gene transfer. Though its exact function is unknown, MamA surrounds the magnetosome, the magnetic organelle embedding a biomineralised nanoparticle and responsible for magnetotaxis. Several structures for MamA from a variety of species have been determined and show a high degree of structural similarity. By determining the structure of MamA from Desulfovibrio magneticus RS-1 using X-ray crystallography, we have opened up the structure-sequence landscape. As such, this allows us to perform structural- and phylogenetic-based analyses using a variety of previously determined MamA from a diverse range of MTB species across various phylogenetic groups. We found that MamA has remained remarkably constant throughout evolution with minimal change between different taxa despite sequence variations. These findings, coupled with the generation of phylogenetic trees using both amino acid sequences and 16S rRNA, indicate that magnetotaxis likely did not spread via horizontal gene transfer and instead has a significantly earlier, primordial origin.
Collapse
Affiliation(s)
- Natalie Zeytuni
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Samuel Cronin
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Christopher T. Lefèvre
- CEA/CNRS/Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire de Bioénergétique Cellulaire, Saint Paul les Durance, France
| | - Pascal Arnoux
- CEA/CNRS/Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire de Bioénergétique Cellulaire, Saint Paul les Durance, France
| | - Dror Baran
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Zvi Shtein
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Geula Davidov
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
- * E-mail:
| |
Collapse
|
64
|
Magnetotactic bacteria as potential sources of bioproducts. Mar Drugs 2015; 13:389-430. [PMID: 25603340 PMCID: PMC4306944 DOI: 10.3390/md13010389] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/17/2014] [Indexed: 11/16/2022] Open
Abstract
Magnetotactic bacteria (MTB) produce intracellular organelles called magnetosomes which are magnetic nanoparticles composed of magnetite (Fe3O4) or greigite (Fe3S4) enveloped by a lipid bilayer. The synthesis of a magnetosome is through a genetically controlled process in which the bacterium has control over the composition, direction of crystal growth, and the size and shape of the mineral crystal. As a result of this control, magnetosomes have narrow and uniform size ranges, relatively specific magnetic and crystalline properties, and an enveloping biological membrane. These features are not observed in magnetic particles produced abiotically and thus magnetosomes are of great interest in biotechnology. Most currently described MTB have been isolated from saline or brackish environments and the availability of their genomes has contributed to a better understanding and culturing of these fastidious microorganisms. Moreover, genome sequences have allowed researchers to study genes related to magnetosome production for the synthesis of magnetic particles for use in future commercial and medical applications. Here, we review the current information on the biology of MTB and apply, for the first time, a genome mining strategy on these microorganisms to search for secondary metabolite synthesis genes. More specifically, we discovered that the genome of the cultured MTB Magnetovibrio blakemorei, among other MTB, contains several metabolic pathways for the synthesis of secondary metabolites and other compounds, thereby raising the possibility of the co-production of new bioactive molecules along with magnetosomes by this species.
Collapse
|
65
|
Kolinko S, Richter M, Glöckner FO, Brachmann A, Schüler D. Single-cell genomics reveals potential for magnetite and greigite biomineralization in an uncultivated multicellular magnetotactic prokaryote. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:524-531. [PMID: 25079475 DOI: 10.1111/1758-2229.12198] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
For magnetic orientation, magnetotactic bacteria biosynthesize magnetosomes, which consist of membrane-enveloped magnetic nanocrystals of either magnetite (Fe3 O4 ) or greigite (Fe3 S4 ). While magnetite formation is increasingly well understood, much less is known about the genetic control of greigite biomineralization. Recently, two related yet distinct sets of magnetosome genes were discovered in a cultivated magnetotactic deltaproteobacterium capable of synthesizing either magnetite or greigite, or both minerals. This led to the conclusion that greigite and magnetite magnetosomes are synthesized by separate biomineralization pathways. Although magnetosomes of both mineral types co-occurred in uncultured multicellular magnetotactic prokaryotes (MMPs), so far only one type of magnetosome genes could be identified in the available genome data. The MMP Candidatus Magnetomorum strain HK-1 from coastal tidal sand flats of the North Sea (Germany) was analysed by a targeted single-cell approach. The draft genome assembly resulted in a size of 14.3 Mb and an estimated completeness of 95%. In addition to genomic features consistent with a sulfate-reducing lifestyle, we identified numerous genes putatively involved in magnetosome biosynthesis. Remarkably, most mam orthologues were present in two paralogous copies with highest similarity to either magnetite or greigite type magnetosome genes, supporting the ability to synthesize magnetite and greigite magnetosomes.
Collapse
Affiliation(s)
- Sebastian Kolinko
- Ludwig-Maximilians-Universität Munich, Microbiology, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
66
|
Zhang R, Chen YR, Du HJ, Zhang WY, Pan HM, Xiao T, Wu LF. Characterization and phylogenetic identification of a species of spherical multicellular magnetotactic prokaryotes that produces both magnetite and greigite crystals. Res Microbiol 2014; 165:481-9. [DOI: 10.1016/j.resmic.2014.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 07/01/2014] [Accepted: 07/19/2014] [Indexed: 10/25/2022]
|
67
|
Abstract
Despite recent advances in metagenomic and single-cell genomic sequencing to investigate uncultivated microbial diversity and metabolic potential, fundamental questions related to population structure, interactions, and biogeochemical roles of candidate divisions remain. Numerous molecular surveys suggest that stratified ecosystems manifesting anoxic, sulfidic, and/or methane-rich conditions are enriched in these enigmatic microbes. Here we describe diversity, abundance, and cooccurrence patterns of uncultivated microbial communities inhabiting the permanently stratified waters of meromictic Sakinaw Lake, British Columbia, Canada, using 454 sequencing of the small-subunit rRNA gene with three-domain resolution. Operational taxonomic units (OTUs) were affiliated with 64 phyla, including more than 25 candidate divisions. Pronounced trends in community structure were observed for all three domains with eukaryotic sequences vanishing almost completely below the mixolimnion, followed by a rapid and sustained increase in methanogen-affiliated (∼10%) and unassigned (∼60%) archaeal sequences as well as bacterial OTUs affiliated with Chloroflexi (∼22%) and candidate divisions (∼28%). Network analysis revealed highly correlated, depth-dependent cooccurrence patterns between Chloroflexi, candidate divisions WWE1, OP9/JS1, OP8, and OD1, methanogens, and unassigned archaeal OTUs indicating niche partitioning and putative syntrophic growth modes. Indeed, pathway reconstruction using recently published Sakinaw Lake single-cell genomes affiliated with OP9/JS1 and OP8 revealed complete coverage of the Wood-Ljungdahl pathway with potential to drive syntrophic acetate oxidation to hydrogen and carbon dioxide under methanogenic conditions. Taken together, these observations point to previously unrecognized syntrophic networks in meromictic lake ecosystems with the potential to inform design and operation of anaerobic methanogenic bioreactors.
Collapse
|
68
|
Lin W, Wang Y, Gorby Y, Nealson K, Pan Y. Integrating niche-based process and spatial process in biogeography of magnetotactic bacteria. Sci Rep 2014; 3:1643. [PMID: 23571508 PMCID: PMC3622080 DOI: 10.1038/srep01643] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/26/2013] [Indexed: 02/01/2023] Open
Abstract
Microorganisms play key roles in biogeochemical and nutrient cycling in all ecosystems on Earth, yet little is known about the processes controlling their biogeographic distributions. Here we report an investigation of magnetotactic bacteria (MTB) designed to evaluate the roles of niche-based process and spatial process in explaining variation in bacterial communities across large spatial scales. Our results show that both environmental heterogeneity and geographic distance play significant roles in shaping dominant populations of MTB community composition. At the spatial scale in this study, the biogeography of MTB is relatively more influenced by environmental factors than geographic distance, suggesting that local conditions override the effects of dispersal history on structuring MTB community. Of note, we found that the strength of geomagnetic field may influence the biogeography of MTB. We argue that MTB have the potential to serve as a model group to uncover the underlying processes that influence microbial biogeography.
Collapse
Affiliation(s)
- Wei Lin
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth's Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | | | | | | | | |
Collapse
|
69
|
Genomic insights into the uncultured genus 'Candidatus Magnetobacterium' in the phylum Nitrospirae. ISME JOURNAL 2014; 8:2463-77. [PMID: 24914800 DOI: 10.1038/ismej.2014.94] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/27/2014] [Accepted: 05/08/2014] [Indexed: 11/09/2022]
Abstract
Magnetotactic bacteria (MTB) of the genus 'Candidatus Magnetobacterium' in phylum Nitrospirae are of great interest because of the formation of hundreds of bullet-shaped magnetite magnetosomes in multiple bundles of chains per cell. These bacteria are worldwide distributed in aquatic environments and have important roles in the biogeochemical cycles of iron and sulfur. However, except for a few short genomic fragments, no genome data are available for this ecologically important genus, and little is known about their metabolic capacity owing to the lack of pure cultures. Here we report the first draft genome sequence of 3.42 Mb from an uncultivated strain tentatively named 'Ca. Magnetobacterium casensis' isolated from Lake Miyun, China. The genome sequence indicates an autotrophic lifestyle using the Wood-Ljungdahl pathway for CO2 fixation, which has not been described in any previously known MTB or Nitrospirae organisms. Pathways involved in the denitrification, sulfur oxidation and sulfate reduction have been predicted, indicating its considerable capacity for adaptation to variable geochemical conditions and roles in local biogeochemical cycles. Moreover, we have identified a complete magnetosome gene island containing mam, mad and a set of novel genes (named as man genes) putatively responsible for the formation of bullet-shaped magnetite magnetosomes and the arrangement of multiple magnetosome chains. This first comprehensive genomic analysis sheds light on the physiology, ecology and biomineralization of the poorly understood 'Ca. Magnetobacterium' genus.
Collapse
|
70
|
Chen YR, Zhang R, Du HJ, Pan HM, Zhang WY, Zhou K, Li JH, Xiao T, Wu LF. A novel species of ellipsoidal multicellular magnetotactic prokaryotes from Lake Yuehu in China. Environ Microbiol 2014; 17:637-47. [PMID: 24725306 DOI: 10.1111/1462-2920.12480] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/04/2014] [Indexed: 11/26/2022]
Abstract
Two morphotypes of multicellular magnetotactic prokaryotes (MMPs) have been identified: spherical (several species) and ellipsoidal (previously one species). Here, we report novel ellipsoidal MMPs that are ∼ 10 × 8 μm in size, and composed of about 86 cells arranged in six to eight interlaced circles. Each MMP was composed of cells that synthesized either bullet-shaped magnetite magnetosomes alone, or both bullet-shaped magnetite and rectangular greigite magnetosomes. They showed north-seeking magnetotaxis, ping-pong motility and negative phototaxis at a velocity up to 300 μm s(-1) . During reproduction, they divided along either their long- or short-body axes. For genetic analysis, we sorted the ellipsoidal MMPs with micromanipulation and amplified their genomes using multiple displacement amplification. We sequenced the 16S rRNA gene and found 6.9% sequence divergence from that of ellipsoidal MMPs, Candidatus Magnetananas tsingtaoensis and > 8.3% divergence from those of spherical MMPs. Therefore, the novel MMPs belong to different species and genus compared with the currently known ellipsoidal and spherical MMPs respectively. The novel MMPs display a morphological cell differentiation, implying a potential division of labour. These findings provide new insights into the diversity of MMPs in general, and contribute to our understanding of the evolution of multicellularity among prokaryotes.
Collapse
Affiliation(s)
- Yi-Ran Chen
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Magnetotactic bacteria (MTB) are widespread, motile, diverse prokaryotes that biomineralize a unique organelle called the magnetosome. Magnetosomes consist of a nano-sized crystal of a magnetic iron mineral that is enveloped by a lipid bilayer membrane. In cells of almost all MTB, magnetosomes are organized as a well-ordered chain. The magnetosome chain causes the cell to behave like a motile, miniature compass needle where the cell aligns and swims parallel to magnetic field lines. MTB are found in almost all types of aquatic environments, where they can account for an important part of the bacterial biomass. The genes responsible for magnetosome biomineralization are organized as clusters in the genomes of MTB, in some as a magnetosome genomic island. The functions of a number of magnetosome genes and their associated proteins in magnetosome synthesis and construction of the magnetosome chain have now been elucidated. The origin of magnetotaxis appears to be monophyletic; that is, it developed in a common ancestor to all MTB, although horizontal gene transfer of magnetosome genes also appears to play a role in their distribution. The purpose of this review, based on recent progress in this field, is focused on the diversity and the ecology of the MTB and also the evolution and transfer of the molecular determinants involved in magnetosome formation.
Collapse
|
72
|
Pósfai M, Lefèvre CT, Trubitsyn D, Bazylinski DA, Frankel RB. Phylogenetic significance of composition and crystal morphology of magnetosome minerals. Front Microbiol 2013; 4:344. [PMID: 24324461 PMCID: PMC3840360 DOI: 10.3389/fmicb.2013.00344] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/30/2013] [Indexed: 11/17/2022] Open
Abstract
Magnetotactic bacteria (MTB) biomineralize magnetosomes, nano-scale crystals of magnetite or greigite in membrane enclosures that comprise a permanent magnetic dipole in each cell. MTB control the mineral composition, habit, size, and crystallographic orientation of the magnetosomes, as well as their arrangement within the cell. Studies involving magnetosomes that contain mineral and biological phases require multidisciplinary efforts. Here we use crystallographic, genomic and phylogenetic perspectives to review the correlations between magnetosome mineral habits and the phylogenetic affiliations of MTB, and show that these correlations have important implications for the evolution of magnetosome synthesis, and thus magnetotaxis.
Collapse
Affiliation(s)
- Mihály Pósfai
- Department of Earth and Environmental Sciences, University of Pannonia Veszprém, Hungary
| | | | | | | | | |
Collapse
|
73
|
Lin W, Bazylinski DA, Xiao T, Wu LF, Pan Y. Life with compass: diversity and biogeography of magnetotactic bacteria. Environ Microbiol 2013; 16:2646-58. [PMID: 24148107 DOI: 10.1111/1462-2920.12313] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/12/2013] [Indexed: 11/29/2022]
Abstract
Magnetotactic bacteria (MTB) are unique in their ability to synthesize intracellular nano-sized minerals of magnetite and/or greigite magnetosomes for magnetic orientation. Thus, they provide an excellent model system to investigate mechanisms of biomineralization. MTB play important roles in bulk sedimentary magnetism and have numerous versatile applications in paleoenvironmental reconstructions, and biotechnological and biomedical fields. Significant progress has been made in recent years in describing the composition of MTB communities and distribution through innovative cultivation-dependent and -independent techniques. In this review, the most recent contributions to the field of diversity and biogeography of MTB are summarized and reviewed. Emphasis is on the novel insights into various factors/processes potentially affecting MTB community distribution. An understanding of the present-day biogeography of MTB, and the ruling parameters of their spatial distribution, will eventually help us predict MTB community shifts with environmental changes and assess their roles in global iron cycling.
Collapse
Affiliation(s)
- Wei Lin
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth's Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China; France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, 100029, China
| | | | | | | | | |
Collapse
|
74
|
Morono Y, Terada T, Kallmeyer J, Inagaki F. An improved cell separation technique for marine subsurface sediments: applications for high-throughput analysis using flow cytometry and cell sorting. Environ Microbiol 2013; 15:2841-9. [PMID: 23731283 PMCID: PMC3910163 DOI: 10.1111/1462-2920.12153] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/30/2013] [Accepted: 05/05/2013] [Indexed: 11/30/2022]
Abstract
Development of an improved technique for separating microbial cells from marine sediments and standardization of a high-throughput and discriminative cell enumeration method were conducted. We separated microbial cells from various types of marine sediment and then recovered the cells using multilayer density gradients of sodium polytungstate and/or Nycodenz, resulting in a notably higher percent recovery of cells than previous methods. The efficiency of cell extraction generally depends on the sediment depth; using the new technique we developed, more than 80% of the total cells were recovered from shallow sediment samples (down to 100 meters in depth), whereas ~50% of cells were recovered from deep samples (100-365 m in depth). The separated cells could be rapidly enumerated using flow cytometry (FCM). The data were in good agreement with those obtained from manual microscopic direct counts over the range 10(4)-10(8) cells cm(-3). We also demonstrated that sedimentary microbial cells can be efficiently collected using a cell sorter. The combined use of our new cell separation and FCM/cell sorting techniques facilitates high-throughput and precise enumeration of microbial cells in sediments and is amenable to various types of single-cell analyses, thereby enhancing our understanding of microbial life in the largely uncharacterized deep subseafloor biosphere.
Collapse
Affiliation(s)
- Yuki Morono
- Geomicrobiology Group Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)Monobe B200, Nankoku, Kochi, 783-8502, Japan
| | - Takeshi Terada
- Marine Works Japan LtdOppamahigashi 3-54-1, Yokosuka, 237-0063, Japan
| | - Jens Kallmeyer
- Deutsches GeoForschungsZentrum GFZSection 4.5 Geomicrobiology, Telegrafenberg, 14473, Potsdam, Germany
| | - Fumio Inagaki
- Geomicrobiology Group Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)Monobe B200, Nankoku, Kochi, 783-8502, Japan
| |
Collapse
|
75
|
Callac N, Rommevaux-Jestin C, Rouxel O, Lesongeur F, Liorzou C, Bollinger C, Ferrant A, Godfroy A. Microbial colonization of basaltic glasses in hydrothermal organic-rich sediments at Guaymas Basin. Front Microbiol 2013; 4:250. [PMID: 23986754 PMCID: PMC3753459 DOI: 10.3389/fmicb.2013.00250] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 08/07/2013] [Indexed: 11/13/2022] Open
Abstract
Oceanic basalts host diverse microbial communities with various metabolisms involved in C, N, S, and Fe biogeochemical cycles which may contribute to mineral and glass alteration processes at, and below the seafloor. In order to study the microbial colonization on basaltic glasses and their potential biotic/abiotic weathering products, two colonization modules called AISICS ("Autonomous in situ Instrumented Colonization System") were deployed in hydrothermal deep-sea sediments at the Guaymas Basin for 8 days and 22 days. Each AISICS module contained 18 colonizers (including sterile controls) filled with basaltic glasses of contrasting composition. Chemical analyses of ambient fluids sampled through the colonizers showed a greater contribution of hydrothermal fluids (maximum temperature 57.6°C) for the module deployed during the longer time period. For each colonizer, the phylogenetic diversity and metabolic function of bacterial and archaeal communities were explored using a molecular approach by cloning and sequencing. Results showed large microbial diversity in all colonizers. The bacterial distribution was primarily linked to the deployment duration, as well as the depth for the short deployment time module. Some 16s rRNA sequences formed a new cluster of Epsilonproteobacteria. Within the Archaea the retrieved diversity could not be linked to either duration, depth or substrata. However, mcrA gene sequences belonging to the ANME-1 mcrA-guaymas cluster were found sometimes associated with their putative sulfate-reducers syntrophs depending on the colonizers. Although no specific glass alteration texture was identified, nano-crystals of barite and pyrite were observed in close association with organic matter, suggesting a possible biological mediation. This study gives new insights into the colonization steps of volcanic rock substrates and the capability of microbial communities to exploit new environmental conditions.
Collapse
Affiliation(s)
- Nolwenn Callac
- Laboratoire de Microbiologie des Environnements Extrêmes UMR 6197, Université de Bretagne Occidentale, UEB, IUEM Plouzané, France ; Laboratoire de Microbiologie des Environnements Extrêmes UMR 6197, Ifremer Plouzané, France ; Laboratoire de Microbiologie des Environnements Extrêmes UMR 6197, CNRS Plouzané, France ; Domaines Océaniques UMR6538, IUEM, Université de Bretagne Occidentale Plouzané, France
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Lefèvre CT, Wu LF. Evolution of the bacterial organelle responsible for magnetotaxis. Trends Microbiol 2013; 21:534-43. [PMID: 23948365 DOI: 10.1016/j.tim.2013.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/13/2013] [Accepted: 07/18/2013] [Indexed: 02/05/2023]
Abstract
There are few examples of protein- and lipid-bounded organelles in bacteria that are encoded by conserved gene clusters and lead to a specific function. The magnetosome chain represents one of these rare examples and is responsible for magnetotaxis in magnetotactic bacteria (MTB), a behavior thought to aid in finding their optimal growth conditions. The origin and evolution of the magnetotaxis is still a matter of debate. Recent breakthroughs in isolation, cultivation, single-cell separation, and whole-genome sequencing have generated abundant data that give new insights into the biodiversity and evolution of MTB.
Collapse
Affiliation(s)
- Christopher T Lefèvre
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)/Centre National de la Recherche Scientifique (CNRS)/Aix-Marseille Université, Unité Mixte de Recherche (UMR) 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire de Bioénergétique Cellulaire, 13108, Saint-Paul-lès-Durance, France.
| | | |
Collapse
|
77
|
Liu G, Ling FQ, Magic-Knezev A, Liu WT, Verberk JQJC, Van Dijk JC. Quantification and identification of particle-associated bacteria in unchlorinated drinking water from three treatment plants by cultivation-independent methods. WATER RESEARCH 2013; 47:3523-33. [PMID: 23618316 DOI: 10.1016/j.watres.2013.03.058] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/02/2013] [Accepted: 03/31/2013] [Indexed: 05/16/2023]
Abstract
Water quality regulations commonly place quantitative limits on the number of organisms (e.g., heterotrophic plate count and coliforms) without considering the presence of multiple cells per particle, which is only counted as one regardless how many cells attached. Therefore, it is important to quantify particle-associated bacteria (PAB), especially cells per particle. In addition, PAB may house (opportunistic) pathogens and have higher resistance to disinfection than planktonic bacteria. It is essential to know bacterial distribution on particles. However, limited information is available on quantification and identification of PAB in drinking water. In the present study, PAB were sampled from the unchlorinated drinking water at three treatment plants in the Netherlands, each with different particle compositions. Adenosine triphosphate (ATP) and total cell counts (TCC) with flow cytometry were used to quantify the PAB, and high-throughput pyrosequencing was used to identify them. The number and activity of PAB ranged from 1.0 to 3.5 × 10(3) cells ml(-1) and 0.04-0.154 ng l(-1) ATP. There were between 25 and 50 cells found to be attached on a single particle. ATP per cell in PAB was higher than in planktonic bacteria. Among the identified sequences, Proteobacteria were found to be the most dominant phylum at all locations, followed by OP3 candidate division and Nitrospirae. Sequences related to anoxic bacteria from the OP3 candidate division and other anaerobic bacteria were detected. Genera of bacteria were found appear to be consistent with the major element composition of the associated particles. The presence of multiple cells per particle challenges the use of quantitative methods such as HPC and Coliforms that are used in the current drinking water quality regulations. The detection of anoxic and anaerobic bacteria suggests the ecological importance of PAB in drinking water distribution systems.
Collapse
Affiliation(s)
- G Liu
- Section Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, PO Box 5048, 2600 GA Delft, The Netherlands.
| | | | | | | | | | | |
Collapse
|
78
|
Lefèvre CT, Trubitsyn D, Abreu F, Kolinko S, Jogler C, de Almeida LGP, de Vasconcelos ATR, Kube M, Reinhardt R, Lins U, Pignol D, Schüler D, Bazylinski DA, Ginet N. Comparative genomic analysis of magnetotactic bacteria from the Deltaproteobacteria provides new insights into magnetite and greigite magnetosome genes required for magnetotaxis. Environ Microbiol 2013; 15:2712-35. [PMID: 23607663 DOI: 10.1111/1462-2920.12128] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 03/20/2013] [Indexed: 01/20/2023]
Abstract
Magnetotactic bacteria (MTB) represent a group of diverse motile prokaryotes that biomineralize magnetosomes, the organelles responsible for magnetotaxis. Magnetosomes consist of intracellular, membrane-bounded, tens-of-nanometre-sized crystals of the magnetic minerals magnetite (Fe3O4) or greigite (Fe3S4) and are usually organized as a chain within the cell acting like a compass needle. Most information regarding the biomineralization processes involved in magnetosome formation comes from studies involving Alphaproteobacteria species which biomineralize cuboctahedral and elongated prismatic crystals of magnetite. Many magnetosome genes, the mam genes, identified in these organisms are conserved in all known MTB. Here we present a comparative genomic analysis of magnetotactic Deltaproteobacteria that synthesize bullet-shaped crystals of magnetite and/or greigite. We show that in addition to mam genes, there is a conserved set of genes, designated mad genes, specific to the magnetotactic Deltaproteobacteria, some also being present in Candidatus Magnetobacterium bavaricum of the Nitrospirae phylum, but absent in the magnetotactic Alphaproteobacteria. Our results suggest that the number of genes associated with magnetotaxis in magnetotactic Deltaproteobacteria is larger than previously thought. We also demonstrate that the minimum set of mam genes necessary for magnetosome formation in Magnetospirillum is also conserved in magnetite-producing, magnetotactic Deltaproteobacteria. Some putative novel functions of mad genes are discussed.
Collapse
Affiliation(s)
- Christopher T Lefèvre
- CEA Cadarache/CNRS/Aix-Marseille Université, UMR7265 Service de Biologie Végétale et de Microbiologie Environnementale, Laboratoire de Bioénergétique Cellulaire, 13108, Saint Paul lez Durance, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Magnetotactic bacteria from extreme environments. Life (Basel) 2013; 3:295-307. [PMID: 25369742 PMCID: PMC4187138 DOI: 10.3390/life3020295] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/13/2013] [Accepted: 03/13/2013] [Indexed: 11/16/2022] Open
Abstract
Magnetotactic bacteria (MTB) represent a diverse collection of motile prokaryotes that biomineralize intracellular, membrane-bounded, tens-of-nanometer-sized crystals of a magnetic mineral called magnetosomes. Magnetosome minerals consist of either magnetite (Fe3O4) or greigite (Fe3S4) and cause cells to align along the Earth's geomagnetic field lines as they swim, a trait called magnetotaxis. MTB are known to mainly inhabit the oxic-anoxic interface (OAI) in water columns or sediments of aquatic habitats and it is currently thought that magnetosomes function as a means of making chemotaxis more efficient in locating and maintaining an optimal position for growth and survival at the OAI. Known cultured and uncultured MTB are phylogenetically associated with the Alpha-, Gamma- and Deltaproteobacteria classes of the phylum Proteobacteria, the Nitrospirae phylum and the candidate division OP3, part of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) bacterial superphylum. MTB are generally thought to be ubiquitous in aquatic environments as they are cosmopolitan in distribution and have been found in every continent although for years MTB were thought to be restricted to habitats with pH values near neutral and at ambient temperature. Recently, however, moderate thermophilic and alkaliphilic MTB have been described including: an uncultured, moderately thermophilic magnetotactic bacterium present in hot springs in northern Nevada with a probable upper growth limit of about 63 °C; and several strains of obligately alkaliphilic MTB isolated in pure culture from different aquatic habitats in California, including the hypersaline, extremely alkaline Mono Lake, with an optimal growth pH of >9.0.
Collapse
|
80
|
Ragon M, Van Driessche AES, García-Ruíz JM, Moreira D, López-García P. Microbial diversity in the deep-subsurface hydrothermal aquifer feeding the giant gypsum crystal-bearing Naica Mine, Mexico. Front Microbiol 2013; 4:37. [PMID: 23508882 PMCID: PMC3589807 DOI: 10.3389/fmicb.2013.00037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/12/2013] [Indexed: 11/13/2022] Open
Abstract
The Naica Mine in northern Mexico is famous for its giant gypsum crystals, which may reach up to 11 m long and contain fluid inclusions that might have captured microorganisms during their formation. These crystals formed under particularly stable geochemical conditions in cavities filled by low salinity hydrothermal water at 54-58°C. We have explored the microbial diversity associated to these deep, saline hydrothermal waters collected in the deepest (ca. 700-760 m) mineshafts by amplifying, cloning and sequencing small-subunit ribosomal RNA genes using primers specific for archaea, bacteria, and eukaryotes. Eukaryotes were not detectable in the samples and the prokaryotic diversity identified was very low. Two archaeal operational taxonomic units (OTUs) were detected in one sample. They clustered with, respectively, basal Thaumarchaeota lineages and with a large clade of environmental sequences branching at the base of the Thermoplasmatales within the Euryarchaeota. Bacterial sequences belonged to the Candidate Division OP3, Firmicutes and the Alpha- and Beta-proteobacteria. Most of the lineages detected appear autochthonous to the Naica system, since they had as closest representatives environmental sequences retrieved from deep sediments or the deep subsurface. In addition, the high GC content of 16S rRNA gene sequences belonging to the archaea and to some OP3 OTUs suggests that at least these lineages are thermophilic. Attempts to amplify diagnostic functional genes for methanogenesis (mcrA) and sulfate reduction (dsrAB) were unsuccessful, suggesting that those activities, if present, are not important in the aquifer. By contrast, genes encoding archaeal ammonium monooxygenase (AamoA) were amplified, suggesting that Naica Thaumarchaeota are involved in nitrification. These organisms are likely thermophilic chemolithoautotrophs adapted to thrive in an extremely energy-limited environment.
Collapse
Affiliation(s)
- Marie Ragon
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud Orsay, France
| | | | | | | | | |
Collapse
|
81
|
Novel rod-shaped magnetotactic bacteria belonging to the class Alphaproteobacteria. Appl Environ Microbiol 2013; 79:3137-40. [PMID: 23455351 DOI: 10.1128/aem.03869-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel large, rod-shaped magnetotactic bacteria (MTB) were discovered in intertidal sediments of the Yellow Sea, China. They biomineralized more than 300 rectangular magnetite magnetosomes per cell. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that they are affiliated with the Alphaproteobacteria and may represent a new genus of MTB.
Collapse
|
82
|
Lefèvre CT, Trubitsyn D, Abreu F, Kolinko S, de Almeida LGP, de Vasconcelos ATR, Lins U, Schüler D, Ginet N, Pignol D, Bazylinski DA. Monophyletic origin of magnetotaxis and the first magnetosomes. Environ Microbiol 2013; 15:2267-74. [PMID: 23438345 DOI: 10.1111/1462-2920.12097] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 01/14/2013] [Indexed: 11/26/2022]
Abstract
Horizontal gene transfer (HGT), the transfer of genetic material other than by descent, is thought to have played significant roles in the evolution and distribution of genes in prokaryotes. These include those responsible for the ability of motile, aquatic magnetotactic bacteria (MTB) to align and swim along magnetic field lines and the biomineralization of magnetosomes that are responsible for this behaviour. There is some genomic evidence that HGT might be responsible for the distribution of magnetosome genes in different phylogenetic groups of bacteria. For example, in the genomes of a number of MTB, magnetosome genes are present as clusters within a larger structure known as the magnetosome genomic island surrounded by mobile elements such as insertion sequences and transposases as well as tRNA genes. Despite this, there is no strong direct proof of HGT between these organisms. Here we show that a phylogenetic tree based on magnetosome protein amino acid sequences from a number of MTB was congruent with the tree based on the organisms' 16S rRNA gene sequences. This shows that evolution and divergence of these proteins and the 16S rRNA gene occurred similarly. This suggests that magnetotaxis originated monophyletically in the Proteobacteria phylum and implies that the common ancestor of all Proteobacteria was magnetotactic.
Collapse
Affiliation(s)
- Christopher T Lefèvre
- CEA Cadarache/CNRS/Aix-Marseille Université, UMR7265 Service de Biologie Végétale et de Microbiologie Environnementale, Laboratoire de Bioénergétique Cellulaire, 13108, Saint Paul lez Durance, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Zhou K, Zhang WY, Pan HM, Li JH, Yue HD, Xiao T, Wu LF. Adaptation of spherical multicellular magnetotactic prokaryotes to the geochemically variable habitat of an intertidal zone. Environ Microbiol 2013; 15:1595-605. [DOI: 10.1111/1462-2920.12057] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 11/05/2012] [Accepted: 11/22/2012] [Indexed: 11/29/2022]
|
84
|
Kolinko S, Wanner G, Katzmann E, Kiemer F, Fuchs BM, Schüler D. Clone libraries and single cell genome amplification reveal extended diversity of uncultivated magnetotactic bacteria from marine and freshwater environments. Environ Microbiol 2012; 15:1290-301. [PMID: 23106823 DOI: 10.1111/1462-2920.12004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/07/2012] [Accepted: 09/21/2012] [Indexed: 11/30/2022]
Abstract
Magnetotactic bacteria (MTB), which orient along the earth's magnetic field using magnetosomes, are ubiquitous and abundant in marine and freshwater environments. Previous phylogenetic analysis of diverse MTB has been limited to few cultured species and the most abundant and conspicuous members of natural populations, which were assigned to various lineages of the Proteobacteria, the Nitrospirae phylum as well as the candidate division OP3. However, their known phylogenetic diversity still not matches the large morphological and ultrastructural variability of uncultured MTB found in environmental communities. Here, we used analysis of 16S rRNA gene clone libraries in combination with microsorting and whole-genome amplification to systematically address the entire diversity of uncultured MTB from two different habitats. This approach revealed extensive and novel diversity of MTB within the freshwater and marine sediment samples. In total, single-cell analysis identified eight different phylotypes, which were only partly represented in the clone libraries, and which could be unambiguously assigned to their respective morphotypes. Identified MTB belonged to the Alphaproteobacteria (seven species) and the Nitrospirae phylum (two species). End-sequencing of a small insert library created from WGA-derived DNA of a novel conspicuous magnetotactic vibrio identified genes with highest similarity to two cultivated MTB as well as to other phylogenetic groups. In conclusion, the combination of metagenomic cloning and single cell sorting represents a powerful approach to recover maximum bacterial diversity including low-abundant magnetotactic phylotypes from environmental samples and also provides access to genomic analysis of uncultivated MTB.
Collapse
Affiliation(s)
- Sebastian Kolinko
- Biozentrum der Ludwigs-Maximilians-Universität, Grosshaderner Strasse 2-4, 82 152, Planegg-Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
85
|
Lin W, Wang Y, Pan Y. Short-term effects of temperature on the abundance and diversity of magnetotactic cocci. Microbiologyopen 2012; 1:53-63. [PMID: 22950012 PMCID: PMC3426400 DOI: 10.1002/mbo3.7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/06/2011] [Accepted: 12/11/2011] [Indexed: 02/01/2023] Open
Abstract
Temperature is one of the most important climate factors that can regulate the activity and growth of organisms. However, it is so far unclear how temperature influences the abundance and community composition of magnetotactic bacteria (MTB) that mineralize intracellular magnetite and/or greigite magnetosomes and play significant roles in the global iron cycling and sediment magnetization. To address this specific problem, in this study we have assessed the impact of temperature on freshwater magnetotactic cocci through laboratory microcosm simulations. Microcosms containing MTB were exposed to four constant temperatures ranging from 9°C to 37°C. After 10 days and 28 days of incubation, no significant differences in abundance were detected in microcosms at 9°C, 15°C, and 26°C (Student's t-test, P > 0.05); however, microcosms exposed to 37°C exhibited a significant decrease of magnetotactic cocci abundance (P < 0.05). Dendrogram analysis of community-amplified ribosomal DNA restriction analysis (community ARDRA) banding patterns distinguished the 37°C samples from samples at lower temperatures regardless of incubation periods. Furthermore, clone library analysis revealed that most of the operational taxonomic units (OTUs) detected in samples from 9°C to 26°C were absent from the 37°C microcosms, whereas six OTUs were exclusively detected in the 37°C samples. Community compositions from four incubation temperatures were further compared using statistical phylogenetic methods (UniFrac and LIBSHUFF), which revealed that the 37°C samples harbored phylogenetically distinct MTB communities compared to those found in 9°C, 15°C, and 26°C samples. Taken together, our results indicate that elevated temperature can influence the abundance and diversity of dominant members of magnetotactic cocci. This linkage further infers that the abundance and diversity of MTB (e.g., based on the fossil magnetosomes) may be useful in reconstruction of paleotemperature.
Collapse
Affiliation(s)
- Wei Lin
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth's Deep Interior, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing 100029, China
- France-China Bio-Mineralization and Nano-Structures Laboratory, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing 100029, China
| | - Yinzhao Wang
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth's Deep Interior, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing 100029, China
- France-China Bio-Mineralization and Nano-Structures Laboratory, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing 100029, China
| | - Yongxin Pan
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth's Deep Interior, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing 100029, China
- France-China Bio-Mineralization and Nano-Structures Laboratory, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing 100029, China
| |
Collapse
|
86
|
Two genera of magnetococci with bean-like morphology from intertidal sediments of the Yellow Sea, China. Appl Environ Microbiol 2012; 78:5606-11. [PMID: 22660708 DOI: 10.1128/aem.00081-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnetotactic bacteria have the unique capacity of being able to swim along geomagnetic field lines. They are Gram-negative bacteria with diverse morphologies and variable phylogenetic relatedness. Here, we describe a group of uncultivated marine magnetococci collected from intertidal sediments of Huiquan Bay in the Yellow Sea. They were coccoid-ovoid in morphology, with an average size of 2.8 ± 0.3 μm by 2.0 ± 0.2 μm. Differential interference contrast microscopy, fluorescence microscopy, and transmission electron microscopy revealed that each cell was apparently composed of two hemispheres. The cells synthesized iron oxide-type magnetosomes that clustered on one side of the cell at the interface between the two hemispheres. In some cells two chains of magnetosomes were observed across the interface. Each cell had two bundles of flagella enveloped in a sheath and displayed north-seeking helical motion. Two 16S rRNA gene sequences having 91.8% identity were obtained, and their authenticity was confirmed by fluorescence in situ hybridization. Phylogenetic analysis revealed that the magnetococci are affiliated with the Alphaproteobacteria and are most closely related to two uncultured magnetococci with sequence identities of 92.7% and 92.4%, respectively. Because they display a >7% sequence divergence to all bacteria reported, the bean-like magnetococci may represent two novel genera.
Collapse
|
87
|
Lin W, Pan Y. Snapping magnetosome chains by asymmetric cell division in magnetotactic bacteria. Mol Microbiol 2011; 82:1301-4. [PMID: 22066928 DOI: 10.1111/j.1365-2958.2011.07866.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The mechanism by which prokaryotic cells organize and segregate their intracellular organelles during cell division has recently been the subject of substantial interest. Unlike other microorganisms, magnetotactic bacteria (MTB) form internal magnets (known as magnetosome chain) for magnetic orientation, and thus face an additional challenge of dividing and equipartitioning this magnetic receptor to their daughter cells. Although MTB have been investigated more than four decades, it is only recently that the basic mechanism of how MTB divide and segregate their magnetic organelles has been addressed. In this issue of Molecular Microbiology, the cell cycle of the model magnetotactic bacterium, Magnetospirillum gryphiswaldense is characterized by Katzmann and co-workers. The authors have found that M. gryphiswaldense undergoes an asymmetric cell division along two planes. A novel wedge-like type of cellular constriction is observed before separation of daughter cells and magnetosome chains, which is assumed to help cell cope with the magnetic force within the magnetosome chain. The data shows that the magnetosome chain becomes actively recruited to the cellular division site, in agreement with the previous suggestions described by Staniland et al. (2010), and the actin-like protein MamK is likely involved in this fast polar-to-midcell translocalization. With the use of cryo-electron tomography, an arc-shaped Z ring is observed near the division site, which is assumed to trigger the asymmetric septation of cell and magnetosome chain.
Collapse
Affiliation(s)
- Wei Lin
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth's Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | | |
Collapse
|