51
|
Myllymäki H, Niskanen M, Oksanen KE, Rämet M. Animal models in tuberculosis research - where is the beef? Expert Opin Drug Discov 2015; 10:871-83. [PMID: 26073097 DOI: 10.1517/17460441.2015.1049529] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Tuberculosis (TB) is a major global health problem, and new drugs and vaccines are urgently needed. As clinical trials in humans require tremendous resources, preclinical drug and vaccine development largely relies on valid animal models that recapitulate the pathology of human disease and the immune responses of the host as closely as possible. AREAS COVERED This review describes the animal models used in TB research, the most widely used being mice, guinea pigs and nonhuman primates. In addition, rabbits and cattle provide models with a disease pathology resembling that of humans. Invertebrate models, including the fruit fly and the Dictyostelium amoeba, have also been used to study mycobacterial infections. Recently, the zebrafish has emerged as a promising model for studying mycobacterial infections. The zebrafish model also facilitates the large-scale screening of drug and vaccine candidates. EXPERT OPINION Animal models are needed for TB research and provide valuable information on the mechanisms of the disease and on ways of preventing it. However, the data obtained in animal studies need to be carefully interpreted and evaluated before making assumptions concerning humans. With an increasing understanding of disease mechanisms, animal models can be further improved to best serve research goals.
Collapse
Affiliation(s)
- Henna Myllymäki
- BioMediTech, University of Tampere , FIN 33014 Tampere , Finland
| | | | | | | |
Collapse
|
52
|
Barisch C, Paschke P, Hagedorn M, Maniak M, Soldati T. Lipid droplet dynamics at early stages of Mycobacterium marinum infection in Dictyostelium. Cell Microbiol 2015; 17:1332-49. [PMID: 25772333 DOI: 10.1111/cmi.12437] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/17/2015] [Accepted: 03/03/2015] [Indexed: 01/15/2023]
Abstract
Lipid droplets exist in virtually every cell type, ranging not only from mammals to plants, but also to eukaryotic and prokaryotic unicellular organisms such as Dictyostelium and bacteria. They serve among other roles as energy reservoir that cells consume in times of starvation. Mycobacteria and some other intracellular pathogens hijack these organelles as a nutrient source and to build up their own lipid inclusions. The mechanisms by which host lipid droplets are captured by the pathogenic bacteria are extremely poorly understood. Using the powerful Dictyostelium discoideum/Mycobacterium marinum infection model, we observed that, immediately after their uptake, lipid droplets translocate to the vicinity of the vacuole containing live but not dead mycobacteria. Induction of lipid droplets in Dictyostelium prior to infection resulted in a vast accumulation of neutral lipids and sterols inside the bacterium-containing compartment. Subsequently, under these conditions, mycobacteria accumulated much larger lipid inclusions. Strikingly, the Dictyostelium homologue of perilipin and the murine perilipin 2 surrounded bacteria that had escaped to the cytosol of Dictyostelium or microglial BV-2 cells respectively. Moreover, bacterial growth was inhibited in Dictyostelium plnA knockout cells. In summary, our results provide evidence that mycobacteria actively manipulate the lipid metabolism of the host from very early infection stages.
Collapse
Affiliation(s)
- Caroline Barisch
- Department of Biochemistry, Science II, University of Geneva, Geneva, Switzerland
| | - Peggy Paschke
- Department of Cell Biology, University of Kassel, Kassel, Germany
| | - Monica Hagedorn
- Section Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Markus Maniak
- Department of Cell Biology, University of Kassel, Kassel, Germany
| | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, Geneva, Switzerland
| |
Collapse
|
53
|
Abstract
In contrast to mechanisms mediating uptake of intracellular bacterial pathogens, bacterial egress and cell-to-cell transmission are poorly understood. Previously, we showed that the transmission of pathogenic mycobacteria between phagocytic cells also depends on nonlytic ejection through an F-actin based structure, called the ejectosome. How the host cell maintains integrity of its plasma membrane during the ejection process was unknown. Here, we reveal an unexpected function for the autophagic machinery in nonlytic spreading of bacteria. We show that ejecting mycobacteria are escorted by a distinct polar autophagocytic vacuole. If autophagy is impaired, cell-to-cell transmission is inhibited, the host plasma membrane becomes compromised and the host cells die. These findings highlight a previously unidentified, highly ordered interaction between bacteria and the autophagic pathway and might represent the ancient way to ensure nonlytic egress of bacteria.
Collapse
|
54
|
Mycobacterium abscessus phospholipase C expression is induced during coculture within amoebae and enhances M. abscessus virulence in mice. Infect Immun 2014; 83:780-91. [PMID: 25486995 DOI: 10.1128/iai.02032-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium abscessus is a pathogenic, rapidly growing mycobacterium involved in pulmonary and cutaneo-mucous infections worldwide, to which cystic fibrosis patients are exquisitely susceptible. The analysis of the genome sequence of M. abscessus showed that this bacterium is endowed with the metabolic pathways typically found in environmental microorganisms that come into contact with soil, plants, and aquatic environments, where free-living amoebae are frequently present. M. abscessus also contains several genes that are characteristically found only in pathogenic bacteria. One of them is MAB_0555, encoding a putative phospholipase C (PLC) that is absent from most other rapidly growing mycobacteria, including Mycobacterium chelonae and Mycobacterium smegmatis. Here, we report that purified recombinant M. abscessus PLC is highly cytotoxic to mouse macrophages, presumably due to hydrolysis of membrane phospholipids. We further showed by constructing and using an M. abscessus PLC knockout mutant that loss of PLC activity is deleterious to M. abscessus intracellular survival in amoebae. The importance of PLC is further supported by the fact that M. abscessus PLC was found to be expressed only in amoebae. Aerosol challenge of mice with M. abscessus strains that were precultured in amoebae enhanced M. abscessus lung infectivity relative to M. abscessus grown in broth culture. Our study underlines the importance of PLC for the virulence of M. abscessus. Despite the difficulties of isolating M. abscessus from environmental sources, our findings suggest that M. abscessus has evolved in close contact with environmental protozoa, which supports the argument that amoebae may contribute to the virulence of opportunistic mycobacteria.
Collapse
|
55
|
Host Evasion and Exploitation Schemes of Mycobacterium tuberculosis. Cell 2014; 159:1497-509. [DOI: 10.1016/j.cell.2014.11.024] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Indexed: 12/20/2022]
|
56
|
Tosetti N, Croxatto A, Greub G. Amoebae as a tool to isolate new bacterial species, to discover new virulence factors and to study the host-pathogen interactions. Microb Pathog 2014; 77:125-30. [PMID: 25088032 DOI: 10.1016/j.micpath.2014.07.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/12/2014] [Accepted: 07/17/2014] [Indexed: 11/17/2022]
Abstract
Amoebae are unicellular protozoan present worldwide in several environments mainly feeding on bacteria. Some of them, the amoebae-resistant bacteria (ARBs), have evolved mechanisms to survive and replicate inside amoebal species. These mainly include legionella, mycobacteria and Chlamydia-related bacteria. Amoebae can provide a replicative niche, can act as reservoir for bacteria whereas the cystic form can protect the internalized bacteria. Moreover, the amoebae represent a Trojan horse for ARBs to infect animals. The long interaction between amoebae and bacteria has likely selected for bacterial virulence traits leading to the adaptation towards an intracellular lifestyle, and some ARBs have acquired the ability to infect mammals. This review intends to highlight the important uses of amoebae in several fields in microbiology by describing the main tools developed using amoebal cells. First, amoebae such as Acanthamoeba are used to isolate and discover new intracellular bacterial species by two main techniques: the amoebal co-culture and the amoebal enrichment. In the second part, taking Waddlia chondrophila as example, we summarize some important recent applications of amoebae to discover new bacterial virulence factors, in particular thanks to the amoebal plaque assay. Finally, the genetically tractable Dictyostelium discoideum is used as a model organism to study host-pathogen interactions, in particular with the development of several approaches to manipulate its genome that allowed the creation of a wide range of mutated strains largely shared within the Dictyostelium community.
Collapse
Affiliation(s)
- Nicolo Tosetti
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Antony Croxatto
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
57
|
Denoncourt AM, Paquet VE, Charette SJ. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria. Front Microbiol 2014; 5:240. [PMID: 24904553 PMCID: PMC4033053 DOI: 10.3389/fmicb.2014.00240] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/02/2014] [Indexed: 11/17/2022] Open
Abstract
Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging process. It is possible that packaging is more common than suspected and may play a major role in the persistence and transmission of pathogenic bacteria. To confirm the role of packaging in the propagation of infections, it is vital that the molecular mechanisms governing the packaging of bacteria by protozoa be identified as well as elements related to the ecology of this process in order to determine whether packaging acts as a Trojan Horse.
Collapse
Affiliation(s)
- Alix M Denoncourt
- Institut de Biologie Intégrative et des Systèmes, Université Laval Quebec City, QC, Canada ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Quebec City, QC, Canada
| | - Valérie E Paquet
- Institut de Biologie Intégrative et des Systèmes, Université Laval Quebec City, QC, Canada ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Quebec City, QC, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes, Université Laval Quebec City, QC, Canada ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Quebec City, QC, Canada ; Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval Quebec City, QC, Canada
| |
Collapse
|
58
|
Assessing Pseudomonas aeruginosa virulence using a nonmammalian host: Dictyostelium discoideum. Methods Mol Biol 2014; 1149:671-80. [PMID: 24818941 DOI: 10.1007/978-1-4939-0473-0_51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Dictyostelium discoideum, a soil amoeba, can be used as an alternative host to study the virulence of various bacterial species, including Pseudomonas aeruginosa. A simple quantitative test based on the ability of D. discoideum to grow on a bacterial lawn has been developed using this amoeba to assay the virulence of P. aeruginosa strains. The assay needs to be customized for the strains to be tested in order to be able to discriminate between virulent and avirulent P. aeruginosa strains. These steps are described in this protocol.
Collapse
|
59
|
Kicka S, Trofimov V, Harrison C, Ouertatani-Sakouhi H, McKinney J, Scapozza L, Hilbi H, Cosson P, Soldati T. Establishment and validation of whole-cell based fluorescence assays to identify anti-mycobacterial compounds using the Acanthamoeba castellanii-Mycobacterium marinum host-pathogen system. PLoS One 2014; 9:e87834. [PMID: 24498207 PMCID: PMC3909256 DOI: 10.1371/journal.pone.0087834] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/31/2013] [Indexed: 11/18/2022] Open
Abstract
Tuberculosis is considered to be one of the world’s deadliest disease with 2 million deaths each year. The need for new antitubercular drugs is further exacerbated by the emergence of drug-resistance strains. Despite multiple recent efforts, the majority of the hits discovered by traditional target-based screening showed low efficiency in vivo. Therefore, there is heightened demand for whole-cell based approaches directly using host-pathogen systems. The phenotypic host-pathogen assay described here is based on the monitoring of GFP-expressing Mycobacterium marinum during infection of the amoeba Acanthamoeba castellanii. The assay showed straight-forward medium-throughput scalability, robustness and ease of manipulation, demonstrating its qualities as an efficient compound screening system. Validation with a series of known antitubercular compounds highlighted the advantages of the assay in comparison to previously published macrophage-Mycobacterium tuberculosis-based screening systems. Combination with secondary growth assays based on either GFP-expressing D. discoideum or M. marinum allowed us to further fine-tune compound characterization by distinguishing and quantifying growth inhibition, cytotoxic properties and antibiotic activities of the compounds. The simple and relatively low cost system described here is most suitable to detect anti-infective compounds, whether they present antibiotic activities or not, in which case they might exert anti-virulence or host defense boosting activities, both of which are largely overlooked by classical screening approaches.
Collapse
Affiliation(s)
- Sébastien Kicka
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Valentin Trofimov
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Hajer Ouertatani-Sakouhi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - John McKinney
- Global Health Institute, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, EPGL, University of Geneva, Switzerland
| | - Hubert Hilbi
- Max von Pettenkofer Institute, Ludwig Maximilians University, Munich, Germany
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
60
|
Abstract
A wide spectrum of pathogenic bacteria and protozoa has adapted to an intracellular life-style, which presents several advantages, including accessibility to host cell metabolites and protection from the host immune system. Intracellular pathogens have developed strategies to enter and exit their host cells while optimizing survival and replication, progression through the life cycle, and transmission. Over the last decades, research has focused primarily on entry, while the exit process has suffered from neglect. However, pathogen exit is of fundamental importance because of its intimate association with dissemination, transmission, and inflammation. Hence, to fully understand virulence mechanisms of intracellular pathogens at cellular and systemic levels, it is essential to consider exit mechanisms to be a key step in infection. Exit from the host cell was initially viewed as a passive process, driven mainly by physical stress as a consequence of the explosive replication of the pathogen. It is now recognized as a complex, strategic process termed "egress," which is just as well orchestrated and temporally defined as entry into the host and relies on a dynamic interplay between host and pathogen factors. This review compares egress strategies of bacteria, pathogenic yeast, and kinetoplastid and apicomplexan parasites. Emphasis is given to recent advances in the biology of egress in mycobacteria and apicomplexans.
Collapse
|
61
|
Peterson TS, Ferguson JA, Watral VG, Mutoji KN, Ennis DG, Kent ML. Paramecium caudatum enhances transmission and infectivity of Mycobacterium marinum and M. chelonae in zebrafish Danio rerio. DISEASES OF AQUATIC ORGANISMS 2013; 106:229-39. [PMID: 24192000 PMCID: PMC4155924 DOI: 10.3354/dao02649] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Mycobacterial infections in laboratory zebrafish Danio rerio are common and widespread in research colonies. Mycobacteria within free-living amoebae have been shown to be transmission vectors for mycobacteriosis. Paramecium caudatum are commonly used as a first food for zebrafish, and we investigated this ciliate's potential to serve as a vector of Mycobacterium marinum and M. chelonae. The ability of live P. caudatum to transmit these mycobacteria to larval, juvenile and adult zebrafish was evaluated. Infections were defined by histologic observation of granulomas containing acid-fast bacteria in extraintestinal locations. In both experiments, fish fed paramecia containing mycobacteria became infected at a higher incidence than controls. Larvae (exposed at 4 d post hatch) fed paramecia with M. marinum exhibited an incidence of 30% (24/80) and juveniles (exposed at 21 d post hatch) showed 31% incidence (14/45). Adult fish fed a gelatin food matrix containing mycobacteria within paramecia or mycobacteria alone for 2 wk resulted in infections when examined 8 wk after exposure as follows: M. marinum OSU 214 47% (21/45), M. marinum CH 47% (9/19), and M. chelonae 38% (5/13). In contrast, fish feed mycobacteria alone in this diet did not become infected, except for 2 fish (5%) in the M. marinum OSU 214 low-dose group. These results demonstrate that P. caudatum can act as a vector for mycobacteria. This provides a useful animal model for evaluation of natural mycobacterial infections and demonstrates the possibility of mycobacterial transmission in zebrafish facilities via contaminated paramecia cultures.
Collapse
Affiliation(s)
- Tracy S Peterson
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | | | |
Collapse
|
62
|
Kolonko M, Geffken AC, Blumer T, Hagens K, Schaible UE, Hagedorn M. WASH-driven actin polymerization is required for efficient mycobacterial phagosome maturation arrest. Cell Microbiol 2013; 16:232-46. [PMID: 24119059 DOI: 10.1111/cmi.12217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/21/2013] [Accepted: 09/19/2013] [Indexed: 12/24/2022]
Abstract
Pathogenic mycobacteria survive in phagocytic host cells primarily as a result of their ability to prevent fusion of their vacuole with lysosomes, thereby avoiding a bactericidal environment. The molecular mechanisms to establish and maintain this replication compartment are not well understood. By combining molecular and microscopical approaches we show here that after phagocytosis the actin nucleation-promoting factor WASH associates and generates F-actin on the mycobacterial vacuole. Disruption of WASH or depolymerization of F-actin leads to the accumulation of the proton-pumping V-ATPase around the mycobacterial vacuole, its acidification and reduces the viability of intracellular mycobacteria. This effect is observed for M. marinum in the model phagocyte Dictyostelium but also for M. marinum and M. tuberculosis in mammalian phagocytes. This demonstrates an evolutionarily conserved mechanism by which pathogenic mycobacteria subvert the actin-polymerization activity of WASH to prevent phagosome acidification and maturation, as a prerequisite to generate and maintain a replicative niche.
Collapse
Affiliation(s)
- Margot Kolonko
- Section Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
63
|
Bozzaro S, Buracco S, Peracino B. Iron metabolism and resistance to infection by invasive bacteria in the social amoeba Dictyostelium discoideum. Front Cell Infect Microbiol 2013; 3:50. [PMID: 24066281 PMCID: PMC3777012 DOI: 10.3389/fcimb.2013.00050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/22/2013] [Indexed: 12/20/2022] Open
Abstract
Dictyostelium cells are forest soil amoebae, which feed on bacteria and proliferate as solitary cells until bacteria are consumed. Starvation triggers a change in life style, forcing cells to gather into aggregates to form multicellular organisms capable of cell differentiation and morphogenesis. As a soil amoeba and a phagocyte that grazes on bacteria as the obligate source of food, Dictyostelium could be a natural host of pathogenic bacteria. Indeed, many pathogens that occasionally infect humans are hosted for most of their time in protozoa or free-living amoebae, where evolution of their virulence traits occurs. Due to these features and its amenability to genetic manipulation, Dictyostelium has become a valuable model organism for studying strategies of both the host to resist infection and the pathogen to escape the defense mechanisms. Similarly to higher eukaryotes, iron homeostasis is crucial for Dictyostelium resistance to invasive bacteria. Iron is essential for Dictyostelium, as both iron deficiency or overload inhibit cell growth. The Dictyostelium genome shares with mammals many genes regulating iron homeostasis. Iron transporters of the Nramp (Slc11A) family are represented with two genes, encoding Nramp1 and Nramp2. Like the mammalian ortholog, Nramp1 is recruited to phagosomes and macropinosomes, whereas Nramp2 is a membrane protein of the contractile vacuole network, which regulates osmolarity. Nramp1 and Nramp2 localization in distinct compartments suggests that both proteins synergistically regulate iron homeostasis. Rather than by absorption via membrane transporters, iron is likely gained by degradation of ingested bacteria and efflux via Nramp1 from phagosomes to the cytosol. Nramp gene disruption increases Dictyostelium sensitivity to infection, enhancing intracellular growth of Legionella or Mycobacteria. Generation of mutants in other "iron genes" will help identify genes essential for iron homeostasis and resistance to pathogens.
Collapse
Affiliation(s)
- Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy.
| | | | | |
Collapse
|
64
|
Harrison CF, Kicka S, Trofimov V, Berschl K, Ouertatani-Sakouhi H, Ackermann N, Hedberg C, Cosson P, Soldati T, Hilbi H. Exploring anti-bacterial compounds against intracellular Legionella. PLoS One 2013; 8:e74813. [PMID: 24058631 PMCID: PMC3772892 DOI: 10.1371/journal.pone.0074813] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 08/06/2013] [Indexed: 01/10/2023] Open
Abstract
Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an 'accidental' human pathogen and cause a severe pneumonia known as Legionnaires' disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoebacastellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target.
Collapse
Affiliation(s)
| | - Sébastien Kicka
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Valentin Trofimov
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Kathrin Berschl
- Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany
| | | | - Nikolaus Ackermann
- Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany
| | | | - Pierre Cosson
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Hubert Hilbi
- Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany
- * E-mail:
| |
Collapse
|
65
|
Bozzaro S, Peracino B, Eichinger L. Dictyostelium host response to legionella infection: strategies and assays. Methods Mol Biol 2013; 954:417-38. [PMID: 23150412 DOI: 10.1007/978-1-62703-161-5_26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The professional phagocyte Dictyostelium discoideum is a simple eukaryotic microorganism, whose natural habitat is deciduous forest soil and decaying leaves, where the amoebae feed on bacteria and grow as separate, independent, single cells. In the last decade, the organism has been successfully used as a host for several human pathogens, including Legionella pneumophila, Mycobacterium avium and Mycobacterium marinum,Pseudomonas aeruginosa, Klebsiella pneumoniae, Cryptococcus neoformans, and Salmonella typhimurium. To dissect the complex cross-talk between host and pathogen Dictyostelium offers easy cultivation, a high quality genome sequence and excellent molecular genetic and biochemical tools. Dictyostelium cells are also extremely suitable for cell biological studies, which in combination with in vivo expression of fluorescence-tagged proteins allow investigating the dynamics of bacterial uptake and infection. Inactivation of genes by homologous recombination as well as gene rescue and overexpression are well established and a large mutant collection is available at the Dictyostelium stock center, favoring identification of host resistance or susceptibility genes. Here, we briefly introduce the organism, address the value of Dictyostelium as model host, describe strategies to identify host cell factors important for infection followed by protocols for cell culture and storage, uptake and infection, and confocal microscopy of infected cells.
Collapse
Affiliation(s)
- Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy,
| | | | | |
Collapse
|
66
|
Abstract
Much of our knowledge of molecular cellular functions is based on studies with a few number of model organisms that were established during the last 50 years. The social amoeba Dictyostelium discoideum is one such model, and has been particularly useful for the study of cell motility, chemotaxis, phagocytosis, endocytic vesicle traffic, cell adhesion, pattern formation, caspase-independent cell death, and, more recently, autophagy and social evolution. As nonmammalian model of human diseases D. discoideum is a newcomer, yet it has proven to be a powerful genetic and cellular model for investigating host-pathogen interactions and microbial infections, for mitochondrial diseases, and for pharmacogenetic studies. The D. discoideum genome harbors several homologs of human genes responsible for a variety of diseases, -including Chediak-Higashi syndrome, lissencephaly, mucolipidosis, Huntington disease, IBMPFD, and Shwachman-Diamond syndrome. A few genes have already been studied, providing new insights on the mechanism of action of the encoded proteins and in some cases on the defect underlying the disease. The opportunities offered by the organism and its place among the nonmammalian models for human diseases will be discussed.
Collapse
Affiliation(s)
- Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy.
| |
Collapse
|
67
|
Sattler N, Monroy R, Soldati T. Quantitative analysis of phagocytosis and phagosome maturation. Methods Mol Biol 2013; 983:383-402. [PMID: 23494319 DOI: 10.1007/978-1-62703-302-2_21] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phagocytosis and phagosome maturation lead to killing and digestion of bacteria by protozoans and innate immune phagocytes. Phagocytosis of particles expressing or coupled to various fluorescent reporters and sensors can be used to monitor quantitatively various parameters of this central biological process. In this chapter we detail different labeling techniques of bacteria and latex beads used to measure adhesion and uptake by FACS analysis. We also describe methods to use fluorescent reporter dyes (FITC or DQgreen) coupled to silica beads to measure the kinetics of acidification and proteolysis. Measurements can be performed either at the single-cell level, using live microscopy, or for a whole cell population, with a fluorescence microplate reader.
Collapse
Affiliation(s)
- Natascha Sattler
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Geneva, Switzerland
| | | | | |
Collapse
|
68
|
Abstract
Mycobacterium marinum is the causative agent of fish and amphibian tuberculosis in the wild. It is a genetically close cousin of Mycobacterium tuberculosis, and thereby the infection process remarkably shares many of the hallmarks of M. tuberculosis infection in human, at both the cellular and organism levels. Therefore, M. marinum is used as a model for the study of mycobacterial infection in various host organisms. Recently, the Dictyostelium-M. marinum system has been shown to be a valuable model that recapitulates the main features of the intracellular fate of M. marinum including phagosome maturation arrest, as well as its particular cell-to-cell dissemination mode. We present here a "starter kit" of detailed methods that allows to establish an infection of Dictyostelium with M. marinum and to monitor quantitatively the intracellular bacterial growth.
Collapse
|
69
|
Simple system--substantial share: the use of Dictyostelium in cell biology and molecular medicine. Eur J Cell Biol 2012. [PMID: 23200106 DOI: 10.1016/j.ejcb.2012.10.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dictyostelium discoideum offers unique advantages for studying fundamental cellular processes, host-pathogen interactions as well as the molecular causes of human diseases. The organism can be easily grown in large amounts and is amenable to diverse biochemical, cell biological and genetic approaches. Throughout their life cycle Dictyostelium cells are motile, and thus are perfectly suited to study random and directed cell motility with the underlying changes in signal transduction and the actin cytoskeleton. Dictyostelium is also increasingly used for the investigation of human disease genes and the crosstalk between host and pathogen. As a professional phagocyte it can be infected with several human bacterial pathogens and used to study the infection process. The availability of a large number of knock-out mutants renders Dictyostelium particularly useful for the elucidation and investigation of host cell factors. A powerful armory of molecular genetic techniques that have been continuously expanded over the years and a well curated genome sequence, which is accessible via the online database dictyBase, considerably strengthened Dictyostelium's experimental attractiveness and its value as model organism.
Collapse
|
70
|
Soldati T, Neyrolles O. Mycobacteria and the intraphagosomal environment: take it with a pinch of salt(s)! Traffic 2012; 13:1042-52. [PMID: 22462580 DOI: 10.1111/j.1600-0854.2012.01358.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/27/2012] [Accepted: 03/30/2012] [Indexed: 01/13/2023]
Abstract
Ancient protozoan phagocytes and modern professional phagocytes of metazoans, such as macrophages, employ evolutionarily conserved mechanisms to kill microbes. These mechanisms rely on microbial ingestion, followed by maturation of the phagocytic vacuole, or so-called phagosome. Phagosome maturation includes a series of fusion and fission events with the host cell endosomes and lysosomes, leading to a rapid increase of the degradative properties of the vacuole and to the destruction of the ingested microbe within a very hostile intracellular compartment, the phagolysosome. Historically, the mechanisms and weapons used by phagocytes to kill microbes have been separated into different classes. Phagosomal acidification, together with the production of reactive oxygen and nitrogen species, the selective manipulation of various ions in the phagosomal lumen, and finally the engagement of a battery of acidic hydrolases, are well-recognized players in this process. However, it is relatively recently that interconnections among these mechanisms have become apparent. In this review, we will focus on some emerging concepts about these interconnected aspects of the warfare at the host-pathogen interface, using mostly Mycobacterium tuberculosis as an example of intracellular pathogen. In particular, recent discoveries on the role of phagosomal ions and other chemicals in the control of pathogens, as well as mechanisms evolved by intracellular pathogens to circumvent or even exploit the weapons of the host cell will be discussed.
Collapse
Affiliation(s)
- Thierry Soldati
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211, Genève-4, Switzerland.
| | | |
Collapse
|
71
|
Dallaire-Dufresne S, Paquet VE, Charette SJ. [Dictyostelium discoideum: a model for the study of bacterial virulence]. Can J Microbiol 2012; 57:699-707. [PMID: 21877947 DOI: 10.1139/w11-072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The amoeba Dictyostelium discoideum, a bacterial predator, has emerged as a valuable tool for studying bacterial virulence. All its features make this unicellular eukaryote a versatile model organism. It can be used to study virulence factors of pathogenic bacteria as well as host elements involved in resistance to pathogens. The virulence of more than 20 bacterial species pathogenic for humans or animals has been studied using D. discoideum so far. These bacteria are either extracellular or intracellular pathogens. This review presents an overview of the question, with special emphasis on the reasons why D. discoideum is a suitable host model to study bacterial virulence, as well as on the type of information on host–pathogen relationship this amoeba can provide.
Collapse
Affiliation(s)
- Stéphanie Dallaire-Dufresne
- Institut de biologie intégrative et des systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | | | | |
Collapse
|
72
|
Conserved mechanisms of Mycobacterium marinum pathogenesis within the environmental amoeba Acanthamoeba castellanii. Appl Environ Microbiol 2012; 78:2049-52. [PMID: 22247144 DOI: 10.1128/aem.06965-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium marinum is a waterborne mycobacterial pathogen. Due to their common niche, protozoa likely represent natural hosts for M. marinum. We demonstrate that the ESX-1 secretion system is required for M. marinum pathogenesis and that M. marinum utilizes actin-based motility in amoebae. Therefore, at least two virulence pathways used by M. marinum in macrophages are conserved during M. marinum infection of amoebae.
Collapse
|
73
|
Iantomasi R, Sali M, Cascioferro A, Palucci I, Zumbo A, Soldini S, Rocca S, Greco E, Maulucci G, De Spirito M, Fraziano M, Fadda G, Manganelli R, Delogu G. PE_PGRS30 is required for the full virulence of Mycobacterium tuberculosis. Cell Microbiol 2011; 14:356-67. [DOI: 10.1111/j.1462-5822.2011.01721.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
74
|
Sillo A, Matthias J, Konertz R, Bozzaro S, Eichinger L. Salmonella typhimurium is pathogenic for Dictyostelium cells and subverts the starvation response. Cell Microbiol 2011; 13:1793-811. [PMID: 21824247 DOI: 10.1111/j.1462-5822.2011.01662.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In unicellular amoebae, such as Dictyostelium discoideum, bacterial phagocytosis is a food hunting device, while in higher organisms it is the first defence barrier against microbial infection. In both cases, pathogenic bacteria exploit phagocytosis to enter the cell and multiply intracellularly. Salmonella typhimurium, the agent of food-borne gastroenteritis, is phagocytosed by both macrophages and Dictyostelium cells. By using cell biological assays and global transcriptional analysis with DNA microarrays covering the Dictyostelium genome, we show here that S. typhimurium is pathogenic for Dictyostelium cells. Depending on the degree of virulence, which in turn depended on bacterial growth conditions, Salmonella could kill Dictyostelium cells or inhibit their growth and development. In the early phase of infection in non-nutrient buffer, the ingested bacteria escaped degradation, induced a starvation-like transcriptional response but inhibited selectively genes required for chemotaxis and aggregation. This way differentiation of the host cells into spore and stalk cells was blocked or delayed, which in turn is likely to be favourable for the establishment of a replicative niche for Salmonella. Inhibition of the aggregation competence and chemotactic streaming of aggregation-competent cells in the presence of Salmonella suggests interference with cAMP signalling.
Collapse
Affiliation(s)
- Alessio Sillo
- Department of Clinical and Biological Sciences, University of Turin, AOU S. Luigi, 10043 Orbassano (Torino), Italy
| | | | | | | | | |
Collapse
|
75
|
Bozzaro S, Eichinger L. The professional phagocyte Dictyostelium discoideum as a model host for bacterial pathogens. Curr Drug Targets 2011; 12:942-54. [PMID: 21366522 PMCID: PMC3267156 DOI: 10.2174/138945011795677782] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 10/26/2010] [Indexed: 01/24/2023]
Abstract
The use of simple hosts such as Dictyostelium discoideum in the study of host pathogen interactions offers a number of advantages and has steadily increased in recent years. Infection-specific genes can often only be studied in a very limited way in man and even in the mouse model their analysis is usually expensive, time consuming and technically challenging or sometimes even impossible. In contrast, their functional analysis in D. discoideum and other simple model organisms is often easier, faster and cheaper. Because host-pathogen interactions necessarily involve two organisms, it is desirable to be able to genetically manipulate both the pathogen and its host. Particularly suited are those hosts, like D. discoideum, whose genome sequence is known and annotated and for which excellent genetic and cell biological tools are available in order to dissect the complex crosstalk between host and pathogen. The review focusses on host-pathogen interactions of D. discoideum with Legionella pneumophila, mycobacteria, and Salmonella typhimurium which replicate intracellularly.
Collapse
Affiliation(s)
- Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, Ospedale S. Luigi, 10043 Orbassano, Italy.
| | | |
Collapse
|
76
|
Balest A, Peracino B, Bozzaro S. Legionella pneumophila infection is enhanced in a RacH-null mutant of Dictyostelium. Commun Integr Biol 2011; 4:194-7. [PMID: 21655438 DOI: 10.4161/cib.4.2.14381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 12/03/2010] [Indexed: 11/19/2022] Open
Abstract
Recently we reported that Dictyostelium cells ingest Legionella pneumophila by macropinocytosis, whereas other bacteria, such as Escherichia coli, Mycobacterium avium, Neisseria meningitidis or Salmonella typhimurium, are taken up by phagocytosis.1 In contrast to phagocytosis, macropinocytosis is partially inhibited by PI3K or PTEN inactivation, whereas both processes are sensitive to PLC inhibition. Independently from reduced uptake, L. pneumophila proliferates more efficiently in PI3K-null than in wild-type cells. PI3K inactivation also neutralizes resistance to infection conferred by constitutively expressing the endo-lysosomal iron transporter Nramp1. We have shown this to be due to altered recruitment of the V-H(+) ATPase, but not Nramp1, in the Legionella-containing vacuole (LCV) early during infection.1 As further evidence for impaired LCV acidification we examine here the effects of disrupting the small G protein RacH on Legionella infection.
Collapse
Affiliation(s)
- Alessandra Balest
- Department of Clinical and Biological Sciences; University of Turin; Orbassano, Italy
| | | | | |
Collapse
|
77
|
Mycobacterium tuberculosis complex mycobacteria as amoeba-resistant organisms. PLoS One 2011; 6:e20499. [PMID: 21673985 PMCID: PMC3108610 DOI: 10.1371/journal.pone.0020499] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 04/28/2011] [Indexed: 11/19/2022] Open
Abstract
Background Most environmental non-tuberculous mycobacteria have been demonstrated to invade amoebal trophozoites and cysts, but such relationships are largely unknown for members of the Mycobacterium tuberculosis complex. An environmental source has been proposed for the animal Mycobacterium bovis and the human Mycobacterium canettii. Methodology/Principal Findings Using optic and electron microscopy and co-culture methods, we observed that 89±0.6% of M. canettii, 12.4±0.3% of M. tuberculosis, 11.7±2% of M. bovis and 11.2±0.5% of Mycobacterium avium control organisms were phagocytized by Acanthamoeba polyphaga, a ratio significantly higher for M. canettii (P = 0.03), correlating with the significantly larger size of M. canetti organisms (P = 0.035). The percentage of intraamoebal mycobacteria surviving into cytoplasmic vacuoles was 32±2% for M. canettii, 26±1% for M. tuberculosis, 28±2% for M. bovis and 36±2% for M. avium (P = 0.57). M. tuberculosis, M. bovis and M. avium mycobacteria were further entrapped within the double wall of <1% amoebal cysts, but no M. canettii organisms were observed in amoebal cysts. The number of intracystic mycobacteria was significantly (P = 10−6) higher for M. avium than for the M. tuberculosis complex, and sub-culturing intracystic mycobacteria yielded significantly more (P = 0.02) M. avium organisms (34×104 CFU/mL) than M. tuberculosis (42×101 CFU/mL) and M. bovis (35×101 CFU/mL) in the presence of a washing fluid free of mycobacteria. Mycobacteria survived in the cysts for up to 18 days and cysts protected M. tuberculosis organisms against mycobactericidal 5 mg/mL streptomycin and 2.5% glutaraldehyde. Conclusions/Significance These data indicate that M. tuberculosis complex organisms are amoeba-resistant organisms, as previously demonstrated for non-tuberculous, environmental mycobacteria. Intercystic survival of tuberculous mycobacteria, except for M. canettii, protect them against biocides and could play a role in their life cycle.
Collapse
|
78
|
Alibaud L, Rombouts Y, Trivelli X, Burguière A, Cirillo SLG, Cirillo JD, Dubremetz JF, Guérardel Y, Lutfalla G, Kremer L. A Mycobacterium marinum TesA mutant defective for major cell wall-associated lipids is highly attenuated in Dictyostelium discoideum and zebrafish embryos. Mol Microbiol 2011; 80:919-34. [PMID: 21375593 DOI: 10.1111/j.1365-2958.2011.07618.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Infection of the zebrafish with Mycobacterium marinum is regarded as a well-established experimental model to study the pathogenicity of Mycobacterium tuberculosis. Herein, a M. marinum transposon mutant library was screened for attenuated M. marinum phenotypes using a Dictyostelium discoideum assay. In one attenuated mutant, the transposon was located within tesA, encoding a putative type II thioesterase. Thin-layer chromatography analyses indicated that the tesA::Tn mutant failed to produce two major cell wall-associated lipids. Mass spectrometry and nuclear magnetic resonance clearly established the nature of missing lipids as phthioglycol diphthioceranates and phenolic glycolipids, respectively, indicating that TesA is required for the synthesis of both lipids. When injected into the zebrafish embryo bloodstream, the mutant was found to be highly attenuated, thus validating the performance and relevance of the Dictyostelium screen. Consistent with these in vivo findings, tesA::Tn exhibited increased permeability defects in vitro, which may explain its failure to survive in host macrophages. Unexpectedly, virulence was retained when bacteria were injected into the notochord. Histological and ultrastructural studies of the infected notochord revealed the presence of actively proliferating mycobacteria, leading to larval death. This work presents for the first time the notochord as a compartment highly susceptible to mycobacterial infection.
Collapse
Affiliation(s)
- Laeticia Alibaud
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier II et I, CNRS; UMR 5235, case 107, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Dupont CL, Grass G, Rensing C. Copper toxicity and the origin of bacterial resistance—new insights and applications. Metallomics 2011; 3:1109-18. [DOI: 10.1039/c1mt00107h] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
80
|
Peracino B, Balest A, Bozzaro S. Phosphoinositides differentially regulate bacterial uptake and Nramp1-induced resistance to Legionella infection in Dictyostelium. J Cell Sci 2010; 123:4039-51. [DOI: 10.1242/jcs.072124] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Membrane phosphatidylinositides recruit cytosolic proteins to regulate phagocytosis, macropinocytosis and endolysosomal vesicle maturation. Here, we describe effects of inactivation of PI3K, PTEN or PLC on Escherichia coli and Legionella pneumophila uptake by the professional phagocyte Dictyostelium discoideum. We show that L. pneumophila is engulfed by macropinocytosis, a process that is partially sensitive to PI3K inactivation, unlike phagocytosis of E. coli. Both processes are blocked by PLC inhibition. Whereas E. coli is rapidly digested, Legionella proliferates intracellularly. Proliferation is blocked by constitutively expressing Nramp1, an endolysosomal iron transporter that confers resistance against invasive bacteria. Inactivation of PI3K, but not PTEN or PLC, enhances Legionella infection and suppresses the protective effect of Nramp1 overexpression. PI3K activity is restricted to early infection and is not mediated by effects on the actin cytoskeleton; rather L. pneumophila, in contrast to E. coli, subverts phosphoinositide-sensitive fusion of Legionella-containing macropinosomes with acidic vesicles, without affecting Nramp1 recruitment. A model is presented to explain how Legionella escapes fusion with acidic vesicles and Nramp1-induced resistance to pathogens.
Collapse
Affiliation(s)
- Barbara Peracino
- Department of Clinical and Biological Sciences, University of Turin, AOU S. Luigi, Reg. Gonzole 10, 10043 Orbassano (Torino), Italy
| | - Alessandra Balest
- Department of Clinical and Biological Sciences, University of Turin, AOU S. Luigi, Reg. Gonzole 10, 10043 Orbassano (Torino), Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, AOU S. Luigi, Reg. Gonzole 10, 10043 Orbassano (Torino), Italy
| |
Collapse
|
81
|
Steinert M. Pathogen-host interactions in Dictyostelium, Legionella, Mycobacterium and other pathogens. Semin Cell Dev Biol 2010; 22:70-6. [PMID: 21109012 DOI: 10.1016/j.semcdb.2010.11.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 11/26/2022]
Abstract
Dictyostelium discoideum is a haploid social soil amoeba that is an established host model for several human pathogens. The research areas presently pursued include the use of D. discoideum to identify genetic host factors determining the outcome of infections and the use as screening system for identifying bacterial virulence factors. Here we report about the Legionella pneumophila directed phagosome biogenesis and the cell-to-cell spread of Mycobacterium species. Moreover, we highlight recent insights from the host-pathogen cross-talk between D. discoideum and the pathogens Salmonella typhimurium, Klebsiella pneumoniae, Yersinia pseudotuberculosis, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Burkholderia cenocepacia, Vibrio cholerae and Neisseria meningitidis.
Collapse
Affiliation(s)
- Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
82
|
Lelong E, Marchetti A, Guého A, Lima WC, Sattler N, Molmeret M, Hagedorn M, Soldati T, Cosson P. Role of magnesium and a phagosomal P-type ATPase in intracellular bacterial killing. Cell Microbiol 2010; 13:246-58. [PMID: 21040356 DOI: 10.1111/j.1462-5822.2010.01532.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Bacterial ingestion and killing by phagocytic cells are essential processes to protect the human body from infectious microorganisms. However, only few proteins implicated in intracellular bacterial killing have been identified to date. We used Dictyostelium discoideum, a phagocytic bacterial predator, to study intracellular killing. In a random genetic screen we identified Kil2, a type V P-ATPase as an essential element for efficient intracellular killing of Klebsiella pneumoniae bacteria. Interestingly, kil2 knockout cells still killed efficiently several other species of bacteria, and did not show enhanced susceptibility to Mycobacterium marinum intracellular replication. Kil2 is present in the phagosomal membrane, and its structure suggests that it pumps cations into the phagosomal lumen. The killing defect of kil2 knockout cells was rescued by the addition of magnesium ions, suggesting that Kil2 may function as a magnesium pump. In agreement with this, kil2 mutant cells exhibited a specific defect for growth at high concentrations of magnesium. Phagosomal protease activity was lower in kil2 mutant cells than in wild-type cells, a phenotype reversed by the addition of magnesium to the medium. Kil2 may act as a magnesium pump maintaining magnesium concentration in phagosomes, thus ensuring optimal activity of phagosomal proteases and efficient killing of bacteria.
Collapse
Affiliation(s)
- Emmanuelle Lelong
- Département de Physiologie Cellulaire et Métabolisme, Faculté de Médecine de Genève, Centre Médical Universitaire, Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Salah IB, Ghigo E, Drancourt M. Free-living amoebae, a training field for macrophage resistance of mycobacteria. Clin Microbiol Infect 2009; 15:894-905. [PMID: 19845701 DOI: 10.1111/j.1469-0691.2009.03011.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Mycobacterium species evolved from an environmental recent common ancestor by reductive evolution and lateral gene transfer. Strategies selected through evolution and developed by mycobacteria resulted in resistance to predation by environmental unicellular protists, including free-living amoebae. Indeed, mycobacteria are isolated from the same soil and water environments as are amoebae, and experimental models using Acanthamoeba spp. and Dictyostelium discoideum were exploited to analyse the mechanisms for intracellular survival. Most of these mechanisms have been further reproduced in macrophages for mycobacteria regarded as opportunistic and obligate pathogens. Amoebal cysts may protect intracellular mycobacteria against adverse conditions and may act as a vector for mycobacteria. The latter hypothesis warrants further environmental and clinical studies to better assess the role of free-living amoebae in the epidemiology of infections caused by mycobacteria.
Collapse
Affiliation(s)
- I B Salah
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS 6236 IRD 198, IFR 48 Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | | | | |
Collapse
|
84
|
Abstract
To protect themselves from predation by amoebae and protozoa in the natural environment, some bacteria evolved means of escaping killing. The same mechanisms allow survival in mammalian phagocytes, producing opportunistic human pathogens. The social amoeba Dictyostelium discoideum is a powerful system for analysis of conserved host-pathogen interactions. This report reviews recent insights gained for several bacterial pathogens using Dictyostelium as host.
Collapse
Affiliation(s)
- Margaret Clarke
- Program in Genetic Models of Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
85
|
Li Z, Dugan AS, Bloomfield G, Skelton J, Ivens A, Losick V, Isberg RR. The amoebal MAP kinase response to Legionella pneumophila is regulated by DupA. Cell Host Microbe 2009; 6:253-67. [PMID: 19748467 DOI: 10.1016/j.chom.2009.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 07/16/2009] [Accepted: 08/25/2009] [Indexed: 02/06/2023]
Abstract
The amoeba Dictyostelium discoideum can support replication of Legionella pneumophila. Here we identify the dupA gene, encoding a putative tyrosine kinase/dual-specificity phosphatase, in a screen for D. discoideum mutants altered in allowing L. pneumophila intracellular replication. Inactivation of dupA resulted in depressed L. pneumophila growth and sustained hyperphosphorylation of the amoebal MAP kinase ERK1, consistent with loss of a phosphatase activity. Bacterial challenge of wild-type amoebae induced dupA expression and resulted in transiently increased ERK1 phosphorylation, suggesting that dupA and ERK1 are part of a response to bacteria. Indeed, over 500 of the genes misregulated in the dupA(-) mutant were regulated in response to L. pneumophila infection, including some thought to have immune-like functions. MAP kinase phosphatases are known to be highly upregulated in macrophages challenged with L. pneumophila. Thus, DupA may regulate a MAP kinase response to bacteria that is conserved from amoebae to mammals.
Collapse
Affiliation(s)
- Zhiru Li
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Hagedorn M, Rohde KH, Russell DG, Soldati T. Infection by tubercular mycobacteria is spread by nonlytic ejection from their amoeba hosts. Science 2009; 323:1729-33. [PMID: 19325115 DOI: 10.1126/science.1169381] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To generate efficient vaccines and cures for Mycobacterium tuberculosis, we need a far better understanding of its modes of infection, persistence, and spreading. Host cell entry and the establishment of a replication niche are well understood, but little is known about how tubercular mycobacteria exit host cells and disseminate the infection. Using the social amoeba Dictyostelium as a genetically tractable host for pathogenic mycobacteria, we discovered that M. tuberculosis and M. marinum, but not M. avium, are ejected from the cell through an actin-based structure, the ejectosome. This conserved nonlytic spreading mechanism requires a cytoskeleton regulator from the host and an intact mycobacterial ESX-1 secretion system. This insight offers new directions for research into the spreading of tubercular mycobacteria infections in mammalian cells.
Collapse
Affiliation(s)
- Monica Hagedorn
- Département de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | | | | | | |
Collapse
|
87
|
Ragaz C, Pietsch H, Urwyler S, Tiaden A, Weber SS, Hilbi H. TheLegionella pneumophilaphosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol 2008; 10:2416-33. [DOI: 10.1111/j.1462-5822.2008.01219.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
88
|
Urwyler S, Nyfeler Y, Ragaz C, Lee H, Mueller LN, Aebersold R, Hilbi H. Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic 2008; 10:76-87. [PMID: 18980612 DOI: 10.1111/j.1600-0854.2008.00851.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, replicates in macrophages and amoebae within 'Legionella-containing vacuoles' (LCVs), which communicate with the early secretory pathway and the endoplasmic reticulum. Formation of LCVs requires the bacterial Icm/Dot type IV secretion system. The Icm/Dot-translocated effector protein SidC selectively anchors to LCVs by binding the host lipid phosphatidylinositol-4-phosphate (PtdIns(4)P). Here, we describe a novel and simple approach to purify intact vacuoles formed by L. pneumophila within Dictyostelium discoideum by using magnetic immunoseparation with an antibody against SidC, followed by density gradient centrifugation. To monitor LCV purification by fluorescence microscopy, we used Dictyostelium producing the LCV marker calnexin-GFP and L. pneumophila labeled with the red fluorescent protein DsRed. A proteome analysis of purified LCVs by liquid chromatography coupled to tandem mass spectrometry revealed 566 host proteins, including known LCV components, such as the small GTPases Arf1, Rab1 and Rab7. Rab8, an endosomal regulator of the late secretory pathway originating from the trans Golgi network, and the endosomal GTPase Rab14 were identified as novel LCV components, which were found to be present on vacuoles harboring wild-type but not Icm/Dot-deficient L. pneumophila. Thus, LCVs also communicate with the late secretory and endosomal pathways. Depletion of Rab8 or Arf1 by RNA interference reduced the amount of SidC on LCVs, indicating that the GTPases promote the recruitment of Legionella effectors by regulating the level of PtdIns(4)P.
Collapse
Affiliation(s)
- Simon Urwyler
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
89
|
Sillo A, Bloomfield G, Balest A, Balbo A, Pergolizzi B, Peracino B, Skelton J, Ivens A, Bozzaro S. Genome-wide transcriptional changes induced by phagocytosis or growth on bacteria in Dictyostelium. BMC Genomics 2008; 9:291. [PMID: 18559084 PMCID: PMC2443395 DOI: 10.1186/1471-2164-9-291] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 06/17/2008] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Phagocytosis plays a major role in the defense of higher organisms against microbial infection and provides also the basis for antigen processing in the immune response. Cells of the model organism Dictyostelium are professional phagocytes that exploit phagocytosis of bacteria as the preferred way to ingest food, besides killing pathogens. We have investigated Dictyostelium differential gene expression during phagocytosis of non-pathogenic bacteria, using DNA microarrays, in order to identify molecular functions and novel genes involved in phagocytosis. RESULTS The gene expression profiles of cells incubated for a brief time with bacteria were compared with cells either incubated in axenic medium or growing on bacteria. Transcriptional changes during exponential growth in axenic medium or on bacteria were also compared. We recognized 443 and 59 genes that are differentially regulated by phagocytosis or by the different growth conditions (growth on bacteria vs. axenic medium), respectively, and 102 genes regulated by both processes. Roughly one third of the genes are up-regulated compared to macropinocytosis and axenic growth. Functional annotation of differentially regulated genes with different tools revealed that phagocytosis induces profound changes in carbohydrate, amino acid and lipid metabolism, and in cytoskeletal components. Genes regulating translation and mitochondrial biogenesis are mostly up-regulated. Genes involved in sterol biosynthesis are selectively up-regulated, suggesting a shift in membrane lipid composition linked to phagocytosis. Very few changes were detected in genes required for vesicle fission/fusion, indicating that the intracellular traffic machinery is mostly in common between phagocytosis and macropinocytosis. A few putative receptors, including GPCR family 3 proteins, scaffolding and adhesion proteins, components of signal transduction and transcription factors have been identified, which could be part of a signalling complex regulating phagocytosis and adaptational downstream responses. CONCLUSION The results highlight differences between phagocytosis and macropinocytosis, and provide the basis for targeted functional analysis of new candidate genes and for comparison studies with transcriptomes during infection with pathogenic bacteria.
Collapse
Affiliation(s)
- Alessio Sillo
- Department of Clinical and Biological Sciences, University of Turin, Ospedale S, Luigi, 10043 Orbassano, Torino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Cosson P, Soldati T. Eat, kill or die: when amoeba meets bacteria. Curr Opin Microbiol 2008; 11:271-6. [DOI: 10.1016/j.mib.2008.05.005] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 04/23/2008] [Accepted: 05/07/2008] [Indexed: 01/11/2023]
|
91
|
Stinear TP, Seemann T, Harrison PF, Jenkin GA, Davies JK, Johnson PDR, Abdellah Z, Arrowsmith C, Chillingworth T, Churcher C, Clarke K, Cronin A, Davis P, Goodhead I, Holroyd N, Jagels K, Lord A, Moule S, Mungall K, Norbertczak H, Quail MA, Rabbinowitsch E, Walker D, White B, Whitehead S, Small PLC, Brosch R, Ramakrishnan L, Fischbach MA, Parkhill J, Cole ST. Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res 2008; 18:729-41. [PMID: 18403782 PMCID: PMC2336800 DOI: 10.1101/gr.075069.107] [Citation(s) in RCA: 400] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mycobacterium marinum, a ubiquitous pathogen of fish and amphibia, is a near relative of Mycobacterium tuberculosis, the etiologic agent of tuberculosis in humans. The genome of the M strain of M. marinum comprises a 6,636,827-bp circular chromosome with 5424 CDS, 10 prophages, and a 23-kb mercury-resistance plasmid. Prominent features are the very large number of genes (57) encoding polyketide synthases (PKSs) and nonribosomal peptide synthases (NRPSs) and the most extensive repertoire yet reported of the mycobacteria-restricted PE and PPE proteins, and related-ESX secretion systems. Some of the NRPS genes comprise a novel family and seem to have been acquired horizontally. M. marinum is used widely as a model organism to study M. tuberculosis pathogenesis, and genome comparisons confirmed the close genetic relationship between these two species, as they share 3000 orthologs with an average amino acid identity of 85%. Comparisons with the more distantly related Mycobacterium avium subspecies paratuberculosis and Mycobacterium smegmatis reveal how an ancestral generalist mycobacterium evolved into M. tuberculosis and M. marinum. M. tuberculosis has undergone genome downsizing and extensive lateral gene transfer to become a specialized pathogen of humans and other primates without retaining an environmental niche. M. marinum has maintained a large genome so as to retain the capacity for environmental survival while becoming a broad host range pathogen that produces disease strikingly similar to M. tuberculosis. The work described herein provides a foundation for using M. marinum to better understand the determinants of pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Timothy P Stinear
- Department of Microbiology, Monash University, Clayton 3800, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Mowlds P, Barron A, Kavanagh K. Physical stress primes the immune response of Galleria mellonella larvae to infection by Candida albicans. Microbes Infect 2008; 10:628-34. [PMID: 18457977 DOI: 10.1016/j.micinf.2008.02.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 02/07/2008] [Accepted: 02/13/2008] [Indexed: 11/17/2022]
Abstract
Larvae of the greater wax moth (Galleria mellonella) that had been subjected to physical stress by shaking in cupped hands for 2 min showed reduced susceptibility to infection by Candida albicans when infected 24 h after the stress event. Physically stressed larvae demonstrated an increase in haemocyte density and elevated mRNA levels of galiomicin and an inducible metalloproteinase inhibitor (IMPI) but not transferrin or gallerimycin. In contrast, previous work has demonstrated that microbial priming of larvae resulted in the induction of all four genes. Examination of the expression of proteins in the insect haemolymph using 2D electrophoresis and MALDI TOF analysis revealed an increase in the intensity of a number of peptides showing some similarities with proteins associated with the insect immune response to infection. This study demonstrates that non-lethal physical stress primes the immune response of G. mellonella and this is mediated by elevated haemocyte numbers, increased mRNA levels of genes coding for two antimicrobial peptides and the appearance of novel peptides in the haemolymph. This work demonstrates that physical priming increases the insect immune response but the mechanism of this priming is different to that induced by low level exposure to microbial pathogens.
Collapse
Affiliation(s)
- Peter Mowlds
- Department of Biology, Medical Mycology Unit, NICB, National University of Ireland Maynooth, Co. Kildare, Ireland
| | | | | |
Collapse
|
93
|
Tobin DM, Ramakrishnan L. Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cell Microbiol 2008; 10:1027-39. [PMID: 18298637 DOI: 10.1111/j.1462-5822.2008.01133.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A thorough understanding of Mycobacterium tuberculosis pathogenesis in humans has been elusive in part because of imperfect surrogate laboratory hosts, each with its own idiosyncrasies. Mycobacterium marinum is the closest genetic relative of the M. tuberculosis complex and is a natural pathogen of ectotherms. In this review, we present evidence that the similar genetic programmes of M. marinum and M. tuberculosis and the corresponding host immune responses reveal a conserved skeleton of Mycobacterium host-pathogen interactions. While both species have made niche-specific refinements, an essential framework has persisted. We highlight genetic comparisons of the two organisms and studies of M. marinum in the developing zebrafish. By pairing M. marinum with the simplified immune system of zebrafish embryos, many of the defining mechanisms of mycobacterial pathogenesis can be distilled and investigated in a tractable host/pathogen pair.
Collapse
Affiliation(s)
- David M Tobin
- Department of Microbiology, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
94
|
Dieckmann R, Gopaldass N, Escalera C, Soldati T. Monitoring time-dependent maturation changes in purified phagosomes from Dictyostelium discoideum. Methods Mol Biol 2008; 445:327-337. [PMID: 18425460 DOI: 10.1007/978-1-59745-157-4_21] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The amoeba Dictyostelium discoideum is an established model to study phagocytosis. The sequence of events leading to the internalization and degradation of a particle is conserved in D. discoideum compared to metazoan cells. As its small haploid genome has been sequenced, it is now amenable to genome-wide analysis including organelle proteomics. Therefore, we adapted to Dictyostelium the classical protocol to purify phagosomes formed by ingestion of latex beads particles. The pulse-chase protocol detailed here gives easy access to pure, intact, and synchronized phagosomes from representative stages of the entire process of phagosome maturation. Recently, this protocol was used to generate individual temporal profiles of proteins and lipids during phagosome maturation generating a proteomic fingerprint of six maturation stages (1). In addition, immunolabeling of phagosomes on a coverslip was developed to visualize and quantitate antigen distribution at the level of individual phagosomes.
Collapse
Affiliation(s)
- Régis Dieckmann
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | | | | |
Collapse
|
95
|
Phagocytosis and host-pathogen interactions in Dictyostelium with a look at macrophages. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:253-300. [PMID: 19081545 DOI: 10.1016/s1937-6448(08)01206-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Research into phagocytosis and host-pathogen interactions in the lower eukaryote Dictyostelium discoideum has flourished in recent years. This chapter presents a glimpse of where this research stands, with emphasis on the cell biology of the phagocytic process and on the wealth of molecular genetic data that have been gathered. The basic mechanistic machinery and most of the underlying genes appear to be evolutionarily conserved, reflecting the fact that phagocytosis arose as an efficient way to ingest food in single protozoan cells devoid of a rigid cell wall. In spite of some differences, the signal transduction pathways regulating phagosome biogenesis are also emerging as ultimately similar between Dictyostelium and macrophages. Both cell types are hosts for many pathogenic invasive bacteria, which exploit phagocytosis to grow intracellularly. We present an overwiew, based on the analysis of mutants, on how Dictyostelium contributes as a genetic model system to decipher the complexity of host-pathogen interactions.
Collapse
|
96
|
Hagedorn M, Soldati T. Flotillin and RacH modulate the intracellular immunity of Dictyostelium to Mycobacterium marinum infection. Cell Microbiol 2007. [DOI: 10.1111/j.1462-5822.2007.01064.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|