51
|
Saul A, Hausmann R, Kless A, Nicke A. Heteromeric assembly of P2X subunits. Front Cell Neurosci 2013; 7:250. [PMID: 24391538 PMCID: PMC3866589 DOI: 10.3389/fncel.2013.00250] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/21/2013] [Indexed: 12/01/2022] Open
Abstract
Transcripts and/or proteins of P2X receptor (P2XR) subunits have been found in virtually all mammalian tissues. Generally more than one of the seven known P2X subunits have been identified in a given cell type. Six of the seven cloned P2X subunits can efficiently form functional homotrimeric ion channels in recombinant expression systems. This is in contrast to other ligand-gated ion channel families, such as the Cys-loop or glutamate receptors, where homomeric assemblies seem to represent the exception rather than the rule. P2XR mediated responses recorded from native tissues rarely match exactly the biophysical and pharmacological properties of heterologously expressed homomeric P2XRs. Heterotrimerization of P2X subunits is likely to account for this observed diversity. While the existence of heterotrimeric P2X2/3Rs and their role in physiological processes is well established, the composition of most other P2XR heteromers and/or the interplay between distinct trimeric receptor complexes in native tissues is not clear. After a description of P2XR assembly and the structure of the intersubunit ATP-binding site, this review summarizes the distribution of P2XR subunits in selected mammalian cell types and the biochemically and/or functionally characterized heteromeric P2XRs that have been observed upon heterologous co-expression of P2XR subunits. We further provide examples where the postulated heteromeric P2XRs have been suggested to occur in native tissues and an overview of the currently available pharmacological tools that have been used to discriminate between homo- and heteromeric P2XRs.
Collapse
Affiliation(s)
- Anika Saul
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine Göttingen, Germany
| | - Ralf Hausmann
- Molecular Pharmacology, RWTH Aachen University Aachen, Germany
| | - Achim Kless
- Department of Discovery Informatics, Grünenthal GmbH, Global Drug Discovery Aachen, Germany
| | - Annette Nicke
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine Göttingen, Germany
| |
Collapse
|
52
|
Stock C, Ludwig FT, Hanley PJ, Schwab A. Roles of ion transport in control of cell motility. Compr Physiol 2013; 3:59-119. [PMID: 23720281 DOI: 10.1002/cphy.c110056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.
Collapse
Affiliation(s)
- Christian Stock
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
53
|
P2X3 receptors induced inflammatory nociception modulated by TRPA1, 5-HT3 and 5-HT1A receptors. Pharmacol Biochem Behav 2013; 112:49-55. [DOI: 10.1016/j.pbb.2013.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 09/06/2013] [Accepted: 09/28/2013] [Indexed: 11/18/2022]
|
54
|
Ashmole I, Bradding P. Ion channels regulating mast cell biology. Clin Exp Allergy 2013; 43:491-502. [PMID: 23600539 DOI: 10.1111/cea.12043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/06/2012] [Accepted: 08/28/2012] [Indexed: 11/28/2022]
Abstract
Mast cells play a central role in the pathophysiology of asthma and related allergic conditions. Mast cell activation leads to the degranulation of preformed mediators such as histamine and the secretion of newly synthesised proinflammatory mediators such as leukotrienes and cytokines. Excess release of these mediators contributes to allergic disease states. An influx of extracellular Ca2+ is essential for mast cell mediator release. From the Ca2+ channels that mediate this influx, to the K+ , Cl- and transient receptor potential channels that set the cell membrane potential and regulate Ca2+ influx, ion channels play a critical role in mast cell biology. In this review we provide an overview of our current knowledge of ion channel expression and function in mast cells with an emphasis on how channels interact to regulate Ca2+ signalling.
Collapse
Affiliation(s)
- I Ashmole
- Department of Infection, Immunity and Inflammation, Institute for Lung Heath, Glenfield Hospital, University of Leicester, Leicester, LE3 9QP, UK
| | | |
Collapse
|
55
|
Jacob F, Novo CP, Bachert C, Van Crombruggen K. Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses. Purinergic Signal 2013; 9:285-306. [PMID: 23404828 PMCID: PMC3757148 DOI: 10.1007/s11302-013-9357-4] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/28/2013] [Indexed: 01/13/2023] Open
Abstract
Extracellular ATP and related nucleotides promote a wide range of pathophysiological responses via activation of cell surface purinergic P2 receptors. Almost every cell type expresses P2 receptors and/or exhibit regulated release of ATP. In this review, we focus on the purinergic receptor distribution in inflammatory cells and their implication in diverse immune responses by providing an overview of the current knowledge in the literature related to purinergic signaling in neutrophils, macrophages, dendritic cells, lymphocytes, eosinophils, and mast cells. The pathophysiological role of purinergic signaling in these cells include among others calcium mobilization, actin polymerization, chemotaxis, release of mediators, cell maturation, cytotoxicity, and cell death. We finally discuss the therapeutic potential of P2 receptor subtype selective drugs in inflammatory conditions.
Collapse
Affiliation(s)
- Fenila Jacob
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Claudina Pérez Novo
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Koen Van Crombruggen
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
56
|
Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nat Commun 2013; 3:1034. [PMID: 22948816 PMCID: PMC3658010 DOI: 10.1038/ncomms2023] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/27/2012] [Indexed: 02/06/2023] Open
Abstract
Mast cells are known effector cells in allergic and inflammatory diseases, but their precise roles in intestinal inflammation remain unknown. Here we show that activation of mast cells in intestinal inflammation is mediated by ATP-reactive P2X7 purinoceptors. We find an increase in the numbers of mast cells expressing P2X7 purinoceptors in the colons of mice with colitis and of patients with Crohn's disease. Treatment of mice with a P2X7 purinoceptor-specific antibody inhibits mast cell activation and subsequent intestinal inflammation. Similarly, intestinal inflammation is ameliorated in mast cell-deficient KitW-sh/W-sh mice, and reconstitution with wild-type, but not P2x7−/− mast cells results in susceptibility to inflammation. ATP-P2X7 purinoceptor-mediated activation of mast cells not only induces inflammatory cytokines, but also chemokines and leukotrienes, to recruit neutrophils and subsequently exacerbate intestinal inflammation. These findings reveal the role of P2X7 purinoceptor-mediated mast cell activation in both the initiation and exacerbation of intestinal inflammation. Mast cells are mediators of type I allergic disease and inflammation. Here, Kurashima et al. show that mast cells are increased in the colons of mice with colitis, and that activation of the cells and subsequent inflammation can be blocked by inhibition of the purinoceptor, P2X7.
Collapse
|
57
|
Schwab A, Fabian A, Hanley PJ, Stock C. Role of ion channels and transporters in cell migration. Physiol Rev 2013; 92:1865-913. [PMID: 23073633 DOI: 10.1152/physrev.00018.2011] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell motility is central to tissue homeostasis in health and disease, and there is hardly any cell in the body that is not motile at a given point in its life cycle. Important physiological processes intimately related to the ability of the respective cells to migrate include embryogenesis, immune defense, angiogenesis, and wound healing. On the other side, migration is associated with life-threatening pathologies such as tumor metastases and atherosclerosis. Research from the last ≈ 15 years revealed that ion channels and transporters are indispensable components of the cellular migration apparatus. After presenting general principles by which transport proteins affect cell migration, we will discuss systematically the role of channels and transporters involved in cell migration.
Collapse
|
58
|
Balestra B, Vicini R, Cremon C, Zecchi L, Dothel G, Vasina V, De Giorgio R, Paccapelo A, Pastoris O, Stanghellini V, Corinaldesi R, De Ponti F, Tonini M, Barbara G. Colonic mucosal mediators from patients with irritable bowel syndrome excite enteric cholinergic motor neurons. Neurogastroenterol Motil 2012; 24:1118-e570. [PMID: 22937879 DOI: 10.1111/nmo.12000] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mediators released in the mucosal milieu have been suggested to be involved in visceral hypersensitivity and abdominal pain in patients with irritable bowel syndrome (IBS). However, their impact on myenteric neurons remains unsettled. METHODS Mucosal biopsies were obtained from the descending colon of patients with IBS and controls. Mucosal mast cells were identified immunohistochemically. The impact of spontaneously released mucosal mediators on guinea pig electrically stimulated longitudinal muscle myenteric plexus (LMMP) preparations was assessed in vitro by means of selective receptor antagonists and inhibitors. KEY RESULTS Patients with IBS showed an increased mast cell count compared with controls. Application of mucosal mediators of IBS to LMMPs potentiated cholinergic twitch contractions, an effect directly correlated with mast cell counts. Enhanced contractions were inhibited by 50.3% with the prostaglandin D2 antagonist BW A868C, by 31.3% and 39% with the TRPV1 antagonists capsazepine and HC-030031, respectively, and by 60.5% with purinergic P2X antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid. Conversely, the serotonin1-4, histamine1-3, tachykinin1-3 receptor blockade, and serine protease inhibition had no significant effect. CONCLUSIONS & INFERENCES Colonic mucosal mediators from patients with IBS excite myenteric cholinergic motor neurons. These effects were correlated with mast cell counts and mediated by activation of prostanoid receptors, TRPV1, and P2X receptors. These results support the role of mucosal inflammatory mediators and mast cell activation in altered motor function of IBS.
Collapse
Affiliation(s)
- B Balestra
- Department of Forensic Medicine, Pharmacology and Toxicology, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Arandjelovic S, McKenney KR, Leming SS, Mowen KA. ATP induces protein arginine deiminase 2-dependent citrullination in mast cells through the P2X7 purinergic receptor. THE JOURNAL OF IMMUNOLOGY 2012; 189:4112-22. [PMID: 22984079 DOI: 10.4049/jimmunol.1201098] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Posttranslational modifications regulate physiology either by directly modulating protein function or by impacting immune recognition of self-proteins. Citrullination is a posttranslational modification formed by the conversion of arginine residues into the citrulline amino acid by protein arginine deiminase (PAD) family members. We have identified mast cells as a major source of the PAD2 enzyme. Activation of the P2X7 purinergic receptor (P2X7) by the inflammatory "danger" signal ATP induces PAD2 activity and robust protein citrullination. P2X7-mediated activation of PAD2 is sensitive to p38 MAPK and protein kinase C inhibitors, and PAD2 regulates the expression of the TNFR2, Adamts-9, and Rab6b transcripts in mast cells. Further, the PAD2 enzyme and its citrullinated substrate proteins are released from mast cells on activation with ATP. PAD2 expression is closely linked with inflammation in rheumatoid arthritis (RA) synovial tissue, and PAD2 and citrullinated proteins are found in the synovial fluid of RA patients. In addition, RA is associated with the development of autoantibodies to citrullinated self-proteins. Our results suggest that P2X7 activation of mast cells may play a role in inflammation by providing PAD2 and PAD2 substrates access to the extracellular space.
Collapse
Affiliation(s)
- Sanja Arandjelovic
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
60
|
Burnstock G, Brouns I, Adriaensen D, Timmermans JP. Purinergic signaling in the airways. Pharmacol Rev 2012; 64:834-68. [PMID: 22885703 DOI: 10.1124/pr.111.005389] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Evidence for a significant role and impact of purinergic signaling in normal and diseased airways is now beyond dispute. The present review intends to provide the current state of knowledge of the involvement of purinergic pathways in the upper and lower airways and lungs, thereby differentiating the involvement of different tissues, such as the epithelial lining, immune cells, airway smooth muscle, vasculature, peripheral and central innervation, and neuroendocrine system. In addition to the vast number of well illustrated functions for purinergic signaling in the healthy respiratory tract, increasing data pointing to enhanced levels of ATP and/or adenosine in airway secretions of patients with airway damage and respiratory diseases corroborates the emerging view that purines act as clinically important mediators resulting in either proinflammatory or protective responses. Purinergic signaling has been implicated in lung injury and in the pathogenesis of a wide range of respiratory disorders and diseases, including asthma, chronic obstructive pulmonary disease, inflammation, cystic fibrosis, lung cancer, and pulmonary hypertension. These ostensibly enigmatic actions are based on widely different mechanisms, which are influenced by the cellular microenvironment, but especially the subtypes of purine receptors involved and the activity of distinct members of the ectonucleotidase family, the latter being potential protein targets for therapeutic implementation.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Royal Free Campus, London, UK.
| | | | | | | |
Collapse
|
61
|
The role of P2Y(14) and other P2Y receptors in degranulation of human LAD2 mast cells. Purinergic Signal 2012; 9:31-40. [PMID: 22825617 DOI: 10.1007/s11302-012-9325-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022] Open
Abstract
Mast cell degranulation affects many conditions, e.g., asthma and urticaria. We explored the potential role of the P2Y(14) receptor (P2Y(14)R) and other P2Y subtypes in degranulation of human LAD2 mast cells. All eight P2YRs were expressed at variable levels in LAD2 cells (quantitative real-time RT-PCR). Gene expression levels of ADP receptors, P2Y(1)R, P2Y(12)R, and P2Y(13)R, were similar, and P2Y(11)R and P2Y(4)R were highly expressed at 5.8- and 3.8-fold of P2Y(1)R, respectively. Least expressed P2Y(2)R was 40-fold lower than P2Y(1)R, and P2Y(6)R and P2Y(14)R were ≤50 % of P2Y(1)R. None of the native P2YR agonists alone induced β-hexosaminidase (β-Hex) release, but some nucleotides significantly enhanced β-Hex release induced by C3a or antigen, with a rank efficacy order of ATP > UDPG ≥ ADP >> UDP, UTP. Although P2Y(11)R and P2Y(4)R are highly expressed, they did not seem to play a major role in degranulation as neither P2Y(4)R agonist UTP nor P2Y(11)R agonists ATPγS and NF546 had a substantial effect. P2Y(1)R-selective agonist MRS2365 enhanced degranulation, but ~1,000-fold weaker compared to its P2Y(1)R potency, and the effect of P2Y(6)R agonist 3-phenacyl-UDP was negligible. The enhancement by ADP and ATP appears mediated via multiple receptors. Both UDPG and a synthetic agonist of the P2Y(14)R, MRS2690, enhanced C3a-induced β-Hex release, which was inhibited by a P2Y(14)R antagonist, specific P2Y(14)R siRNA and pertussis toxin, suggesting a role of P2Y(14)R activation in promoting human mast cell degranulation.
Collapse
|
62
|
Ashmole I, Duffy SM, Leyland ML, Morrison VS, Begg M, Bradding P. CRACM/Orai ion channel expression and function in human lung mast cells. J Allergy Clin Immunol 2012; 129:1628-35.e2. [PMID: 22409987 PMCID: PMC3526795 DOI: 10.1016/j.jaci.2012.01.070] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/09/2012] [Accepted: 01/31/2012] [Indexed: 01/17/2023]
Abstract
BACKGROUND Influx of extracellular Ca(2+) into human lung mast cells (HLMCs) is essential for the FcεRI-dependent release of preformed granule-derived mediators and newly synthesized autacoids and cytokines. However, the identity of the ion channels underlying this Ca(2+) influx is unknown. The recently discovered members of the CRACM/Orai ion channel family that carries the Ca(2+) release-activated Ca(2+) current are candidates. OBJECTIVES To investigate the expression and function of CRACM channels in HLMCs. METHODS CRACM mRNA, protein, and functional expression were examined in purified HLMCs and isolated human bronchus. RESULTS CRACM1, -2, and -3 mRNA transcripts and CRACM1 and -2 proteins were detectable in HLMCs. A CRACM-like current was detected following FcεRI-dependent HLMC activation and also in HLMCs dialyzed with 30 μM inositol triphosphate. The Ca(2+)-selective current obtained under both conditions was blocked by 10 μM La(3+) and Gd(3+), known blockers of CRACM channels, and 2 distinct and specific CRACM-channel blockers-GSK-7975A and Synta-66. Both blockers reduced FcεRI-dependent Ca(2+) influx, and 3 μM GSK-7975A and Synta-66 reduced the release of histamine, leukotriene C(4), and cytokines (IL-5/-8/-13 and TNFα) by up to 50%. Synta-66 also inhibited allergen-dependent bronchial smooth muscle contraction in ex vivo tissue. CONCLUSIONS The presence of CRACM channels, a CRACM-like current, and functional inhibition of HLMC Ca(2+) influx, mediator release, and allergen-induced bronchial smooth muscle contraction by CRACM-channel blockers supports a role for CRACM channels in FcεRI-dependent HLMC secretion. CRACM channels are therefore a potential therapeutic target in the treatment of asthma and related allergic diseases.
Collapse
Affiliation(s)
- Ian Ashmole
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - S. Mark Duffy
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - Mark L. Leyland
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | | | - Malcolm Begg
- Respiratory Therapy Area Unit, GlaxoSmithKline, Stevenage, United Kingdom
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
63
|
Kaczmarek-Hájek K, Lörinczi E, Hausmann R, Nicke A. Molecular and functional properties of P2X receptors--recent progress and persisting challenges. Purinergic Signal 2012; 8:375-417. [PMID: 22547202 PMCID: PMC3360091 DOI: 10.1007/s11302-012-9314-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/18/2011] [Indexed: 12/16/2022] Open
Abstract
ATP-gated P2X receptors are trimeric ion channels that assemble as homo- or heteromers from seven cloned subunits. Transcripts and/or proteins of P2X subunits have been found in most, if not all, mammalian tissues and are being discovered in an increasing number of non-vertebrates. Both the first crystal structure of a P2X receptor and the generation of knockout (KO) mice for five of the seven cloned subtypes greatly advanced our understanding of their molecular and physiological function and their validation as drug targets. This review summarizes the current understanding of the structure and function of P2X receptors and gives an update on recent developments in the search for P2X subtype-selective ligands. It also provides an overview about the current knowledge of the regulation and modulation of P2X receptors on the cellular level and finally on their physiological roles as inferred from studies on KO mice.
Collapse
Affiliation(s)
- Karina Kaczmarek-Hájek
- Max Planck Institute for Experimental Medicine, Hermann Rein Str. 3, 37075, Göttingen, Germany
| | | | | | | |
Collapse
|
64
|
Fluvastatin suppresses native and recombinant human P2X4 receptor function. Purinergic Signal 2012; 8:311-6. [PMID: 22222818 DOI: 10.1007/s11302-011-9289-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 12/23/2011] [Indexed: 10/14/2022] Open
Abstract
Statins have both cholesterol lowering and anti-inflammatory activities, whether mechanisms underlying their activities are independent remains unclear. The ATP-gated P2X(4) receptor is a pro-inflammatory mediator. Here, we investigate the action of fluvastatin and other cholesterol depleting agents on native and recombinant human P2X(4) receptor. Fluvastatin and mβCD suppressed P2X(4)-dependent calcium influx in THP-1 monocytes, without affecting P2Y receptor responses. mβCD or filipin III suppressed the current density of recombinant human P2X(4) receptors. Human P2X(2) was insensitive to cholesterol depletion. Cholesterol depletion had no effect on intrinsic P2X(4) receptor properties as judged by ATP concentration-response relationship, receptor rundown or current decay during agonist occupancy. These data suggest fluvastatin suppresses P2X(4) activity in monocytes through cholesterol depletion and not by modulating intrinsic channel properties.
Collapse
|
65
|
Laminar shear stress modulates the activity of heterologously expressed P2X(4) receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2488-95. [PMID: 21798232 DOI: 10.1016/j.bbamem.2011.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/24/2011] [Accepted: 07/12/2011] [Indexed: 12/20/2022]
Abstract
P2X(4) receptors are involved in mechanotransduction processes, but it is unknown whether or not P2X(4) receptors form mechanosensitive ion channels. This study questioned, whether laminar shear stress (LSS) can modulate P2X(4) receptor activity. Mouse P2X(4) receptor was cloned and heterologously expressed in Xenopus laevis oocytes. In two-electrode-voltage-clamp experiments the application of ATP (100μM) produced a transient inward current that was decreased by about 50% upon a second ATP application, corresponding to the desensitization behavior of P2X(4) receptors. In P2X(4) expressing oocytes LSS (shear forces of ~5.1dynes/cm(2)) did not produce any effect. However, LSS modulated the response of P2X(4) to ATP. With LSS (~5.1dynes/cm(2)) the desensitization of the current due to the second ATP application was diminished. Ivermectin (IVM), a compound which stabilizes the open state of P2X(4) receptors, mimicked the effect of LSS (~5.1dynes/cm(2)), since there was no additional effect of LSS after pre-incubation with IVM detected. This indicates that LSS like IVM stabilizes the open state of the receptor, although the particular mechanism remains unknown. These data demonstrate that LSS modulates the activity of P2X(4) receptors by eliminating the desensitization of the receptors in response to ATP probably by stabilizing the open state of the channel.
Collapse
|
66
|
Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS. Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 2011; 63:641-83. [PMID: 21737531 DOI: 10.1124/pr.110.003129] [Citation(s) in RCA: 394] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions.
Collapse
Affiliation(s)
- Claudio Coddou
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Developmant, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
67
|
Lalo U, Roberts JA, Evans RJ. Identification of human P2X1 receptor-interacting proteins reveals a role of the cytoskeleton in receptor regulation. J Biol Chem 2011; 286:30591-30599. [PMID: 21757694 PMCID: PMC3162419 DOI: 10.1074/jbc.m111.253153] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
P2X1 receptors are ATP-gated ion channels expressed by smooth muscle and blood cells. Carboxyl-terminally His-FLAG-tagged human P2X1 receptors were stably expressed in HEK293 cells and co-purified with cytoskeletal proteins including actin. Disruption of the actin cytoskeleton with cytochalasin D inhibited P2X1 receptor currents with no effect on the time course of the response or surface expression of the receptor. Stabilization of the cytoskeleton with jasplakinolide had no effect on P2X1 receptor currents but decreased receptor mobility. P2X2 receptor currents were unaffected by cytochalasin, and P2X1/2 receptor chimeras were used to identify the molecular basis of actin sensitivity. These studies showed that the intracellular amino terminus accounts for the inhibitory effects of cytoskeletal disruption similar to that shown for lipid raft/cholesterol sensitivity. Stabilization of the cytoskeleton with jasplakinolide abolished the inhibitory effects of cholesterol depletion on P2X1 receptor currents, suggesting that lipid rafts may regulate the receptor through stabilization of the cytoskeleton. These studies show that the cytoskeleton plays an important role in P2X1 receptor regulation.
Collapse
Affiliation(s)
- Ulyana Lalo
- Department of Cell Physiology and Pharmacology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Jonathan A Roberts
- Department of Cell Physiology and Pharmacology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Richard J Evans
- Department of Cell Physiology and Pharmacology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom.
| |
Collapse
|
68
|
Arulkumaran N, Unwin RJ, Tam FW. A potential therapeutic role for P2X7 receptor (P2X7R) antagonists in the treatment of inflammatory diseases. Expert Opin Investig Drugs 2011; 20:897-915. [PMID: 21510825 PMCID: PMC3114873 DOI: 10.1517/13543784.2011.578068] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The P2X7 receptor (P2X7R) has an important role in inflammation and immunity, but until recently, clinical application has been limited by a lack of specific antagonists. Recent studies using P2X7R knockout mice and specific receptor antagonists have shown that the P2X7R is an important therapeutic target in inflammatory diseases. AREAS COVERED We have reviewed the current literature on the role of the P2X7R in inflammatory diseases, focusing on potential therapeutic applications of selective P2X7R antagonists as anti-inflammatory agents. Particular emphasis has been placed on the potential role of P2X7R in common inflammatory diseases. The latest developments in Phase I and II clinical trials of P2X7R antagonists are covered. EXPERT OPINION Recent studies using gene knockout mice and selective P2X7R antagonists suggest that P2X7R is a viable therapeutic target for inflammatory diseases. However, efficacious P2X7R antagonists for use in clinical studies are still at an early stage of development. Future challenges include: identifying potential toxicity and side effects of treatment, timing of treatment initiation and its duration in chronic inflammatory conditions, optimum dosage and development of a functional assay for P2X7R that would help to guide treatment.
Collapse
Affiliation(s)
- Nishkantha Arulkumaran
- Imperial College London, Hammersmith Hospital, Renal Section, Department of Medicine, London, UK
| | | | | |
Collapse
|
69
|
Nörenberg W, Hempel C, Urban N, Sobottka H, Illes P, Schaefer M. Clemastine potentiates the human P2X7 receptor by sensitizing it to lower ATP concentrations. J Biol Chem 2011; 286:11067-81. [PMID: 21262970 PMCID: PMC3064161 DOI: 10.1074/jbc.m110.198879] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/10/2011] [Indexed: 01/08/2023] Open
Abstract
P2X7 receptors have emerged as potential drug targets for the treatment of medical conditions such as e.g. rheumatoid arthritis and neuropathic pain. To assess the impact of pharmaceuticals on P2X7, we screened a compound library comprising approved or clinically tested drugs and identified several compounds that augment the ATP-triggered P2X7 activity in a stably transfected HEK293 cell line. Of these, clemastine markedly sensitized Ca(2+) entry through P2X7 to lower ATP concentrations. Extracellularly but not intracellularly applied clemastine rapidly and reversibly augmented P2X7-mediated whole-cell currents evoked by non-saturating ATP concentrations. Clemastine also accelerated the ATP-induced pore formation and Yo-Pro-1 uptake, increased the fractional NMDG(+) permeability, and stabilized the open channel conformation of P2X7. Thus, clemastine is an extracellularly binding allosteric modulator of P2X7 that sensitizes P2X7 to lower ATP concentrations and facilitates its pore dilation. The activity of clemastine on native P2X7 receptors, Ca(2+) entry, and whole-cell currents was confirmed in human monocyte-derived macrophages. Similar effects were observed in murine bone marrow-derived macrophages. Consistent with the data on recombinant P2X7, clemastine augmented the ATP-induced cation entry and Yo-Pro-1 uptake. In accordance with the observation that P2X7 controls the cytokine release from LPS-primed macrophages, we found that clemastine augmented the IL-1β release from LPS-primed human macrophages. Collectively, these data point to a sensitization of the recombinantly or natively expressed human P2X7 receptor toward its physiological activator, ATP, possibly leading to a modulation of macrophage-dependent immune responses.
Collapse
Affiliation(s)
- Wolfgang Nörenberg
- From the Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Christoph Hempel
- From the Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Nicole Urban
- From the Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Helga Sobottka
- From the Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Peter Illes
- From the Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Michael Schaefer
- From the Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| |
Collapse
|
70
|
Abstract
Seven mammalian purinergic receptor subunits, denoted P2X1-P2X7, and several spliced forms of these subunits have been cloned. When heterologously expressed, these cDNAs encode ATP-gated non-selective cation channels organized as trimers. All activated receptors produce cell depolarization and promote Ca(2+) influx through their pores and indirectly by activating voltage-gated calcium channels. However, the biophysical and pharmacological properties of these receptors differ considerably, and the majority of these subunits are also capable of forming heterotrimers with other members of the P2X receptor family, which confers further different properties. These channels have three ATP binding domains, presumably located between neighboring subunits, and occupancy of at least two binding sites is needed for their activation. In addition to the orthosteric binding sites for ATP, these receptors have additional allosteric sites that modulate the agonist action at receptors, including sites for trace metals, protons, neurosteroids, reactive oxygen species and phosphoinositides. The allosteric regulation of P2X receptors is frequently receptor-specific and could be a useful tool to identify P2X members in native tissues and their roles in signaling. The focus of this review is on common and receptor-specific allosteric modulation of P2X receptors and the molecular base accounting for allosteric binding sites.
Collapse
Affiliation(s)
- Claudio Coddou
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA.
| | | | | |
Collapse
|
71
|
Stojilkovic SS, Yan Z, Obsil T, Zemkova H. Structural insights into the function of P2X4: an ATP-gated cation channel of neuroendocrine cells. Cell Mol Neurobiol 2010; 30:1251-8. [PMID: 21107680 DOI: 10.1007/s10571-010-9568-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 09/02/2010] [Indexed: 11/30/2022]
Abstract
The P2X4 receptor (P2X4R) is a member of a family of ATP-gated cation channels that are composed of three subunits. Each subunit has two transmembrane (TM) domains linked by a large extracellular loop and intracellularly located N- and C-termini. The receptors are expressed in excitable and non-excitable cells and have been implicated in the modulation of membrane excitability, calcium signaling, neurotransmitter and hormone release, and pain physiology. P2X4Rs activate rapidly and desensitize within the seconds of agonist application, both with the rates dependent on ATP concentrations, and deactivate rapidly and independently of ATP concentration. Disruption of conserved cysteine ectodomain residues affects ATP binding and gating. Several ectodomain residues of P2X4R were identified as critical for ATP binding, including K67, K313, and R295. Ectodomain residues also account for the allosteric regulation of P2X4R; H140 is responsible for copper binding and H286 regulates receptor functions with protons. Ivermectin sensitized receptors, amplified the current amplitude, and slowed receptor deactivation by binding in the TM region. Scanning mutagenesis of TMs revealed the helical topology of both domains, and suggested that receptor function is critically dependent on the conserved Y42 residue. In this brief article, we summarize this study and re-interpret it using a model based on crystallization of the zebrafish P2X4.1 receptor.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- Section on Cellular Signaling, Program in Developmental Neuroscience, NICHD, National Institutes of Health, Bldg. 49, Room 6A-36, 49 Convent Drive, Bethesda, MD 20892-4510, USA.
| | | | | | | |
Collapse
|
72
|
A review of mast cells and liver disease: What have we learned? Dig Liver Dis 2010; 42:529-36. [PMID: 20363674 DOI: 10.1016/j.dld.2010.02.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/19/2010] [Accepted: 02/25/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mast cells are recognized as diverse and highly complicated cells. Aside from their notorious role in allergic inflammatory reactions, mast cells are being implicated in numerous disease processes from heart disease to cancer. Mast cells have been implicated in liver pathogenesis including hepatitis and host allograft rejection after liver transplantation. AIMS The aim of this review is to discuss the traditional function of mast cells, their location and anatomy with regards to hepatic vasculature and the role of mast cells in hepatic diseases including liver regeneration and rejection. Finally, we will touch on the role of mast cells in liver cancer. In conclusion, we hope that the reader comes away with a better understanding of the diverse and potential role(s) that mast cells may play in liver pathologies.
Collapse
|
73
|
Gadeock S, Tran JNSN, Georgiou JG, Jalilian I, Taylor RM, Wiley JS, Sluyter R. TGF-β1 prevents up-regulation of the P2X7 receptor by IFN-γ and LPS in leukemic THP-1 monocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:2058-66. [PMID: 20670615 DOI: 10.1016/j.bbamem.2010.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 11/15/2022]
Abstract
The P2X7 receptor is an extracellular ATP-gated cation channel critical in inflammation and immunity, and can be up-regulated by IFN-γ and LPS. This study aimed to examine the effect of TGF-β1 on the up-regulation of P2X7 function and expression in leukemic THP-1 monocytes differentiated with IFN-γ and LPS. Cell-surface molecules including P2X7 were examined by immunofluorescence staining. Total P2X7 protein and mRNA was assessed by immunoblotting and RT-PCR respectively. P2X7 function was evaluated by ATP-induced cation dye uptake measurements. Cell-surface P2X7 was present on THP-1 cells differentiated for 3days with IFN-γ and LPS but not on undifferentiated THP-1 cells. ATP induced ethidium(+) uptake into differentiated but not undifferentiated THP-1 cells, and the P2X7 antagonist, KN-62, impaired ATP-induced ethidium(+) uptake. Co-incubation of cells with TGF-β1 plus IFN-γ and LPS prevented the up-regulation of P2X7 expression and ATP-induced ethidium(+) uptake in a concentration-dependent fashion with a maximum effect at 5ng/ml and with an IC(50) of ~0.4ng/ml. Moreover, ATP-induced YO-PRO-1(2+) uptake and IL-1β release were abrogated in cells co-incubated with TGF-β1. TGF-β1 also abrogated the amount of total P2X7 protein and mRNA induced by IFN-γ and LPS. Finally, TGF-β1 prevented the up-regulation of cell-surface CD86, but not CD14 and MHC class II, by IFN-γ and LPS. These results indicate that TGF-β1 prevents the up-regulation of P2X7 function and expression by IFN-γ and LPS in THP-1 monocytes. This suggests that TGF-β1 may limit P2X7-mediated processes in inflammation and immunity.
Collapse
Affiliation(s)
- Safina Gadeock
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
74
|
Pundir P, Kulka M. The role of G protein‐coupled receptors in mast cell activation by antimicrobial peptides: is there a connection? Immunol Cell Biol 2010; 88:632-40. [DOI: 10.1038/icb.2010.27] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Priyanka Pundir
- National Research Council‐Institute for Nutrisciences and Health Charlottetown Prince Edward Island Canada
- Department of Biomedical Sciences, Atlantic Veterinary College, University of PEI Charlottetown Prince Edward Island Canada
| | - Marianna Kulka
- National Research Council‐Institute for Nutrisciences and Health Charlottetown Prince Edward Island Canada
- Department of Biomedical Sciences, Atlantic Veterinary College, University of PEI Charlottetown Prince Edward Island Canada
| |
Collapse
|