51
|
Antibacterial Activity of Subtilosin Alone and Combined with Curcumin, Poly-Lysine and Zinc Lactate Against Listeria monocytogenes Strains. Probiotics Antimicrob Proteins 2016; 2:250-7. [PMID: 26781320 DOI: 10.1007/s12602-010-9042-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this paper, the antibacterial effects of the Bacillus amyloliquefaciens-produced bacteriocin subtilosin, both alone and in combination with curcumin, ε-poly-L-lysine (poly-lysine), or zinc lactate, were examined against Listeria monocytogenes. Results indicated that subtilosin inhibits both of the studied bacterial strains, Scott A (wild-type, nisin sensitive) and NR30 (nisin resistant). However, L. monocytogenes Scott A was more sensitive to subtilosin and pure curcumin. In addition, subtilosin was more active at an acidic pH. Subtilosin in combination with encapsulated curcumin displayed partial synergy against L. monocytogenes ScottA. It also had synergistic activity against both L. monocytogenes Scott A and L. monocytogenes NR30 when combined with zinc lactate. Only an additive effect was observed for subtilosin when combined with non-encapsulated curcumin or poly-lysine against the mentioned strains. Thus, using the combination of subtilosin with curcumin, poly-lysine, or zinc lactate, a lower effective dose can be used to control L. monocytogenes infection. Our findings suggest that subtilosin could be used as alternative bacteriocin to nisin, providing an opportunity to use a novel natural and efficacious biopreservative against L. monocytogenes in food preservation. This is the first report on the effects of the combination of subtilosin with natural antimicrobials on L. monocytogenes.
Collapse
|
52
|
Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery void? Nat Rev Drug Discov 2015; 14:821-32. [PMID: 26493767 DOI: 10.1038/nrd4675] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
53
|
Gopal J, Muthu M, Chun S. Bactericidal Property of Macro-, Micro- and Nanocurcumin: An Assessment. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2015. [DOI: 10.1007/s13369-015-1834-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
54
|
Farzaei MH, Abdollahi M, Rahimi R. Role of dietary polyphenols in the management of peptic ulcer. World J Gastroenterol 2015; 21:6499-6517. [PMID: 26074689 PMCID: PMC4458761 DOI: 10.3748/wjg.v21.i21.6499] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/22/2015] [Accepted: 04/03/2015] [Indexed: 02/06/2023] Open
Abstract
Peptic ulcer disease is a multifactorial and complex disease involving gastric and duodenal ulcers. Despite medical advances, the management of peptic ulcer and its complications remains a challenge, with high morbidity and death rates for the disease. An accumulating body of evidence suggests that, among a broad reach of natural molecules, dietary polyphenols with multiple biological mechanisms of action play a pivotal part in the management of gastric and duodenal ulcers. The current review confirmed that dietary polyphenols possess protective and therapeutic potential in peptic ulcer mediated by: improving cytoprotection, re-epithelialization, neovascularization, and angiogenesis; up-regulating tissue growth factors and prostaglandins; down-regulating anti-angiogenic factors; enhancing endothelial nitric oxide synthase-derived NO; suppressing oxidative mucosal damage; amplifying antioxidant performance, antacid, and anti-secretory activity; increasing endogenous mucosal defensive agents; and blocking Helicobacter pylori colonization associated gastric morphological changes and gastroduodenal inflammation and ulceration. In addition, anti-inflammatory activity due to down-regulation of proinflammatory cytokines and cellular and intercellular adhesion agents, suppressing leukocyte-endothelium interaction, inhibiting nuclear signaling pathways of inflammatory process, and modulating intracellular transduction and transcription pathways have key roles in the anti-ulcer action of dietary polyphenols. In conclusion, administration of a significant amount of dietary polyphenols in the human diet or as part of dietary supplementation along with conventional treatment can result in perfect security and treatment of peptic ulcer. Further well-designed preclinical and clinical tests are recommended in order to recognize higher levels of evidence for the confirmation of bioefficacy and safety of dietary polyphenols in the management of peptic ulcer.
Collapse
|
55
|
Sarada SKS, Titto M, Himadri P, Saumya S, Vijayalakshmi V. Curcumin prophylaxis mitigates the incidence of hypobaric hypoxia-induced altered ion channels expression and impaired tight junction proteins integrity in rat brain. J Neuroinflammation 2015; 12:113. [PMID: 26048285 PMCID: PMC4464871 DOI: 10.1186/s12974-015-0326-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/20/2015] [Indexed: 12/20/2022] Open
Abstract
Background The present study was proposed to elucidate the prophylactic role of curcumin in the prevention of hypoxia-induced cerebral edema (HACE). Methods Rats were exposed to simulated hypobaric hypoxia at 7620 m for 24 h at 25 ± 1 °C. Transvascular leakage, expression of transcriptional factors (nuclear factor-kappa B (NF-κB) and hypoxia inducible factor 1 alpha (Hif-1α) and also the genes regulated by these transcriptional factors, sodium potassium-adenosine triphosphatase (Na+/K+-ATPase) and endothelial sodium channel (ENaC) levels and brain tight junction (TJ) proteins like ZO-1, junctional adhesion molecule C (JAMC), claudin 4 and claudin 5 levels were determined in the brain of rats under hypoxia by Western blotting, electro mobility shift assay, ELISA, immunohistochemistry, and histopathology along with haematological parameters. Simultaneously, to rule out the fact that inflammation causes impaired Na+/K+-ATPase and ENaC functions and disturbing the TJ integrity leading to cerebral edema, the rats were pre-treated with curcumin (100 mg/kg body weight) 1 h prior to 24-h hypoxia. Results Curcumin administration to rats, under hypoxia showed a significant decrease (p < 0.001) in brain water content (3.53 ± 0.58 wet-to-dry-weight (W/D) ratio) and transvascular leakage (136.2 ± 13.24 relative fluorescence units per gram (r.f.u./g)) in the brain of rats compared to control (24-h hypoxia) (7.1 ± 1.0 W/D ratio and 262.42 ± 24.67 r.f.u./g, respectively). Curcumin prophylaxis significantly attenuated the upregulation of NF-κB (p < 0.001), thereby leading to concomitant downregulation of pro-inflammatory cytokine levels (↓IL-1, IL-2, IL-18 and TNF-α), cell adhesion molecules (↓P-selectin and E-selectin) and increased anti-inflammatory cytokine (↑IL-10). Curcumin stabilized the brain HIF-1α levels followed by maintaining VEGF levels along with upregulated Na+/K+-ATPase and ENaC levels (p < 0.001) under hypoxia. Curcumin restored the brain ZO-1, JAMC, claudin 4 and claudin 5 levels (p < 0.001) under hypoxia. Histopathological observations revealed the absence of edema and inflammation in the brain of rats supplemented with curcumin. Conclusions These results indicate that curcumin is a potent drug in amelioration of HACE as it effectively attenuated inflammation as well as fluid influx by maintaining the tight junction proteins integrity with increased ion channels expression in the brain of rats under hypoxia.
Collapse
Affiliation(s)
- S K S Sarada
- Haematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| | - M Titto
- Haematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| | - P Himadri
- Haematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| | - S Saumya
- Haematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| | - V Vijayalakshmi
- Haematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
56
|
Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One 2015; 10:e0121313. [PMID: 25811596 PMCID: PMC4374920 DOI: 10.1371/journal.pone.0121313] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/30/2015] [Indexed: 01/26/2023] Open
Abstract
Curcumin, an important constituent of turmeric, is known for various biological activities, primarily due to its antioxidant mechanism. The present study focused on the antibacterial activity of curcumin I, a significant component of commercial curcumin, against four genera of bacteria, including those that are Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa). These represent prominent human pathogens, particularly in hospital settings. Our study shows the strong antibacterial potential of curcumin I against all the tested bacteria from Gram-positive as well as Gram-negative groups. The integrity of the bacterial membrane was checked using two differential permeabilization indicating fluorescent probes, namely, propidium iodide and calcein. Both the membrane permeabilization assays confirmed membrane leakage in Gram-negative and Gram-positive bacteria on exposure to curcumin I. In addition, scanning electron microscopy and fluorescence microscopy were employed to confirm the membrane damages in bacterial cells on exposure to curcumin I. The present study confirms the broad-spectrum antibacterial nature of curcumin I, and its membrane damaging property. Findings from this study could provide impetus for further research on curcumin I regarding its antibiotic potential against rapidly emerging bacterial pathogens.
Collapse
|
57
|
Santos AM, Lopes T, Oleastro M, Gato IV, Floch P, Benejat L, Chaves P, Pereira T, Seixas E, Machado J, Guerreiro AS. Curcumin inhibits gastric inflammation induced by Helicobacter pylori infection in a mouse model. Nutrients 2015; 7:306-20. [PMID: 25569625 PMCID: PMC4303841 DOI: 10.3390/nu7010306] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/09/2014] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection triggers a sequence of gastric alterations starting with an inflammation of the gastric mucosa that, in some cases, evolves to gastric cancer. Efficient vaccination has not been achieved, thus it is essential to find alternative therapies, particularly in the nutritional field. The current study evaluated whether curcumin could attenuate inflammation of the gastric mucosa due to H. pylori infection. Twenty-eight C57BL/6 mice, were inoculated with the H. pylori SS1 strain; ten non-infected mice were used as controls. H. pylori infection in live mice was followed-up using a modified 13C-Urea Breath Test (13C-UBT) and quantitative real-time polymerase chain reaction (PCR). Histologically confirmed, gastritis was observed in 42% of infected non-treated mice at both 6 and 18 weeks post-infection. These mice showed an up-regulation of the expression of inflammatory cytokines and chemokines, as well as of toll-like receptors (TLRs) and MyD88, at both time points. Treatment with curcumin decreased the expression of all these mediators. No inflammation was observed by histology in this group. Curcumin treatment exerted a significant anti-inflammatory effect in H. pylori-infected mucosa, pointing to the promising role of a nutritional approach in the prevention of H. pylori induced deleterious inflammation while the eradication or prevention of colonization by effective vaccine is not available.
Collapse
Affiliation(s)
- António M Santos
- Serviço de Medicina 4-Hospital de Santa Marta/Centro Hospitalar de Lisboa Central, Rua de Santa Marta, 50, 1169-024 Lisboa, Portugal.
| | - Teresa Lopes
- CEDOC-Nova Medical School-Faculdade de Ciências Médicas Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal.
| | - Mónica Oleastro
- Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal.
| | - Inês Vale Gato
- Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal.
| | - Pauline Floch
- Bacteriology Laboratory, Bordeaux University, 146 rue Léo Saignat F-33000 Bordeaux, France.
| | - Lucie Benejat
- Bacteriology Laboratory, Bordeaux University, 146 rue Léo Saignat F-33000 Bordeaux, France.
| | - Paula Chaves
- Serviço de Anatomia Patológica-Instituto Português de Oncologia Dr. Francisco Gentil, R. Prof. Lima Basto, 1099-023 Lisboa, Portugal.
| | - Teresa Pereira
- Serviço de Anatomia Patológica-Instituto Português de Oncologia Dr. Francisco Gentil, R. Prof. Lima Basto, 1099-023 Lisboa, Portugal.
| | - Elsa Seixas
- CEDOC-Nova Medical School-Faculdade de Ciências Médicas Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal.
| | - Jorge Machado
- Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal.
| | - António S Guerreiro
- Serviço de Medicina 4-Hospital de Santa Marta/Centro Hospitalar de Lisboa Central, Rua de Santa Marta, 50, 1169-024 Lisboa, Portugal.
| |
Collapse
|
58
|
Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BIOMED RESEARCH INTERNATIONAL 2014; 2014:186864. [PMID: 24877064 PMCID: PMC4022204 DOI: 10.1155/2014/186864] [Citation(s) in RCA: 496] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/28/2014] [Indexed: 02/08/2023]
Abstract
Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent.
Collapse
Affiliation(s)
- Soheil Zorofchian Moghadamtousi
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Habsah Abdul Kadir
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pouya Hassandarvish
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hassan Tajik
- Department of Chemistry, Faculty of Sciences, Guilan University, Rasht, Iran
| | - Sazaly Abubakar
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Keivan Zandi
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr 3631, Iran
| |
Collapse
|
59
|
Murali MR, Naveen SV, Son CG, Raghavendran HRB. Current knowledge on alleviating Helicobacter pylori infections through the use of some commonly known natural products: bench to bedside. Integr Med Res 2014; 3:111-118. [PMID: 28664086 PMCID: PMC5481734 DOI: 10.1016/j.imr.2014.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori, a spiral-shaped Gram-negative bacterium, has been classified as a class I carcinogen by the World Health Organization and recognized as the causative agent for peptic ulcers, duodenal ulcer, gastritis, mucosa-associated lymphoid tissue lymphomas, and gastric cancer. Owing to their alarming rate of drug resistance, eradication of H. pylori remains a global challenge. Triple therapy consisting of a proton pump inhibitor, clarithromycin, and either amoxicillin or metronidazole, is generally the recommended standard for the treatment of H. pylori infection. Complementary and alternative medicines have a long history in the treatment of gastrointestinal ailments and various compounds has been tested for anti-H. pylori activity both in vitro and in vivo; however, their successful use in human clinical trials is sporadic. Hence, the aim of this review is to analyze the role of some well-known natural products that have been tested in clinical trials in preventing, altering, or treating H. pylori infections. Whereas some in vitro and in vivo studies in the literature have demonstrated the successful use of a few potential natural products for the treatment of H. pylori-related infections, others indicate a need to consider natural products, with or without triple therapy, as a useful alternative in treating H. pylori-related infections. Thus, the reported mechanisms include killing of H. pylori urease inhibition, induction of bacterial cell damage, and immunomodulatory effect on the host immune system. Furthermore, both in vitro and in vivo studies have demonstrated the successful use of some potential natural products for the treatment of H. pylori-related infections. Nevertheless, the routine prescription of potential complementary and alternative medicines continues to be restrained, and evidence on the safety and efficacy of the active compounds remains a subject of ongoing debate.
Collapse
Affiliation(s)
- Malliga Raman Murali
- Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sangeetha Vasudevaraj Naveen
- Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chang Gue Son
- Liver and Immunology Research Center, Oriental Medical College of Daejeon University, Daejeon, South Korea
| | - Hanumantha Rao Balaji Raghavendran
- Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
60
|
Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev 2013; 66:222-307. [PMID: 24368738 DOI: 10.1124/pr.110.004044] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review addresses the oncopharmacological properties of curcumin at the molecular level. First, the interactions between curcumin and its molecular targets are addressed on the basis of curcumin's distinct chemical properties, which include H-bond donating and accepting capacity of the β-dicarbonyl moiety and the phenylic hydroxyl groups, H-bond accepting capacity of the methoxy ethers, multivalent metal and nonmetal cation binding properties, high partition coefficient, rotamerization around multiple C-C bonds, and the ability to act as a Michael acceptor. Next, the in vitro chemical stability of curcumin is elaborated in the context of its susceptibility to photochemical and chemical modification and degradation (e.g., alkaline hydrolysis). Specific modification and degradatory pathways are provided, which mainly entail radical-based intermediates, and the in vitro catabolites are identified. The implications of curcumin's (photo)chemical instability are addressed in light of pharmaceutical curcumin preparations, the use of curcumin analogues, and implementation of nanoparticulate drug delivery systems. Furthermore, the pharmacokinetics of curcumin and its most important degradation products are detailed in light of curcumin's poor bioavailability. Particular emphasis is placed on xenobiotic phase I and II metabolism as well as excretion of curcumin in the intestines (first pass), the liver (second pass), and other organs in addition to the pharmacokinetics of curcumin metabolites and their systemic clearance. Lastly, a summary is provided of the clinical pharmacodynamics of curcumin followed by a detailed account of curcumin's direct molecular targets, whereby the phenotypical/biological changes induced in cancer cells upon completion of the curcumin-triggered signaling cascade(s) are addressed in the framework of the hallmarks of cancer. The direct molecular targets include the ErbB family of receptors, protein kinase C, enzymes involved in prostaglandin synthesis, vitamin D receptor, and DNA.
Collapse
Affiliation(s)
- Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
61
|
Aggarwal BB, Gupta SC, Sung B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br J Pharmacol 2013; 169:1672-92. [PMID: 23425071 PMCID: PMC3753829 DOI: 10.1111/bph.12131] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/20/2013] [Accepted: 02/04/2013] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED TNFs are major mediators of inflammation and inflammation-related diseases, hence, the United States Food and Drug Administration (FDA) has approved the use of blockers of the cytokine, TNF-α, for the treatment of osteoarthritis, inflammatory bowel disease, psoriasis and ankylosis. These drugs include the chimeric TNF antibody (infliximab), humanized TNF-α antibody (Humira) and soluble TNF receptor-II (Enbrel) and are associated with a total cumulative market value of more than $20 billion a year. As well as being expensive ($15 000-20 000 per person per year), these drugs have to be injected and have enough adverse effects to be given a black label warning by the FDA. In the current report, we describe an alternative, curcumin (diferuloylmethane), a component of turmeric (Curcuma longa) that is very inexpensive, orally bioavailable and highly safe in humans, yet can block TNF-α action and production in in vitro models, in animal models and in humans. In addition, we provide evidence for curcumin's activities against all of the diseases for which TNF blockers are currently being used. Mechanisms by which curcumin inhibits the production and the cell signalling pathways activated by this cytokine are also discussed. With health-care costs and safety being major issues today, this golden spice may help provide the solution. LINKED ARTICLES This article is part of a themed section on Emerging Therapeutic Aspects in Oncology. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-8.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | | |
Collapse
|
62
|
Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS JOURNAL 2012; 15:195-218. [PMID: 23143785 DOI: 10.1208/s12248-012-9432-8] [Citation(s) in RCA: 1165] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/20/2012] [Indexed: 02/07/2023]
Abstract
Extensive research over the past half century has shown that curcumin (diferuloylmethane), a component of the golden spice turmeric (Curcuma longa), can modulate multiple cell signaling pathways. Extensive clinical trials over the past quarter century have addressed the pharmacokinetics, safety, and efficacy of this nutraceutical against numerous diseases in humans. Some promising effects have been observed in patients with various pro-inflammatory diseases including cancer, cardiovascular disease, arthritis, uveitis, ulcerative proctitis, Crohn's disease, ulcerative colitis, irritable bowel disease, tropical pancreatitis, peptic ulcer, gastric ulcer, idiopathic orbital inflammatory pseudotumor, oral lichen planus, gastric inflammation, vitiligo, psoriasis, acute coronary syndrome, atherosclerosis, diabetes, diabetic nephropathy, diabetic microangiopathy, lupus nephritis, renal conditions, acquired immunodeficiency syndrome, β-thalassemia, biliary dyskinesia, Dejerine-Sottas disease, cholecystitis, and chronic bacterial prostatitis. Curcumin has also shown protection against hepatic conditions, chronic arsenic exposure, and alcohol intoxication. Dose-escalating studies have indicated the safety of curcumin at doses as high as 12 g/day over 3 months. Curcumin's pleiotropic activities emanate from its ability to modulate numerous signaling molecules such as pro-inflammatory cytokines, apoptotic proteins, NF-κB, cyclooxygenase-2, 5-LOX, STAT3, C-reactive protein, prostaglandin E(2), prostate-specific antigen, adhesion molecules, phosphorylase kinase, transforming growth factor-β, triglyceride, ET-1, creatinine, HO-1, AST, and ALT in human participants. In clinical trials, curcumin has been used either alone or in combination with other agents. Various formulations of curcumin, including nanoparticles, liposomal encapsulation, emulsions, capsules, tablets, and powder, have been examined. In this review, we discuss in detail the various human diseases in which the effect of curcumin has been investigated.
Collapse
Affiliation(s)
- Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Road, Unit # 1950, Houston, TX 77054, USA
| | | | | |
Collapse
|
63
|
Schaefers MM, Breshears LM, Anderson MJ, Lin YC, Grill AE, Panyam J, Southern PJ, Schlievert PM, Peterson ML. Epithelial proinflammatory response and curcumin-mediated protection from staphylococcal toxic shock syndrome toxin-1. PLoS One 2012; 7:e32813. [PMID: 22431984 PMCID: PMC3303796 DOI: 10.1371/journal.pone.0032813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 02/05/2012] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus initiates infections and produces virulence factors, including superantigens (SAgs), at mucosal surfaces. The SAg, Toxic Shock Syndrome Toxin-1 (TSST-1) induces cytokine secretion from epithelial cells, antigen presenting cells (APCs) and T lymphocytes, and causes toxic shock syndrome (TSS). This study investigated the mechanism of TSST-1-induced secretion of proinflammatory cytokines from human vaginal epithelial cells (HVECs) and determined if curcumin, an anti-inflammatory agent, could reduce TSST-1-mediated pathology in a rabbit vaginal model of TSS. TSST-1 caused a significant increase in NF-κB-dependent transcription in HVECs that was associated with increased expression of TNF- α, MIP-3α, IL-6 and IL-8. Curcumin, an antagonist of NF-κB-dependent transcription, inhibited IL-8 production from ex vivo porcine vaginal explants at nontoxic doses. In a rabbit model of TSS, co-administration of curcumin with TSST-1 intravaginally reduced lethality by 60% relative to 100% lethality in rabbits receiving TSST-1 alone. In addition, TNF-α was undetectable from serum or vaginal tissue of curcumin treated rabbits that survived. These data suggest that the inflammatory response induced at the mucosal surface by TSST-1 is NF-κB dependent. In addition, the ability of curcumin to prevent TSS in vivo by co-administration with TSST-1 intravaginally suggests that the vaginal mucosal proinflammatory response to TSST-1 is important in the progression of mTSS.
Collapse
Affiliation(s)
- Matthew M. Schaefers
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Laura M. Breshears
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michele J. Anderson
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ying-Chi Lin
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Alex E. Grill
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jayanth Panyam
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Peter J. Southern
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Patrick M. Schlievert
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Marnie L. Peterson
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
64
|
Eichenseher J. Peptic Ulcer Disease. Integr Med (Encinitas) 2012. [DOI: 10.1016/b978-1-4377-1793-8.00042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
65
|
Kim MK, Park JC, Chong Y. Aromatic Hydroxyl Group Plays a Critical Role in Antibacterial Activity of the Curcumin Analogues. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200700120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to investigate the role of the aromatic substituents of the curcumin scaffold on the antibacterial activity of the resulting curcumin analogues. Six curcumin analogues with different aromatic substituents were prepared and their antibacterial activities were evaluated against two Gram-positive and four Gram-negative bacteria. The structure-activity relationship study demonstrated that antibacterial activity of the curcumin analogues was critically dependent upon the aromatic hydroxyl group. Thus, hydroxycurcumin with an additional aromatic hydroxyl group on the curcumin scaffold showed antibacterial activity against all six pathogens tested and it remained effective even against ampicillin-resistant Enterobacter cloacae. Along with the previously reported antioxidative effect, the broad-spectrum antibacterial activity of the hydroxycurcumin warrants further investigation of its biological activity as well as extensive structure-activity relationship study of the curcumin analogues with various aromatic substituents.
Collapse
Affiliation(s)
- Mi Kyoung Kim
- Department of Bioscience & Biotechnology, Bio/Informatics Center, Konkuk University, Seoul 143-701, Korea
| | - Jun Cheol Park
- National Institute of Animal Science, Rural Development Administration, Suwon 441-706, Korea
| | - Youhoon Chong
- Department of Bioscience & Biotechnology, Bio/Informatics Center, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
66
|
Marathe SA, Dasgupta I, Gnanadhas DP, Chakravortty D. Multifaceted roles of curcumin: two sides of a coin! Expert Opin Biol Ther 2011; 11:1485-99. [PMID: 21942554 DOI: 10.1517/14712598.2011.623124] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Curcumin has been a front-line topic of mainstream scientific research for a variety of diseases from cancer to Alzheimer's to infectious diseases. Curcumin suppresses the type 1 immune response, which might lead to alleviation of type 1 immune response disorders. However, the inhibition of type 1 immune response might invite infections with opportunistic pathogens. Considering its low bioavailability, several curcumin derivatives have been designed to improve its functionality. AREAS COVERED This is a consolidated review which aims to compare and contrast diverse aspects of curcumin in variety of diseases. The intricate underlying mechanisms and the functional determinants of curcumin are discussed. EXPERT OPINION Curcumin being considered as a spicy panacea, is not a remedy for all diseases. However, its ability to act differentially as an anti-oxidant or pro-oxidant akin to that of a double-edged sword/friend turning foe can be either beneficial or harmful for the host. It exhibits anti-oxidant properties at concentrations achievable in the body, making the host vulnerable to infections due to the suppression of innate immune responses. With the increase in knowledge of its functional groups, production of analogues of curcumin is underway to enhance its bioavailability and hence its therapeutic potency.
Collapse
Affiliation(s)
- Sandhya A Marathe
- Indian Institute of Science, Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Bangalore 560012, India
| | | | | | | |
Collapse
|
67
|
Ulbricht C, Basch E, Barrette EP, Boon H, Chao W, Costa D, Higdon ER, Isaac R, Lynch M, Papaliodis G, Grimes Serrano JM, Varghese M, Vora M, Windsor R, Woods J. Turmeric(Curcuma longa): An Evidence-Based Systematic Review by the Natural Standard Research Collaboration. ACTA ACUST UNITED AC 2011. [DOI: 10.1089/act.2011.17409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Catherine Ulbricht
- The Natural Standard Research Collaboration, in Somerville, Massachusetts, is a senior attending pharmacist at Massachusetts General Hospital, and is an adjunct/assistant clinical professor at many universities
| | - Ethan Basch
- The Natural Standard Research Collaboration, is a medical oncologist and professor at Memorial Sloan-Kettering Cancer Center in New York, New York, and is on the faculty at Weill Cornell Medical College in New York, New York
| | - Ernie-Paul Barrette
- The Division of Infectious Diseases at Washington University School of Medicine in St. Louis, Missouri
| | - Heather Boon
- The Leslie Dan Faculty of Pharmacy at the University of Toronto in Ontario, Canada, is a founding chair and principal investigator of the Canadian Interdisciplinary Network for CAM Research (IN-CAM) in Calgary, Alberta, Canada, and is co-chair of Health Canada’s Expert Advisory Committee for Natural Health Products in Ottawa, Ontario, Canada
| | | | | | | | | | | | - George Papaliodis
- The Immunology and Uveitis Service at Massachusetts Eye and Ear Infirmary in Boston, Massachusetts, and is on the faculty at Massachusetts General Hospital in Boston, Massachusetts
| | | | | | | | | | - Jen Woods
- A publications editor, all at the Natural Standard Research Collaboration
| |
Collapse
|
68
|
Lan L, Yu J, Chen YL, Zhong YL, Zhang H, Jia CH, Yuan Y, Liu BW. Symptom-based tendencies of Helicobacter pylori eradication in patients with functional dyspepsia. World J Gastroenterol 2011; 17:3242-7. [PMID: 21912474 PMCID: PMC3158401 DOI: 10.3748/wjg.v17.i27.3242] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 11/24/2010] [Accepted: 12/01/2010] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether there were symptom-based tendencies in the Helicobacter pylori (H. pylori) eradication in functional dyspepsia (FD) patients.
METHODS: A randomized, single-blind, placebo-controlled study of H. pylori eradication for FD was conducted. A total of 195 FD patients with H. pylori infection were divided into two groups: 98 patients in the treatment group were treated with rabeprazole 10 mg twice daily for 2 wk, amoxicillin 1.0 g and clarithromycin 0.5 g twice daily for 1 wk; 97 patients in the placebo group were given placebos as control. Symptoms of FD, such as postprandial fullness, early satiety, nausea, belching, epigastric pain and epigastric burning, were assessed 3 mo after H. pylori eradication.
RESULTS: By per-protocol analysis in patients with successful H. pylori eradication, higher effective rates of 77.2% and 82% were achieved in the patients with epigastric pain and epigastric burning than those in the placebo group (P < 0.05). The effective rates for postprandial fullness, early satiety, nausea and belching were 46%, 36%, 52.5% and 33.3%, respectively, and there was no significant difference from the placebo group (39.3%, 27.1%, 39.1% and 31.4%) (P > 0.05). In 84 patients who received H. pylori eradication therapy, the effective rates for epigastric pain (73.8%) and epigastric burning (80.7%) were higher than those in the placebo group (P < 0.05). The effective rates for postprandial fullness, early satiety, nausea and belching were 41.4%, 33.3%, 50% and 31.4%, respectively, and did not differ from those in the placebo group (P > 0.05). By intention-to-treat analysis, patients with epigastric pain and epigastric burning in the treatment group achieved higher effective rates of 60.8% and 65.7% than the placebo group (33.3% and 31.8%) (P < 0.05). The effective rates for postprandial fullness, early satiety, nausea and belching were 34.8%, 27.9%, 41.1% and 26.7% respectively in the treatment group, with no significant difference from those in the placebo group (34.8%, 23.9%, 35.3% and 27.1%) (P > 0.05).
CONCLUSION: The efficacy of H. pylori eradication has symptom-based tendencies in FD patients. It may be effective in the subgroup of FD patients with epigastric pain syndrome.
Collapse
|
69
|
Reuter S, Gupta SC, Park B, Goel A, Aggarwal BB. Epigenetic changes induced by curcumin and other natural compounds. GENES AND NUTRITION 2011; 6:93-108. [PMID: 21516481 DOI: 10.1007/s12263-011-0222-1] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/05/2011] [Indexed: 12/12/2022]
Abstract
Epigenetic regulation, which includes changes in DNA methylation, histone modifications, and alteration in microRNA (miRNA) expression without any change in the DNA sequence, constitutes an important mechanism by which dietary components can selectively activate or inactivate gene expression. Curcumin (diferuloylmethane), a component of the golden spice Curcuma longa, commonly known as turmeric, has recently been determined to induce epigenetic changes. This review summarizes current knowledge about the effect of curcumin on the regulation of histone deacetylases, histone acetyltransferases, DNA methyltransferase I, and miRNAs. How these changes lead to modulation of gene expression is also discussed. We also discuss other nutraceuticals which exhibit similar properties. The development of curcumin for clinical use as a regulator of epigenetic changes, however, needs further investigation to determine novel and effective chemopreventive strategies, either alone or in combination with other anticancer agents, for improving cancer treatment.
Collapse
Affiliation(s)
- Simone Reuter
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | | | | | | |
Collapse
|
70
|
Konwarh R, Saikia JP, Karak N, Konwar BK. ‘Poly(ethylene glycol)-magnetic nanoparticles-curcumin’ trio: Directed morphogenesis and synergistic free-radical scavenging. Colloids Surf B Biointerfaces 2010; 81:578-86. [PMID: 20729041 DOI: 10.1016/j.colsurfb.2010.07.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/08/2010] [Accepted: 07/31/2010] [Indexed: 12/18/2022]
|
71
|
Synthesis and anti-inflammatory evaluation of novel mono-carbonyl analogues of curcumin in LPS-stimulated RAW 264.7 macrophages. Eur J Med Chem 2010; 45:5773-80. [PMID: 20934787 DOI: 10.1016/j.ejmech.2010.09.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/11/2010] [Accepted: 09/16/2010] [Indexed: 11/23/2022]
Abstract
Curcumin is a multifunctional natural product with regulatory effects on inflammation. However, a major limitation for the application of curcumin is its poor bioavailability. We previously demonstrated that the mono-carbonyl analogues of curcumin possessed improved pharmacokinetic profiles. In this study, 33 novel mono-carbonyl analogues of curcumin were synthesized and their inhibition against TNF-α and IL-6 release was evaluated in LPS-stimulated RAW 264.7 macrophages. Based on the screening data, quantitative structure-activity relationship was conducted, indicating that electron-withdrawing groups in benzene ring are favourable to anti-inflammatory activities of B-class compounds. Furthermore, compounds AN1 and B82 demonstrated anti-inflammatory abilities in a dose-dependent manner. These raise the possibility that these compounds might serve as potential agents for the treatment of inflammatory diseases.
Collapse
|
72
|
Sintara K, Thong-Ngam D, Patumraj S, Klaikeaw N, Chatsuwan T. Curcumin suppresses gastric NF-κB activation and macromolecular leakage in Helicobacter pylori-infected rats. World J Gastroenterol 2010; 16:4039-46. [PMID: 20731017 PMCID: PMC2928457 DOI: 10.3748/wjg.v16.i32.4039] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether curcumin could attenuate nuclear factor (NF)-κB p65 expression and macromolecular leakage in the gastric mucosa of Helicobacter pylori (H. pylori)-infected rats.
METHODS: Twenty-five male Sprague-Dawley rats were equally divided into five groups: control rats (Control), control rats supplemented with 600 mg/kg curcumin, H. pylori-infected rats (Hp), H. pylori-infected rats supplemented with 200 mg/kg curcumin (Hp + curI), and H. pylori-infected rats supplemented with 600 mg/kg curcumin (Hp + curII). In H. pylori-infected groups, rats were inoculated with H. pylori suspension twice a day at an interval of 4 h for 3 d. Two weeks later, 200 or 600 mg/kg curcumin was given once daily to curcumin-supplemented groups for 7 d. On the day of the experiment, macromolecular leakage in gastric mucosa was examined by intravital fluorescence microscopy. The stomach tissue was removed to examine NF-κB p65 expression in gastric epithelial cells by immunohistochemistry.
RESULTS: The expression of NF-κB p65 in gastric epithelial cells and the macromolecular leakage from gastric mucosal microcirculation significantly increased in the Hp group compared with the Control group. The percentages of NF-κB p65 immunoreactive cells in Control and Hp groups were 10.72% ± 2.10% vs 16.02% ± 2.98%, P = 0.004, respectively. The percentages of macromolecular leakage in Control and Hp groups were 10.69% ± 1.43% vs 15.41% ± 2.83%, P = 0.001, respectively. Curcumin supplementation in Hp + curI and Hp + curII groups significantly decreased NF-κB p65 immunoreactive cells and macromolecular leakage compared with results in the Hp group. The percentages of NF-κB p65 immunoreactive cells in Hp + curI and Hp + curII groups were 11.79% ± 2.13% (P = 0.017) and 11.42% ± 1.68% (P = 0.010), respectively. The percentages of macromolecular leakage in Hp + curI and Hp + curII groups were 12.32% ± 2.13% (P = 0.025) and 12.14% ± 1.86% (P = 0.018), respectively.
CONCLUSION: H. pylori-induced gastric inflammation in rats is associated with increased NF-κB activation and macromolecular leakage which can be reduced by curcumin supplementation.
Collapse
|
73
|
Koosirirat C, Linpisarn S, Changsom D, Chawansuntati K, Wipasa J. Investigation of the anti-inflammatory effect of Curcuma longa in Helicobacter pylori-infected patients. Int Immunopharmacol 2010; 10:815-8. [PMID: 20438867 DOI: 10.1016/j.intimp.2010.04.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 04/26/2010] [Accepted: 04/26/2010] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection of the lining of the stomach induces an array of inflammatory cytokine production leading to gastritis and peptic ulcer disease. The aim of this study was to investigate the effect of curcumin on the production of interleukin (IL)-8, IL-1beta, tumor necrosis factor (TNF)-alpha and cyclooxygenase (COX)-2 in gastric mucosa from H. pylori-infected gastritis patients. Patients were randomly assigned to receive either OAM (Omeprazole, Amoxicillin and Metronidazole) treatment or a course of curcumin. Gastric biopsies were collected before and after treatment and were examined for the level of inflammatory cytokines mRNA by semi-quantitative reverse transcription polymerase chain reaction. The eradication rate of H. pylori in patients that received OAM treatment was significantly higher than the patients that received curcumin (78.9% versus 5.9%). The levels of IL-8 mRNA expression in the OAM group significantly decreased after treatment, but no changes of other cytokines were found. This emphasizes an important role of IL-8 in H. pylori infection. The decreases of cytokine production were not found in the curcumin group. We concluded that curcumin alone may have limited anti-bactericidal effect on H. pylori, and on the production of inflammatory cytokines. Nevertheless, other studies have reported that patients treated with curcumin had relieved symptoms. Further investigation should be carried out as the use of curcumin in combination with therapeutic regimens may be beneficial as an alternative treatment.
Collapse
|
74
|
Zaidi SFH, Ahmed K, Yamamoto T, Kondo T, Usmanghani K, Kadowaki M, Sugiyama T. Effect of resveratrol on Helicobacter pylori-induced interleukin-8 secretion, reactive oxygen species generation and morphological changes in human gastric epithelial cells. Biol Pharm Bull 2010; 32:1931-5. [PMID: 19881312 DOI: 10.1248/bpb.32.1931] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammatory cytokine interleukin-8 (IL-8) and reactive oxygen species (ROS) overexpressed in the gastric mucosa when exposed to Helicobacter pylori, defined as a class I carcinogen. Moreover, infection with H. pylori leads to morphological changes in co-cultured cells known as hummingbird phenomenon along with increased motility. Resveratrol, a highly abundant polyphenol in red grapes, has shown anti-inflammatory, anti-cancer, cardioprotective and neuroprotective activities. However, the effect of resveratrol in H. pylori-infected cells has not been investigated. The present study was, therefore, aimed to evaluate the effect of resveratrol on the induction of IL-8, ROS and hummingbird morphology in H. pylori-infected gastric epithelial cells. The non-toxic concentration of resveratrol for both H. pylori and epithelial cells was determined by brucella broth dilution method and DNA fragmentation assay. The non-toxic resveratrol (< or =100 microM) treatment did not demonstrate any inhibitory effect against H. pylori adhesion to gastric epithelial cells. However, preincubation of the cells with 75 and 100 muM of resveratrol significantly (p<0.05 and p<0.01 respectively) inhibited the secretion of IL-8 from H. pylori-infected cells. In addition, resveratrol pretreatment at 1-100 muM suppressed H. pylori-induced ROS generation in a concentration dependent manner. Moreover, H. pylori-initiated morphological changes were markedly blocked by resveratrol. Hence, resveratrol can be considered as a potential candidate against various H. pylori related gastric pathogenic processes.
Collapse
Affiliation(s)
- Syed Faisal Haider Zaidi
- Department of Gastroenterology and Hematology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | | | | | | | | | | | | |
Collapse
|
75
|
Zaidi SFH, Yamamoto T, Refaat A, Ahmed K, Sakurai H, Saiki I, Kondo T, Usmanghani K, Kadowaki M, Sugiyama T. Modulation of activation-induced cytidine deaminase by curcumin in Helicobacter pylori-infected gastric epithelial cells. Helicobacter 2009; 14:588-95. [PMID: 19889077 DOI: 10.1111/j.1523-5378.2009.00724.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Anomalous expression of activation-induced cytidine deaminase (AID) in Helicobacter pylori-infected gastric epithelial cells has been postulated as one of the key mechanisms in the development of gastric cancer. AID is overexpressed in the cells through nuclear factor (NF)-kappaB activation by H. pylori and hence, inhibition of NF-kappaB pathway can downregulate the expression of AID. Curcumin, a spice-derived polyphenol, is known for its anti-inflammatory activity via NF-kappaB inhibition. Therefore, it was hypothesized that curcumin might suppress AID overexpression via NF-kappaB inhibitory activity in H. pylori-infected gastric epithelial cells. MATERIALS AND METHODS MKN-28 or MKN-45 cells and H. pylori strain 193C isolated from gastric cancer patient were used for co-culture experiments. Cells were pretreated with or without nonbactericidal concentrations of curcumin. Apoptosis was determined by DNA fragmentation assay. Enzyme-linked immunosorbent assay was performed to evaluate the anti-adhesion activity of curcumin. Real-time polymerase chain reaction was employed to evaluate the expression of AID mRNA. Immunoblot assay was performed for the analysis of AID, NF-kappaB, inhibitors of NF-kappaB (IkappaB), and IkappaB kinase (IKK) complex regulation with or without curcumin. RESULTS The adhesion of H. pylori to gastric epithelial cells was not inhibited by curcumin pretreatment at nonbactericidal concentrations (< or =10 micromol/L). Pretreatment with nonbactericidal concentration of curcumin downregulated the expression of AID induced by H. pylori. Similarly, NF-kappaB activation inhibitor (SN-50) and proteasome inhibitor (MG-132) also downregulated the mRNA expression of AID. Moreover, curcumin (< or =10 micromol/L) has suppressed H. pylori-induced NF-kappaB activation via inhibition of IKK activation and IkappaB degradation. CONCLUSION Nonbactericidal concentrations of curcumin downregulated H. pylori-induced AID expression in gastric epithelial cells, probably via the inhibition of NF-kappaB pathway. Hence, curcumin can be considered as a potential chemopreventive candidate against H. pylori-related gastric carcinogenesis.
Collapse
Affiliation(s)
- Syed Faisal Haider Zaidi
- Department of Gastroenterology and Hematology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Curcumin! Spicy panacea for all--friend or foe. Vaccine 2009; 28:291-2. [PMID: 19879991 DOI: 10.1016/j.vaccine.2009.10.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 10/12/2009] [Indexed: 11/22/2022]
|
77
|
Sachdeva A, Nagpal J. Meta-analysis: efficacy of bovine lactoferrin in Helicobacter pylori eradication. Aliment Pharmacol Ther 2009; 29:720-30. [PMID: 19183156 DOI: 10.1111/j.1365-2036.2009.03934.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Several randomized-controlled trials (RCTs) have sought to determine the efficacy of bovine lactoferrin in Helicobacter pylori eradication with equivocal results. AIM To evaluate the effect of bovine lactoferrin supplementation in H. pylori eradication. METHODS Electronic databases, reviews, bibliographies, abstracts and conference proceedings were searched. Included trials had to be randomized or quasi-randomized and controlled, using bovine lactoferrin in the intervention group, treating Helicobacter-infected subjects and evaluating eradication of H. pylori as an outcome. RESULTS The search identified five eligible RCTs (of 169). Data were available for 682 subjects (bovine lactoferrin group-n = 316; control group-n = 366). The pooled odds ratio (five studies) for eradication by intention-to-treat analysis was 2.22 (95% CI 1.44-3.44; P = 0.0003) using the fixed effects model (FEM) and 2.24 (95% CI 1.15-4.35; P = 0.0003) using the random effects model (REM) (Cochran's Q = 6.83; P = 0.145). The pooled risk difference was 0.11 (95% CI 0.05-0.16; P = 0.0001) by FEM (Cochran's Q = 6.67; P = 0.154) and 0.10 (95% CI 0.04-0.17; P = 0.0023) by REM. There was no significant difference in incidence of adverse effects. CONCLUSION Bovine lactoferrin potentially improves H. pylori eradication rates without any impact on adverse effects, but available evidence is limited and further research is necessary to confirm the findings.
Collapse
Affiliation(s)
- A Sachdeva
- Department of Clinical Epidemiology, Sitaram Bhartia Institute of Science and Research, New Delhi, India
| | | |
Collapse
|
78
|
Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice. Antimicrob Agents Chemother 2009; 53:1592-7. [PMID: 19204190 DOI: 10.1128/aac.01242-08] [Citation(s) in RCA: 294] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Treatment failure is a major cause of concern for the Helicobacter pylori-related gastroduodenal diseases like gastritis, peptic ulcer, and gastric cancer. Curcumin, diferuloylmethane from turmeric, has recently been shown to arrest H. pylori growth. The antibacterial activity of curcumin against 65 clinical isolates of H. pylori in vitro and during protection against H. pylori infection in vivo was examined. The MIC of curcumin ranges from 5 microg/ml to 50 microg/ml, showing its effectiveness in inhibiting H. pylori growth in vitro irrespective of the genetic makeup of the strains. The nucleotide sequences of the aroE genes, encoding shikimate dehydrogenase, against which curcumin seems to act as a noncompetitive inhibitor, from H. pylori strains presenting differential curcumin MICs showed that curcumin-mediated growth inhibition of Indian H. pylori strains may not be always dependent on the shikimate pathway. The antimicrobial effect of curcumin in H. pylori-infected C57BL/6 mice and its efficacy in reducing the gastric damage due to infection were examined histologically. Curcumin showed immense therapeutic potential against H. pylori infection as it was highly effective in eradication of H. pylori from infected mice as well as in restoration of H. pylori-induced gastric damage. This study provides novel insights into the therapeutic effect of curcumin against H. pylori infection, suggesting its potential as an alternative therapy, and opens the way for further studies on identification of novel antimicrobial targets of curcumin.
Collapse
|
79
|
Zaidi SFH, Yamada K, Kadowaki M, Usmanghani K, Sugiyama T. Bactericidal activity of medicinal plants, employed for the treatment of gastrointestinal ailments, against Helicobacter pylori. JOURNAL OF ETHNOPHARMACOLOGY 2009; 121:286-91. [PMID: 19041711 DOI: 10.1016/j.jep.2008.11.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 09/24/2008] [Accepted: 11/01/2008] [Indexed: 05/25/2023]
Abstract
AIM OF THE STUDY Helicobacter pylori infection plays a crucial role in the pathogenesis of peptic ulcer, and gastric cancer. The current PPI-based triple regimens for the eradication of Helicobacter pylori faces uprising resistance problem demanding for the search of novel candidates. Medicinal plants have always been a source of lead compounds for drug discovery. In the present study, we evaluated the anti-Helicobacter pylori activity of 50 commonly used Unani (traditional) medicine plants from Pakistan that are extensively utilized for the cure of gastrointestinal disorders to explore the natural source for pilot compounds against Helicobacter pylori. MATERIALS AND METHODS Total seven clinical isolates and one standard strain were employed to examine the bactericidal effects of medicinal plants. Helicobacter pylori was isolated from the antral biopsy specimens and confirmed through the standard microbiology procedures. Minimum bactericidal concentration (MBC) of the active plants was determined at the concentration range from 7.8 to 500 microg/ml. RESULTS Among the herbs evaluated, more than 50% inhibited the growth of eight strains at the concentration of 500 microg/ml. The 70% aqueous-ethanol extracts of Curcuma amada Roxb., Mallotus phillipinesis (Lam) Muell., Myrisctica fragrans Houtt., and Psoralea corylifolia L. demonstrated strong anti-Helicobacter pylori activity with MBC value ranged from 15.6 to 62.5 microg/ml. The most potent bactericidal activity was exhibited by Mallotus phillipinesis (Lam) Muell. which completely killed the bacteria at the concentration of 15.6-31.2 microg/ml. CONCLUSION The results revealed significant anti-Helicobacter pylori activity of medicinal plants which could be the potential source of new bactericidal agents.
Collapse
Affiliation(s)
- Syed Faisal Haider Zaidi
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | |
Collapse
|
80
|
Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 2008; 269:199-225. [PMID: 18479807 DOI: 10.1016/j.canlet.2008.03.009] [Citation(s) in RCA: 714] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 03/16/2008] [Accepted: 03/03/2008] [Indexed: 12/23/2022]
Abstract
Because most cancers are caused by dysregulation of as many as 500 different genes, agents that target multiple gene products are needed for prevention and treatment of cancer. Curcumin, a yellow coloring agent in turmeric, has been shown to interact with a wide variety of proteins and modify their expression and activity. These include inflammatory cytokines and enzymes, transcription factors, and gene products linked with cell survival, proliferation, invasion, and angiogenesis. Curcumin has been found to inhibit the proliferation of various tumor cells in culture, prevents carcinogen-induced cancers in rodents, and inhibits the growth of human tumors in xenotransplant or orthotransplant animal models either alone or in combination with chemotherapeutic agents or radiation. Several phase I and phase II clinical trials indicate that curcumin is quite safe and may exhibit therapeutic efficacy. These aspects of curcumin are discussed further in detail in this review.
Collapse
|
81
|
Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. Biochem J 2008; 410:147-55. [DOI: 10.1042/bj20070891] [Citation(s) in RCA: 324] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The assembly and stability of FtsZ protofilaments have been shown to play critical roles in bacterial cytokinesis. Recent evidence suggests that FtsZ may be considered as an important antibacterial drug target. Curcumin, a dietary polyphenolic compound, has been shown to have a potent antibacterial activity against a number of pathogenic bacteria including Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus. We found that curcumin induced filamentation in the Bacillus subtilis 168, suggesting that it inhibits bacterial cytokinesis. Further, curcumin strongly inhibited the formation of the cytokinetic Z-ring in B. subtilis 168 without detectably affecting the segregation and organization of the nucleoids. Since the assembly dynamics of FtsZ protofilaments plays a major role in the formation and functioning of the Z-ring, we analysed the effects of curcumin on the assembly of FtsZ protofilaments. Curcumin inhibited the assembly of FtsZ protofilaments and also increased the GTPase activity of FtsZ. Electron microscopic analysis showed that curcumin reduced the bundling of FtsZ protofilaments in vitro. Further, curcumin was found to bind to FtsZ in vitro with a dissociation constant of 7.3±1.8 μM and the agent also perturbed the secondary structure of FtsZ. The results indicate that the perturbation of the GTPase activity of FtsZ assembly is lethal to bacteria and suggest that curcumin inhibits bacterial cell proliferation by inhibiting the assembly dynamics of FtsZ in the Z-ring.
Collapse
|
82
|
Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as "Curecumin": from kitchen to clinic. Biochem Pharmacol 2007; 75:787-809. [PMID: 17900536 DOI: 10.1016/j.bcp.2007.08.016] [Citation(s) in RCA: 1454] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 08/13/2007] [Accepted: 08/14/2007] [Indexed: 02/06/2023]
Abstract
Although turmeric (Curcuma longa; an Indian spice) has been described in Ayurveda, as a treatment for inflammatory diseases and is referred by different names in different cultures, the active principle called curcumin or diferuloylmethane, a yellow pigment present in turmeric (curry powder) has been shown to exhibit numerous activities. Extensive research over the last half century has revealed several important functions of curcumin. It binds to a variety of proteins and inhibits the activity of various kinases. By modulating the activation of various transcription factors, curcumin regulates the expression of inflammatory enzymes, cytokines, adhesion molecules, and cell survival proteins. Curcumin also downregulates cyclin D1, cyclin E and MDM2; and upregulates p21, p27, and p53. Various preclinical cell culture and animal studies suggest that curcumin has potential as an antiproliferative, anti-invasive, and antiangiogenic agent; as a mediator of chemoresistance and radioresistance; as a chemopreventive agent; and as a therapeutic agent in wound healing, diabetes, Alzheimer disease, Parkinson disease, cardiovascular disease, pulmonary disease, and arthritis. Pilot phase I clinical trials have shown curcumin to be safe even when consumed at a daily dose of 12g for 3 months. Other clinical trials suggest a potential therapeutic role for curcumin in diseases such as familial adenomatous polyposis, inflammatory bowel disease, ulcerative colitis, colon cancer, pancreatic cancer, hypercholesteremia, atherosclerosis, pancreatitis, psoriasis, chronic anterior uveitis and arthritis. Thus, curcumin, a spice once relegated to the kitchen shelf, has moved into the clinic and may prove to be "Curecumin".
Collapse
Affiliation(s)
- Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, TX, United States
| | | | | |
Collapse
|