51
|
Lusta KA. Bacterial outer membrane nanovesicles: Structure, biogenesis, functions, and application in biotechnology and medicine (Review). APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815040092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
52
|
Kulkarni HM, Nagaraj R, Jagannadham MV. Protective role of E. coli outer membrane vesicles against antibiotics. Microbiol Res 2015; 181:1-7. [PMID: 26640046 DOI: 10.1016/j.micres.2015.07.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/17/2015] [Accepted: 07/24/2015] [Indexed: 12/19/2022]
Abstract
The outer membrane vesicles (OMVs) from bacteria are known to posses both defensive and protective functions and thus participate in community related functions. In the present study, outer membrane vesicles have been shown to protect the producer bacterium and two other bacterial species from the growth inhibitory effects of some antibiotics. The OMVs isolated from E. coli MG1655 protected the bacteria against membrane-active antibiotics colistin, melittin. The OMVs of E. coli MG1655 could also protect P. aeruginosa NCTC6751 and A. radiodioresistens MMC5 against these membrane-active antibiotics. However, OMVs could not protect any of these bacteria against the other antibiotics ciprofloxacin, streptomycin and trimethoprim. Hence, OMVs appears to protect the bacterial community against membrane-active antibiotics and not other antibiotics, which have different mechanism of actions. The OMVs of E. coli MG1655 sequester the antibiotic colistin, whereas their protein components degrade the antimicrobial peptide melittin. Proteomic analysis of OMVs revealed the presence of proteases and peptidases which appear to be involved in this process. Thus, the protection of bacteria by OMVs against antibiotics is situation dependent and the mechanism differs for different situations. These studies suggest that OMVs of bacteria form a common defense for the bacterial community against specific antibiotics.
Collapse
Affiliation(s)
- Heramb M Kulkarni
- CSIR- Centre for Cellular and Molecular Biology, Tarnaka, Hyderabad 500007, India
| | - R Nagaraj
- CSIR- Centre for Cellular and Molecular Biology, Tarnaka, Hyderabad 500007, India
| | | |
Collapse
|
53
|
José Maschio V, Corção G, Rott MB. identification of Pseudomonas spp. as amoeba-resistant microorganisms in isolates of Acanthamoeba. Rev Inst Med Trop Sao Paulo 2015; 57:81-3. [PMID: 25651331 PMCID: PMC4325528 DOI: 10.1590/s0036-46652015000100012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 03/28/2014] [Indexed: 11/22/2022] Open
Abstract
Acanthamoeba is a “Trojan horse” of the microbial world. The aim of
this study was to identify the presence of Pseudomonas as an
amoeba-resistant microorganism in 12 isolates of Acanthamoeba. All
isolates showed the genus Pseudomonas spp. as amoeba-resistant
microorganisms. Thus, one can see that the Acanthamoeba isolates
studied are hosts of Pseudomonas.
Collapse
Affiliation(s)
- Vinicius José Maschio
- Departamento de Microbiologia, Imunologia e Parasitologia. Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gertrudes Corção
- Departamento de Microbiologia, Imunologia e Parasitologia. Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marilise Brittes Rott
- Departamento de Microbiologia, Imunologia e Parasitologia. Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
54
|
Hasegawa Y, Futamata H, Tashiro Y. Complexities of cell-to-cell communication through membrane vesicles: implications for selective interaction of membrane vesicles with microbial cells. Front Microbiol 2015; 6:633. [PMID: 26191043 PMCID: PMC4490254 DOI: 10.3389/fmicb.2015.00633] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/11/2015] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yusuke Hasegawa
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Hamamatsu, Japan
| | - Hiroyuki Futamata
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Hamamatsu, Japan
| | - Yosuke Tashiro
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Hamamatsu, Japan
| |
Collapse
|
55
|
Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N. Environmental factors that shape biofilm formation. Biosci Biotechnol Biochem 2015; 80:7-12. [PMID: 26103134 DOI: 10.1080/09168451.2015.1058701] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cells respond to the environment and alter gene expression. Recent studies have revealed the social aspects of bacterial life, such as biofilm formation. Biofilm formation is largely affected by the environment, and the mechanisms by which the gene expression of individual cells affects biofilm development have attracted interest. Environmental factors determine the cell's decision to form or leave a biofilm. In addition, the biofilm structure largely depends on the environment, implying that biofilms are shaped to adapt to local conditions. Second messengers such as cAMP and c-di-GMP are key factors that link environmental factors with gene regulation. Cell-to-cell communication is also an important factor in shaping the biofilm. In this short review, we will introduce the basics of biofilm formation and further discuss environmental factors that shape biofilm formation. Finally, the state-of-the-art tools that allow us investigate biofilms under various conditions are discussed.
Collapse
Affiliation(s)
- Masanori Toyofuku
- a Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| | - Tomohiro Inaba
- a Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| | - Tatsunori Kiyokawa
- a Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| | - Nozomu Obana
- a Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| | - Yutaka Yawata
- b Departoment of Civil and Environmental Engineering , Massachusetts Institute of Technology , Cambridge , USA
| | - Nobuhiko Nomura
- a Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| |
Collapse
|
56
|
Khemiri A, Jouenne T, Cosette P. Proteomics dedicated to biofilmology: What have we learned from a decade of research? Med Microbiol Immunol 2015; 205:1-19. [PMID: 26068406 DOI: 10.1007/s00430-015-0423-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 06/03/2015] [Indexed: 12/31/2022]
Abstract
Advances in proteomics techniques over the past decade, closely integrated with genomic and physicochemical approach, have played a great role in developing knowledge of the biofilm lifestyle of bacteria. Despite bacterial proteome versatility, many studies have demonstrated the ability of proteomics approaches to elucidating the biofilm phenotype. Though these investigations have been largely used for biofilm studies in the last decades, they represent, however, a very low percentage of proteomics works performed up to now. Such approaches have offered new targets for combating microbial biofilms by providing a comprehensive quantitative and qualitative overview of their protein cell content. Herein, we summarized the state of the art in knowledge about biofilm physiology after one decade of proteomic analysis. In a second part, we highlighted missing research tracks for the next decade, emphasizing the emergence of posttranslational modifications in proteomic studies stemming from recent advances in mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Arbia Khemiri
- CNRS, UMR 6270, Laboratory "Polymères, Biopolymères, Surfaces", 76820, Mont-Saint-Aignan, France.
- University of Normandy, UR, Mont-Saint-Aignan, France.
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France.
| | - Thierry Jouenne
- CNRS, UMR 6270, Laboratory "Polymères, Biopolymères, Surfaces", 76820, Mont-Saint-Aignan, France
- University of Normandy, UR, Mont-Saint-Aignan, France
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France
| | - Pascal Cosette
- CNRS, UMR 6270, Laboratory "Polymères, Biopolymères, Surfaces", 76820, Mont-Saint-Aignan, France
- University of Normandy, UR, Mont-Saint-Aignan, France
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France
| |
Collapse
|
57
|
Yonezawa H, Osaki T, Kamiya S. Biofilm Formation by Helicobacter pylori and Its Involvement for Antibiotic Resistance. BIOMED RESEARCH INTERNATIONAL 2015; 2015:914791. [PMID: 26078970 PMCID: PMC4452508 DOI: 10.1155/2015/914791] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/25/2014] [Indexed: 12/12/2022]
Abstract
Bacterial biofilms are communities of microorganisms attached to a surface. Biofilm formation is critical not only for environmental survival but also for successful infection. Helicobacter pylori is one of the most common causes of bacterial infection in humans. Some studies demonstrated that this microorganism has biofilm forming ability in the environment and on human gastric mucosa epithelium as well as on in vitro abiotic surfaces. In the environment, H. pylori could be embedded in drinking water biofilms through water distribution system in developed and developing countries so that the drinking water may serve as a reservoir for H. pylori infection. In the human stomach, H. pylori forms biofilms on the surface of gastric mucosa, suggesting one possible explanation for eradication therapy failure. Finally, based on the results of in vitro analyses, H. pylori biofilm formation can decrease susceptibility to antibiotics and H. pylori antibiotic resistance mutations are more frequently generated in biofilms than in planktonic cells. These observations indicated that H. pylori biofilm formation may play an important role in preventing and controlling H. pylori infections. Therefore, investigation of H. pylori biofilm formation could be effective in elucidating the detailed mechanisms of infection and colonization by this microorganism.
Collapse
Affiliation(s)
- Hideo Yonezawa
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
58
|
Inhibition of Pseudomonas aeruginosa swarming motility by 1-naphthol and other bicyclic compounds bearing hydroxyl groups. Appl Environ Microbiol 2015; 81:2808-18. [PMID: 25681177 DOI: 10.1128/aem.04220-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many bacteria convert bicyclic compounds, such as indole and naphthalene, to oxidized compounds, including hydroxyindoles and naphthols. Pseudomonas aeruginosa, a ubiquitous bacterium that inhabits diverse environments, shows pathogenicity against animals, plants, and other microorganisms, and increasing evidence has shown that several bicyclic compounds alter the virulence-related phenotypes of P. aeruginosa. Here, we revealed that hydroxyindoles (4- and 5-hydroxyindoles) and naphthalene derivatives bearing hydroxyl groups specifically inhibit swarming motility but have minor effects on other motilities, including swimming and twitching, in P. aeruginosa. Further analyses using 1-naphthol showed that this effect is also associated with clinically isolated hyperswarming P. aeruginosa cells. Swarming motility is associated with the dispersion of cells from biofilms, and the addition of 1-naphthol maintained biofilm biomass without cell dispersion. We showed that this 1-naphthol-dependent swarming inhibition is independent of changes of rhamnolipid production and the intracellular level of signaling molecule cyclic-di-GMP (c-di-GMP). Transcriptome analyses revealed that 1-naphthol increases gene expression associated with multidrug efflux and represses gene expression associated with aerotaxis and with pyochelin, flagellar, and pilus synthesis. In the present study, we showed that several bicyclic compounds bearing hydroxyl groups inhibit the swarming motility of P. aeruginosa, and these results provide new insight into the chemical structures that inhibit the specific phenotypes of P. aeruginosa.
Collapse
|
59
|
Zhurina MV, Gannesen AV, Zdorovenko EL, Plakunov VK. Composition and functions of the extracellular polymer matrix of bacterial biofilms. Microbiology (Reading) 2014. [DOI: 10.1134/s002626171406023x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
60
|
Kulkarni HM, Jagannadham MV. Biogenesis and multifaceted roles of outer membrane vesicles from Gram-negative bacteria. Microbiology (Reading) 2014; 160:2109-2121. [DOI: 10.1099/mic.0.079400-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Outer membrane vesicles (OMVs) released from Gram-negative bacteria consist of lipids, proteins, lipopolysaccharides and other molecules. OMVs are associated with several biological functions such as horizontal gene transfer, intracellular and intercellular communication, transfer of contents to host cells, and eliciting an immune response in host cells. Although hypotheses have been made concerning the mechanism of biogenesis of these vesicles, research on OMV formation is far from complete. The roles of outer membrane components, bacterial quorum sensing molecules and some specific proteins in OMV biogenesis have been studied. This review discusses the different models that have been proposed for OMV biogenesis, along with details of the biological functions of OMVs and the likely scope of future research.
Collapse
Affiliation(s)
- Heramb M. Kulkarni
- CSIR – Centre for Cellular and Molecular Biology, Tarnaka, Hyderabad-500007, India
| | | |
Collapse
|
61
|
Ghequire MGK, De Mot R. Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol Rev 2014; 38:523-68. [PMID: 24923764 DOI: 10.1111/1574-6976.12079] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/05/2014] [Accepted: 05/16/2014] [Indexed: 12/26/2022] Open
Abstract
Members of the Pseudomonas genus produce diverse secondary metabolites affecting other bacteria, fungi or predating nematodes and protozoa but are also equipped with the capacity to secrete different types of ribosomally encoded toxic peptides and proteins, ranging from small microcins to large tailocins. Studies with the human pathogen Pseudomonas aeruginosa have revealed that effector proteins of type VI secretion systems are part of the antibacterial armamentarium deployed by pseudomonads. A novel class of antibacterial proteins with structural similarity to plant lectins was discovered by studying antagonism among plant-associated Pseudomonas strains. A genomic perspective on pseudomonad bacteriocinogeny shows that the modular architecture of S pyocins of P. aeruginosa is retained in a large diversified group of bacteriocins, most of which target DNA or RNA. Similar modularity is present in as yet poorly characterized Rhs (recombination hot spot) proteins and CDI (contact-dependent inhibition) proteins. Well-delimited domains for receptor recognition or cytotoxicity enable the design of chimeric toxins with novel functionalities, which has been applied successfully for S and R pyocins. Little is known regarding how these antibacterials are released and ultimately reach their targets. Other remaining issues concern the identification of environmental triggers activating these systems and assessment of their ecological impact in niches populated by pseudomonads.
Collapse
|
62
|
Structural changes and differentially expressed genes in Pseudomonas aeruginosa exposed to meropenem-ciprofloxacin combination. Antimicrob Agents Chemother 2014; 58:3957-67. [PMID: 24798291 DOI: 10.1128/aac.02584-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The effect of a meropenem-ciprofloxacin combination (MCC) on the susceptibility of multidrug-resistant (MDR) Pseudomonas aeruginosa (MRPA) clinical isolates was determined using checkerboard and time-kill curve techniques. Structural changes and differential gene expression that resulted from the synergistic action of the MCC against one of the P. aeruginosa isolates (1071-MRPA]) were evaluated using electron microscopy and representational difference analysis (RDA), respectively. The differentially expressed, SOS response-associated, and resistance-associated genes in 1071-MRPA exposed to meropenem, ciprofloxacin, and the MCC were monitored by quantitative PCR. The MCC was synergistic against 25% and 40.6% of MDR P. aeruginosa isolates as shown by the checkerboard and time-kill curves, respectively. The morphological and structural changes that resulted from the synergistic action of the MCC against 1071-MRPA were a summation of the effects observed with each antimicrobial alone. One exception included outer membrane vesicles, which were seen in a greater amount upon ciprofloxacin exposure but were significantly inhibited upon MCC exposure. Cell wall- and DNA repair-associated genes were differentially expressed in 1071-MRPA exposed to meropenem, ciprofloxacin, and the MCC. However, some of the RDA-detected, resistance-associated, and SOS response-associated genes were expressed at significantly lower levels in 1071-MRPA exposed to the MCC. The MCC may be an alternative for the treatment of MDR P. aeruginosa. The effect of this antimicrobial combination may be not only the result of a summation of the effects of meropenem and ciprofloxacin but also a result of differential action that likely inhibits protective mechanisms in the bacteria.
Collapse
|
63
|
Tashiro Y, Inagaki A, Ono K, Inaba T, Yawata Y, Uchiyama H, Nomura N. Low concentrations of ethanol stimulate biofilm and pellicle formation in Pseudomonas aeruginosa. Biosci Biotechnol Biochem 2014; 78:178-81. [PMID: 25036502 DOI: 10.1080/09168451.2014.877828] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biofilms are communities of surface-attached microbial cells that resist environmental stresses. In this study, we found that low concentrations of ethanol increase biofilm formation in Pseudomonas aeruginosa PAO1 but not in a mutant of it lacking both Psl and Pel exopolysaccharides. Low concentrations of ethanol also increased pellicle formation at the air-liquid interface.
Collapse
Affiliation(s)
- Yosuke Tashiro
- a Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| | | | | | | | | | | | | |
Collapse
|
64
|
Shetty A, Hickey WJ. Effects of outer membrane vesicle formation, surface-layer production and nanopod development on the metabolism of phenanthrene by Delftia acidovorans Cs1-4. PLoS One 2014; 9:e92143. [PMID: 24642639 PMCID: PMC3958437 DOI: 10.1371/journal.pone.0092143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/18/2014] [Indexed: 11/18/2022] Open
Abstract
Nanopods are extracellular structures arising from the convergence of two widely distributed bacterial characteristics: production of outer membrane vesicles (OMV) and formation of surface layers (S-layers). Nanopod production is driven by OMV formation, and in Delftia acidovorans Cs1-4 growth on phenanthrene induces OMV/nanopod formation. While OMV production has been associated with many functions, particularly with pathogens, linkage to biodegradation has been limited to a membrane stress response to lipophilic compounds. The objectives of this study were to determine: 1.) Whether induction of nanopod formation was linked to phenanthrene metabolism or a non-specific membrane stress response, and 2.) The relative importance of OMV/nanopod formation vs. formation of the S-layer alone to phenanthrene utilization. Membrane stress response was investigated by quantifying nanopod formation following exposure to compounds that exceeded phenanthrene in membrane stress-inducing potential. Naphthalene did not induce nanopod formation, and toluene was a weak inducer compared to phenanthrene (two- vs. six-fold increase, respectively). Induction of nanopod formation by growth on phenanthrene was therefore linked to phenanthrene metabolism and not a membrane stress response. Impacts on phenanthrene biodegradation of OMV/nanopod production vs. S-layer formation were assessed with D. acidovorans Cs1-4 mutants deficient in S-layer formation or OMV/nanopod production. Both mutants had impaired growth on phenanthrene, but the loss of OMV/nanopod production was more significant than loss of the S-layer. The S-layer of D. acidovorans Cs1-4 did not affect phenanthrene uptake, and its primary role in phenanthrene biodegradation process appeared to be enabling nanopod development. Nanopods appeared to benefit phenanthrene biodegradation by enhancing cellular retention of metabolites. Collectively, these studies established that nanopod/OMV formation was an essential characteristic of the D. acidovorans Cs1-4 phenanthrene degradation process. This report thus established a new dimension in the area of biodegradation, namely, the involvement of extracellular structures as elements supporting metabolic processes underlying biodegradation.
Collapse
Affiliation(s)
- Ameesha Shetty
- O.N. Allen Laboratory for Soil Microbiology, Department of Soil Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - William J. Hickey
- O.N. Allen Laboratory for Soil Microbiology, Department of Soil Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
65
|
Park KS, Lee J, Jang SC, Kim SR, Jang MH, Lötvall J, Kim YK, Gho YS. Pulmonary inflammation induced by bacteria-free outer membrane vesicles from Pseudomonas aeruginosa. Am J Respir Cell Mol Biol 2014; 49:637-45. [PMID: 23713467 DOI: 10.1165/rcmb.2012-0370oc] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is often involved in lung diseases such as cystic fibrosis. These bacteria can release outer membrane vesicles (OMVs), which are bilayered proteolipids with diameters of approximately 20 to 250 nm. In vitro, these OMVs activate macrophages and airway epithelial cells. The aim of this study was to determine whether OMVs from P. aeruginosa can induce pulmonary inflammation in vivo and to elucidate the mechanisms involved. Bacteria-free OMVs were isolated from P. aeruginosa cultures. Wild-type, Toll-like receptor (TLR)2 and TLR4 knockout mice were exposed to OMVs by the airway, and inflammation in the lung was assessed using differential counts, histology, and quantification of chemokines and cytokines. The involvement of the TLR2 and TLR4 pathways was studied in human cells using transfection. OMVs given to the mouse lung caused dose- and time-dependent pulmonary cellular inflammation. Furthermore, OMVs increased concentrations of several chemokines and cytokines in the mouse lungs and mouse alveolar macrophages. The inflammatory responses to OMVs were comparable to those of live bacteria and were only partly regulated by the TLR2 and TLR4 pathways, according to studies in knockout mice. This study shows that OMVs from P. aeruginosa cause pulmonary inflammation without live bacteria in vivo. This effect is only partly controlled by TLR2 and TLR4. The role of OMVs in clinical disease warrants further studies because targeting of OMVs in addition to live bacteria may add clinical benefit compared with treating with antibiotics alone.
Collapse
Affiliation(s)
- Kyong-Su Park
- 1 Department of Life Sciences, Pohang University of Science and Technology, and
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Santander RD, Oliver JD, Biosca EG. Cellular, physiological, and molecular adaptive responses of Erwinia amylovora to starvation. FEMS Microbiol Ecol 2014; 88:258-71. [PMID: 24476337 DOI: 10.1111/1574-6941.12290] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/02/2014] [Accepted: 01/19/2014] [Indexed: 11/29/2022] Open
Abstract
Erwinia amylovora causes fire blight, a destructive disease of rosaceous plants distributed worldwide. This bacterium is a nonobligate pathogen able to survive outside the host under starvation conditions, allowing its spread by various means such as rainwater. We studied E. amylovora responses to starvation using water microcosms to mimic natural oligotrophy. Initially, survivability under optimal (28 °C) and suboptimal (20 °C) growth temperatures was compared. Starvation induced a loss of culturability much more pronounced at 28 °C than at 20 °C. Natural water microcosms at 20 °C were then used to characterize cellular, physiological, and molecular starvation responses of E. amylovora. Challenged cells developed starvation-survival and viable but nonculturable responses, reduced their size, acquired rounded shapes and developed surface vesicles. Starved cells lost motility in a few days, but a fraction retained flagella. The expression of genes related to starvation, oxidative stress, motility, pathogenicity, and virulence was detected during the entire experimental period with different regulation patterns observed during the first 24 h. Further, starved cells remained as virulent as nonstressed cells. Overall, these results provide new knowledge on the biology of E. amylovora under conditions prevailing in nature, which could contribute to a better understanding of the life cycle of this pathogen.
Collapse
Affiliation(s)
- Ricardo D Santander
- Department of Microbiology and Ecology, University of Valencia, Burjassot, Valencia, Spain
| | | | | |
Collapse
|
67
|
Toyofuku M, Zhou S, Sawada I, Takaya N, Uchiyama H, Nomura N. Membrane vesicle formation is associated with pyocin production under denitrifying conditions inPseudomonas aeruginosa PAO1. Environ Microbiol 2013; 16:2927-38. [DOI: 10.1111/1462-2920.12260] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/16/2013] [Accepted: 08/21/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Masanori Toyofuku
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| | - Shengmin Zhou
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| | - Isao Sawada
- Department of Material and Environmental Chemistry; Graduate School of Engineering; Utsunomiya University; Utsunomiya Tochigi Japan
| | - Naoki Takaya
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| | - Hiroo Uchiyama
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| | - Nobuhiko Nomura
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| |
Collapse
|
68
|
Gaudin M, Krupovic M, Marguet E, Gauliard E, Cvirkaite-Krupovic V, Le Cam E, Oberto J, Forterre P. Extracellular membrane vesicles harbouring viral genomes. Environ Microbiol 2013; 16:1167-75. [DOI: 10.1111/1462-2920.12235] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/25/2013] [Accepted: 07/28/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Marie Gaudin
- CNRS UMR 8621; Institut de Génétique et Microbiologie; Univ Paris-Sud; 91405 Orsay cedex France
| | - Mart Krupovic
- Biologie Moléculaire du Gène chez les Extrêmophiles; Département de Microbiologie; Institut Pasteur; 75724 Paris cedex France
| | - Evelyne Marguet
- CNRS UMR 8621; Institut de Génétique et Microbiologie; Univ Paris-Sud; 91405 Orsay cedex France
| | - Emilie Gauliard
- CNRS UMR 8621; Institut de Génétique et Microbiologie; Univ Paris-Sud; 91405 Orsay cedex France
| | | | - Eric Le Cam
- Signalisation; Noyaux et Innovations en Cancérologie; Interactions Moléculaires et Cancer; CNRS UMR 8126; Institut de Cancérologie Gustave Roussy 94805 Villejuif cedex France
| | - Jacques Oberto
- CNRS UMR 8621; Institut de Génétique et Microbiologie; Univ Paris-Sud; 91405 Orsay cedex France
| | - Patrick Forterre
- CNRS UMR 8621; Institut de Génétique et Microbiologie; Univ Paris-Sud; 91405 Orsay cedex France
- Biologie Moléculaire du Gène chez les Extrêmophiles; Département de Microbiologie; Institut Pasteur; 75724 Paris cedex France
| |
Collapse
|
69
|
Kittel A, Falus A, Buzás E. Microencapsulation technology by nature: Cell derived extracellular vesicles with therapeutic potential. Eur J Microbiol Immunol (Bp) 2013; 3:91-6. [PMID: 24265924 DOI: 10.1556/eujmi.3.2013.2.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 04/12/2013] [Indexed: 12/24/2022] Open
Abstract
Cell derived extracellular vesicles are submicron structures surrounded by phospholipid bilayer and released by both prokaryotic and eukaryotic cells. The sizes of these vesicles roughly fall into the size ranges of microbes, and they represent efficient delivery platforms targeting complex molecular information to professional antigen presenting cells. Critical roles of these naturally formulated units of information have been described in many physiological and pathological processes. Extracellular vesicles are not only potential biomarkers and possible pathogenic factors in numerous diseases, but they are also considered as emerging therapeutic targets and therapeutic vehicles. Strikingly, current drug delivery systems, designed to convey therapeutic proteins and peptides (such as liposomes), show many similarities to extracellular vesicles. Here we review some aspects of therapeutic implementation of natural, cell-derived extracellular vesicles in human diseases. Exploration of molecular and functional details of extracellular vesicle release and action may provide important lessons for the design of future drug delivery systems.
Collapse
|
70
|
Tashiro Y, Yawata Y, Toyofuku M, Uchiyama H, Nomura N. Interspecies interaction between Pseudomonas aeruginosa and other microorganisms. Microbes Environ 2013; 28:13-24. [PMID: 23363620 PMCID: PMC4070684 DOI: 10.1264/jsme2.me12167] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Microbes interact with each other in multicellular communities and this interaction enables certain microorganisms to survive in various environments. Pseudomonas aeruginosa is a highly adaptable bacterium that ubiquitously inhabits diverse environments including soil, marine habitats, plants and animals. Behind this adaptivity, P. aeruginosa has abilities not only to outcompete others but also to communicate with each other to develop a multispecies community. In this review, we focus on how P. aeruginosa interacts with other microorganisms. P. aeruginosa secretes antimicrobial chemicals to compete and signal molecules to cooperate with other organisms. In other cases, it directly conveys antimicrobial enzymes to other bacteria using the Type VI secretion system (T6SS) or membrane vesicles (MVs). Quorum sensing is a central regulatory system used to exert their ability including antimicrobial effects and cooperation with other microbes. At least three quorum sensing systems are found in P. aeruginosa, Las, Rhl and Pseudomonas quinolone signal (PQS) systems. These quorum-sensing systems control the synthesis of extracellular antimicrobial chemicals as well as interaction with other organisms via T6SS or MVs. In addition, we explain the potential of microbial interaction analysis using several micro devices, which would bring fresh sensitivity to the study of interspecies interaction between P. aeruginosa and other organisms.
Collapse
Affiliation(s)
- Yosuke Tashiro
- Division of Environmental Engineering, Hokkaido University, Hokkaido, Japan
| | | | | | | | | |
Collapse
|
71
|
Membrane vesicles, nanopods and/or nanotubes produced by hyperthermophilic archaea of the genus Thermococcus. Biochem Soc Trans 2013; 41:436-42. [DOI: 10.1042/bst20120293] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Thermococcus species produce MVs (membrane vesicles) into their culture medium. These MVs are formed by a budding process from the cell envelope, similar to ectosome formation in eukaryotic cells. The major protein present in MVs of Thermococci is a peptide-binding receptor of the OppA (oligopeptide-binding protein A) family. In addition, some of them contain a homologue of stomatin, a universal membrane protein involved in vesiculation. MVs produced by Thermococcus species can recruit endogenous or exogenous plasmids and plasmid transfer through MVs has been demonstrated in Thermococcus kodakaraensis. MVs are frequently secreted in clusters surrounded by S-layer, producing either big protuberances (nanosphere) or tubular structures (nanotubes). Thermococcus gammatolerans and T. kodakaraensis produce nanotubes containing strings of MVs, resembling the recently described nanopods in bacteria, whereas Thermococcus sp. 5-4 produces filaments whose internal membrane is continuous. These nanotubes can bridge neighbouring cells, forming cellular networks somehow resembling nanotubes recently observed in Firmicutes. As suggested for bacteria, archaeal nanopods and/or nanotubes could be used to expand the metabolic sphere around cells and/or to promote intercellular communication.
Collapse
|
72
|
New type of outer membrane vesicle produced by the Gram-negative bacterium Shewanella vesiculosa M7T: implications for DNA content. Appl Environ Microbiol 2013; 79:1874-81. [PMID: 23315742 DOI: 10.1128/aem.03657-12] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Outer membrane vesicles (OMVs) from Gram-negative bacteria are known to be involved in lateral DNA transfer, but the presence of DNA in these vesicles has remained difficult to explain. An ultrastructural study of the Antarctic psychrotolerant bacterium Shewanella vesiculosa M7(T) has revealed that this Gram-negative bacterium naturally releases conventional one-bilayer OMVs through a process in which the outer membrane is exfoliated and only the periplasm is entrapped, together with a more complex type of OMV, previously undescribed, which on formation drag along inner membrane and cytoplasmic content and can therefore also entrap DNA. These vesicles, with a double-bilayer structure and containing electron-dense material, were visualized by transmission electron microscopy (TEM) after high-pressure freezing and freeze-substitution (HPF-FS), and their DNA content was fluorometrically quantified as 1.8 ± 0.24 ng DNA/μg OMV protein. The new double-bilayer OMVs were estimated by cryo-TEM to represent 0.1% of total vesicles. The presence of DNA inside the vesicles was confirmed by gold DNA immunolabeling with a specific monoclonal IgM against double-stranded DNA. In addition, a proteomic study of purified membrane vesicles confirmed the presence of plasma membrane and cytoplasmic proteins in OMVs from this strain. Our data demonstrate the existence of a previously unobserved type of double-bilayer OMV in the Gram-negative bacterium Shewanella vesiculosa M7(T) that can incorporate DNA, for which we propose the name outer-inner membrane vesicle (O-IMV).
Collapse
|
73
|
Toyofuku M, Roschitzki B, Riedel K, Eberl L. Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix. J Proteome Res 2012; 11:4906-15. [PMID: 22909304 DOI: 10.1021/pr300395j] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biofilms are surface-associated bacteria that are embedded in a matrix of self-produced polymeric substances (EPSs). The EPS is composed of nucleic acids, polysaccharides, lipids, and proteins. While polysaccharide components have been well studied, the protein content of the matrix is largely unknown. Here we conducted a comprehensive proteomic study to identify proteins associated with the biofilm matrix of Pseudomonas aeruginosa PAO1 (the matrix proteome). This analysis revealed that approximately 30% of the identified matrix proteins were outer membrane proteins, which are also typically found in outer membrane vesicles (OMVs). Electron microscopic inspection confirmed the presence of large amounts of OMVs within the biofilm matrix, supporting previous notions that OMVs are abundant constituents of P. aeruginosa biofilms. Our results demonstrate that while some proteins associated with the P. aeruginosa matrix are derived from secreted proteins and lysed cells, the large majority of the matrix proteins originate from OMVs. Furthermore, we demonstrate that the protein content of planktonic and biofilm OMVs is surprisingly different and may reflect the different physiological states of planktonic and sessile cells.
Collapse
Affiliation(s)
- Masanori Toyofuku
- Institute of Plant Biology, Department of Microbiology, University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
74
|
Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl Environ Microbiol 2012; 78:6217-24. [PMID: 22752175 DOI: 10.1128/aem.01525-12] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Among the adaptive responses of bacteria to rapid changes in environmental conditions, those of the cell envelope are known to be the most crucial. Therefore, several mechanisms with which bacteria change their cell surface and membranes in the presence of different environmental stresses have been elucidated. Among these mechanisms, the release of outer membrane vesicles (MV) in Gram-negative bacteria has attracted particular research interest because of its involvement in pathogenic processes, such as that of Pseudomonas aeruginosa biofilm formation in cystic fibrosis lungs. In this study, we investigated the role of MV formation as an adaptive response of Pseudomonas putida DOT-T1E to several environmental stress factors and correlated it to the formation of biofilms. In the presence of toxic concentrations of long-chain alcohols, under osmotic stress caused by NaCl, in the presence of EDTA, and after heat shock, cells of this strain released MV within 10 min in the presence of a stressor. The MV formed showed similar size and charge properties, as well as comparable compositions of proteins and fatty acids. MV release caused a significant increase in cell surface hydrophobicity, and an enhanced tendency to form biofilms was demonstrated in this study. Therefore, the release of MV as a stress response could be put in a physiological context.
Collapse
|