51
|
Agrobacterium tumefaciens T-DNA Integration and Gene Targeting in Arabidopsis thaliana Non-Homologous End-Joining Mutants. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/989272] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In order to study the role of AtKu70 and AtKu80 in Agrobacterium-mediated transformation and gene targeting, plant lines with a T-DNA insertion in AtKu80 or AtKu70 genes were functionally characterized. Such plant lines lacked both subunits, indicating that heterodimer formation between AtKu70 and AtKu80 is needed for the stability of the proteins. Homozygous mutants were phenotypically indistinguishable from wild-type plants and were fertile. However, they were hypersensitive to the genotoxic agent bleomycin, resulting in more DSBs as quantified in comet assays. They had lower end-joining efficiency, suggesting that NHEJ is a critical pathway for DSB repair in plants. Both Atku mutants and a previously isolated Atmre11 mutant were impaired in Agrobacterium T-DNA integration via floral dip transformation, indicating that AtKu70, AtKu80, and AtMre11 play an important role in T-DNA integration in Arabidopsis. The frequency of gene targeting was not significantly increased in the Atku80 and Atku70 mutants, but it was increased at least 10-fold in the Atmre11 mutant compared with the wild type.
Collapse
|
52
|
Lyznik LA, Djukanovic V, Yang M, Jones S. Double-strand break-induced targeted mutagenesis in plants. Methods Mol Biol 2012; 847:399-416. [PMID: 22351025 DOI: 10.1007/978-1-61779-558-9_32] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Double-strand breaks are very potent inducers of DNA recombination. There is no recombination between DNA molecules unless one or two DNA strands are broken. It has become feasible to introduce double-strand breaks at specific chromosomal loci by using dedicated, redesigned endonucleases with altered DNA-binding specificities. Such breaks are mainly repaired by error-prone nonhomologous recombination pathways in somatic cells, thus frequently producing mutations at the preselected chromosomal sites. Although the art and science of reengineering protein properties have been advancing quickly, an empirical validation of new endonucleases in a particular experimental environment is essential for successful targeted mutagenesis experiments. This chapter presents methods that were developed for a comprehensive evaluation of the DNA-binding and DNA-cutting activities of homing endonucleases in maize cells; however, they can be adopted for similar evaluation studies of other endonucleases and other plant species that are amenable for Agrobacterium-mediated transformation.
Collapse
|
53
|
Abstract
Zinc-finger nucleases (ZFNs) are targetable DNA cleavage reagents that have been adopted as gene-targeting tools. ZFN-induced double-strand breaks are subject to cellular DNA repair processes that lead to both targeted mutagenesis and targeted gene replacement at remarkably high frequencies. This article briefly reviews the history of ZFN development and summarizes applications that have been made to genome editing in many different organisms and situations. Considerable progress has been made in methods for deriving zinc-finger sets for new genomic targets, but approaches to design and selection are still being perfected. An issue that needs more attention is the extent to which available mechanisms of double-strand break repair limit the scope and utility of ZFN-initiated events. The bright prospects for future applications of ZFNs, including human gene therapy, are discussed.
Collapse
|
54
|
Michaud D. In consideration of GMOs: a virtual special issue of the Plant Biotechnology Journal. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:933-935. [PMID: 22066549 DOI: 10.1111/j.1467-7652.2011.00659.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
55
|
Even-Faitelson L, Samach A, Melamed-Bessudo C, Avivi-Ragolsky N, Levy AA. Localized egg-cell expression of effector proteins for targeted modification of the Arabidopsis genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:929-37. [PMID: 21848915 DOI: 10.1111/j.1365-313x.2011.04741.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Targeted modification of the genome is an important genetic tool, which can be achieved via homologous, non-homologous or site-specific recombination. Although numerous efforts have been made, such a tool does not exist for routine applications in plants. This work describes a simple and useful method for targeted mutagenesis or gene targeting, tailored to floral-dip transformation in Arabidopsis, by means of specific protein expression in the egg cell. Proteins stably or transiently expressed under the egg apparatus-specific enhancer (EASE) were successfully localized to the area of the egg cell. Moreover, a zinc-finger nuclease expressed under EASE induced targeted mutagenesis. Mutations obtained under EASE control corresponded to genetically independent events that took place specifically in the germline. In addition, RAD54 expression under EASE led to an approximately 10-fold increase in gene targeting efficiency, when compared with wild-type plants. EASE-controlled gene expression provides a method for the precise engineering of the Arabidopsis genome through temporally and spatially controlled protein expression. This system can be implemented as a useful method for basic research in Arabidopsis, as well as in the optimization of tools for targeted genetic modifications in crop plants.
Collapse
Affiliation(s)
- Liron Even-Faitelson
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
56
|
Towards artificial metallonucleases for gene therapy: recent advances and new perspectives. Future Med Chem 2011; 3:1935-66. [DOI: 10.4155/fmc.11.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The process of DNA targeting or repair of mutated genes within the cell, induced by specifically positioned double-strand cleavage of DNA near the mutated sequence, can be applied for gene therapy of monogenic diseases. For this purpose, highly specific artificial metallonucleases are developed. They are expected to be important future tools of modern genetics. The present state of art and strategies of research are summarized, including protein engineering and artificial ‘chemical’ nucleases. From the results, we learn about the basic role of the metal ions and the various ligands, and about the DNA binding and cleavage mechanism. The results collected provide useful guidance for engineering highly controlled enzymes for use in gene therapy.
Collapse
|
57
|
Huefner ND, Mizuno Y, Weil CF, Korf I, Britt AB. Breadth by depth: expanding our understanding of the repair of transposon-induced DNA double strand breaks via deep-sequencing. DNA Repair (Amst) 2011; 10:1023-33. [PMID: 21889425 DOI: 10.1016/j.dnarep.2011.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 07/26/2011] [Indexed: 01/20/2023]
Abstract
The transposases of DNA transposable elements catalyze the excision of the element from the host genome, but are not involved in the repair of the resulting double-strand break. To elucidate the role of various host DNA repair and damage response proteins in the repair of the hairpin-ended double strand breaks (DSBs) generated during excision of the maize Ac element in Arabidopsis thaliana, we deep-sequenced hundreds of thousands of somatic excision products from a variety of repair- or response-defective mutants. We find that each of these repair/response defects negatively affects the preservation of the ends, resulting in an enhanced frequency of deletions, insertions, and inversions at the excision site. The spectra of the resulting repair products demonstrate, not unexpectedly, that the canonical nonhomologous end joining (NHEJ) proteins DNA ligase IV and KU70 play an important role in the repair of the lesion generated by Ac excision. Our data also indicate that auxiliary NHEJ repair proteins such as DNA ligase VI and DNA polymerase lambda are routinely involved in the repair of these lesions. Roles for the damage response kinases ATM and ATR in the repair of transposition-induced DSBs are also discussed.
Collapse
Affiliation(s)
- Neil D Huefner
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
58
|
Vainstein A, Marton I, Zuker A, Danziger M, Tzfira T. Permanent genome modifications in plant cells by transient viral vectors. Trends Biotechnol 2011; 29:363-9. [DOI: 10.1016/j.tibtech.2011.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 03/28/2011] [Accepted: 03/30/2011] [Indexed: 12/12/2022]
|
59
|
Gonzalez-Ballester D, Pootakham W, Mus F, Yang W, Catalanotti C, Magneschi L, de Montaigu A, Higuera JJ, Prior M, Galván A, Fernandez E, Grossman AR. Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants. PLANT METHODS 2011; 7:24. [PMID: 21794168 PMCID: PMC3161022 DOI: 10.1186/1746-4811-7-24] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 07/27/2011] [Indexed: 05/03/2023]
Abstract
A method was developed to identify insertional mutants of Chlamydomonas reinhardtii disrupted for selected target genes. The approach relies on the generation of thousands of transformants followed by PCR-based screenings that allow for identification of strains harboring the introduced marker gene within specific genes of interest. Our results highlight the strengths and limitations of two independent screens that differed in the nature of the marker DNA used (PCR-amplified fragment containing the plasmid-free marker versus entire linearized plasmid with the marker) and in the strategies used to maintain and store transformants.
Collapse
Affiliation(s)
- David Gonzalez-Ballester
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba 14071, Spain
| | - Wirulda Pootakham
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Florence Mus
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
- Montana State University, Department of Chemical and Biological Engineering, and Department of Microbiology, Bozeman, MT 59171, USA
| | - Wenqiang Yang
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Claudia Catalanotti
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Leonardo Magneschi
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
- PlantLab, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Amaury de Montaigu
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba 14071, Spain
- Max Planck Insitute for Plant Breeding Research, Department of Plant Developmental Biology, D-50829, Köln, Germany
| | - Jose J Higuera
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba 14071, Spain
| | - Matthew Prior
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Aurora Galván
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba 14071, Spain
| | - Emilio Fernandez
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba 14071, Spain
| | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| |
Collapse
|
60
|
Saika H, Oikawa A, Matsuda F, Onodera H, Saito K, Toki S. Application of gene targeting to designed mutation breeding of high-tryptophan rice. PLANT PHYSIOLOGY 2011; 156:1269-77. [PMID: 21543727 PMCID: PMC3135912 DOI: 10.1104/pp.111.175778] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/01/2011] [Indexed: 05/19/2023]
Abstract
Site-directed mutagenesis via gene targeting (GT) based on homologous recombination is the ultimate mutation breeding technology because it enables useful information acquired from structural- and computational-based protein engineering to be applied directly to molecular breeding, including metabolic engineering, of crops. Here, we employed this rationale to introduce precise mutations in OASA2--an α-subunit of anthranilate synthase that is a key enzyme of tryptophan (Trp) biosynthesis in rice (Oryza sativa)--via GT, with subsequent selection of GT cells using a Trp analog. The expression level of OASA2 in plants homozygous and heterozygous for modified OASA2 was similar to that of nontransformants, suggesting that OASA2 transcription in GT plants was controlled in the same manner as endogenous OASA2, and that GT could lead to a lower risk of gene silencing than in conventional overexpression approaches. Moreover, we showed that enzymatic properties deduced from protein engineering or in vitro analysis could be reproduced in GT plants as evidenced by Trp accumulation levels. Interestingly, mature seeds of homozygous GT plants accumulated Trp levels 230-fold higher than in nontransformants without any apparent morphological or developmental changes. Thus, we have succeeded in producing a novel rice plant of great potential nutritional benefit for both man and livestock that could not have been selected using conventional mutagenesis approaches. Our results demonstrate the effectiveness of directed crop improvement by combining precision mutagenesis via GT with a knowledge of protein engineering.
Collapse
|
61
|
Affiliation(s)
- Peter E Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
62
|
Kim S, Kim JS. Targeted genome engineering via zinc finger nucleases. PLANT BIOTECHNOLOGY REPORTS 2011; 5:9-17. [PMID: 21837253 PMCID: PMC3150832 DOI: 10.1007/s11816-010-0161-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 05/29/2023]
Abstract
With the development of next-generation sequencing technology, ever-expanding databases of genetic information from various organisms are available to researchers. However, our ability to study the biological meaning of genetic information and to apply our genetic knowledge to produce genetically modified crops and animals is limited, largely due to the lack of molecular tools to manipulate genomes. Recently, targeted cleavage of the genome using engineered DNA scissors called zinc finger nucleases (ZFNs) has successfully supported the precise manipulation of genetic information in various cells, animals, and plants. In this review, we will discuss the development and applications of ZFN technology for genome engineering and highlight recent reports on its use in plants.
Collapse
Affiliation(s)
- Seokjoong Kim
- ToolGen, Inc., Biotechnology Incubating Center, Seoul National University, Gwanak-gu, Seoul, 151-724 South Korea
| | - Jin-Soo Kim
- Department of Chemistry, Seoul National University, Gwanak-gu, Seoul, 151-742 South Korea
| |
Collapse
|
63
|
Mitea C, Salentijn EMJ, van Veelen P, Goryunova SV, van der Meer IM, van den Broeck HC, Mujico JR, Monserrat V, Gilissen LJWJ, Drijfhout JW, Dekking L, Koning F, Smulders MJM. A universal approach to eliminate antigenic properties of alpha-gliadin peptides in celiac disease. PLoS One 2010; 5:e15637. [PMID: 21179575 PMCID: PMC3002971 DOI: 10.1371/journal.pone.0015637] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/18/2010] [Indexed: 02/03/2023] Open
Abstract
Celiac disease is caused by an uncontrolled immune response to gluten, a heterogeneous mixture of wheat storage proteins, including the α-gliadins. It has been shown that α-gliadins harbor several major epitopes involved in the disease pathogenesis. A major step towards elimination of gluten toxicity for celiac disease patients would thus be the elimination of such epitopes from α-gliadins. We have analyzed over 3,000 expressed α-gliadin sequences from 11 bread wheat cultivars to determine whether they encode for peptides potentially involved in celiac disease. All identified epitope variants were synthesized as peptides and tested for binding to the disease-associated HLA-DQ2 and HLA-DQ8 molecules and for recognition by patient-derived α-gliadin specific T cell clones. Several specific naturally occurring amino acid substitutions were identified for each of the α-gliadin derived peptides involved in celiac disease that eliminate the antigenic properties of the epitope variants. Finally, we provide proof of principle at the peptide level that through the systematic introduction of such naturally occurring variations α-gliadins genes can be generated that no longer encode antigenic peptides. This forms a crucial step in the development of strategies to modify gluten genes in wheat so that it becomes safe for celiac disease patients. It also provides the information to design and introduce safe gluten genes in other cereals, which would exhibit improved quality while remaining safe for consumption by celiac disease patients.
Collapse
Affiliation(s)
- Cristina Mitea
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Peter van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | - Jorge R. Mujico
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Veronica Monserrat
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Luud J. W. J. Gilissen
- Plant Research International, Wageningen UR, Wageningen, The Netherlands
- Allergy Centre Wageningen, Wageningen, The Netherlands
| | - Jan Wouter Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Liesbeth Dekking
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Frits Koning
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail: (MJMS); (FK)
| | - Marinus J. M. Smulders
- Plant Research International, Wageningen UR, Wageningen, The Netherlands
- Allergy Centre Wageningen, Wageningen, The Netherlands
- * E-mail: (MJMS); (FK)
| |
Collapse
|
64
|
Marton I, Zuker A, Shklarman E, Zeevi V, Tovkach A, Roffe S, Ovadis M, Tzfira T, Vainstein A. Nontransgenic genome modification in plant cells. PLANT PHYSIOLOGY 2010; 154:1079-87. [PMID: 20876340 PMCID: PMC2971589 DOI: 10.1104/pp.110.164806] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 09/23/2010] [Indexed: 05/21/2023]
Abstract
Zinc finger nucleases (ZFNs) are a powerful tool for genome editing in eukaryotic cells. ZFNs have been used for targeted mutagenesis in model and crop species. In animal and human cells, transient ZFN expression is often achieved by direct gene transfer into the target cells. Stable transformation, however, is the preferred method for gene expression in plant species, and ZFN-expressing transgenic plants have been used for recovery of mutants that are likely to be classified as transgenic due to the use of direct gene-transfer methods into the target cells. Here we present an alternative, nontransgenic approach for ZFN delivery and production of mutant plants using a novel Tobacco rattle virus (TRV)-based expression system for indirect transient delivery of ZFNs into a variety of tissues and cells of intact plants. TRV systemically infected its hosts and virus ZFN-mediated targeted mutagenesis could be clearly observed in newly developed infected tissues as measured by activation of a mutated reporter transgene in tobacco (Nicotiana tabacum) and petunia (Petunia hybrida) plants. The ability of TRV to move to developing buds and regenerating tissues enabled recovery of mutated tobacco and petunia plants. Sequence analysis and transmission of the mutations to the next generation confirmed the stability of the ZFN-induced genetic changes. Because TRV is an RNA virus that can infect a wide range of plant species, it provides a viable alternative to the production of ZFN-mediated mutants while avoiding the use of direct plant-transformation methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tzvi Tzfira
- Danziger Innovations Ltd., Mishmar Hashiva Village, Beit Dagan 50297, Israel (I.M., A.Z., S.R.); Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (I.M., E.S., S.R., M.O., A.V.); Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (V.Z., A.T., T.T.)
| | | |
Collapse
|
65
|
Petolino JF, Worden A, Curlee K, Connell J, Strange Moynahan TL, Larsen C, Russell S. Zinc finger nuclease-mediated transgene deletion. PLANT MOLECULAR BIOLOGY 2010; 73:617-28. [PMID: 20454835 DOI: 10.1007/s11103-010-9641-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 04/26/2010] [Indexed: 05/07/2023]
Abstract
A transgene, flanked by zinc finger nuclease (ZFN) cleavage sites, was deleted from a stably transformed plant by crossing it with a second plant expressing a corresponding ZFN gene. A target construct, containing a GUS reporter gene flanked by ZFN cleavage sites, a GFP reporter gene and a PAT selectable marker gene, was transformed into tobacco. Basta-resistant plants were regenerated and screened for GUS and GFP expression. A second construct, containing a ZFN gene driven by the constitutive CsVMV promoter and an HPT selectable marker gene, was also transformed into tobacco. Selected T(0) plants were grown to maturity and allowed to self-pollinate. Homozygous target plants, which expressed GUS and GFP, were crossed with homozygous ZFN plants, which expressed the ZFN gene. Numerous GUS-negative plants were observed among the hybrids with one particular cross displaying approximately 35% GUS-negative plants. Evidence for complete deletion of a 4.3 kb sequence comprising the GUS gene was obtained and sequence confirmed. Co-segregation in F(2) progenies of 'truncated' and 'intact' target sequences with expected reporter gene phenotypes were observed. Since ZFNs can be designed to bind and cleave a wide range of DNA sequences, these results constitute a general strategy for creating targeted gene deletions.
Collapse
|
66
|
High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci U S A 2010; 107:12028-33. [PMID: 20508152 DOI: 10.1073/pnas.0914991107] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report here an efficient method for targeted mutagenesis of Arabidopsis genes through regulated expression of zinc finger nucleases (ZFNs)-enzymes engineered to create DNA double-strand breaks at specific target loci. ZFNs recognizing the Arabidopsis ADH1 and TT4 genes were made by Oligomerized Pool ENgineering (OPEN)-a publicly available, selection-based platform that yields high quality zinc finger arrays. The ADH1 and TT4 ZFNs were placed under control of an estrogen-inducible promoter and introduced into Arabidopsis plants by floral-dip transformation. Primary transgenic Arabidopsis seedlings induced to express the ADH1 or TT4 ZFNs exhibited somatic mutation frequencies of 7% or 16%, respectively. The induced mutations were typically insertions or deletions (1-142 bp) that were localized at the ZFN cleavage site and likely derived from imprecise repair of chromosome breaks by nonhomologous end-joining. Mutations were transmitted to the next generation for 69% of primary transgenics expressing the ADH1 ZFNs and 33% of transgenics expressing the TT4 ZFNs. Furthermore, approximately 20% of the mutant-producing plants were homozygous for mutations at ADH1 or TT4, indicating that both alleles were disrupted. ADH1 and TT4 were chosen as targets for this study because of their selectable or screenable phenotypes (adh1, allyl alcohol resistance; tt4, lack of anthocyanins in the seed coat). However, the high frequency of observed ZFN-induced mutagenesis suggests that targeted mutations can readily be recovered by simply screening progeny of primary transgenic plants by PCR and DNA sequencing. Taken together, our results suggest that it should now be possible to obtain mutations in any Arabidopsis target gene regardless of its mutant phenotype.
Collapse
|