51
|
Angilletta MJ, Oufiero CE, Leaché AD. Direct and Indirect Effects of Environmental Temperature on the Evolution of Reproductive Strategies: An Information‐Theoretic Approach. Am Nat 2006; 168:E123-35. [PMID: 17004215 DOI: 10.1086/507880] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 05/01/2006] [Indexed: 11/03/2022]
Abstract
For ectotherms, environmental temperature affects the optimal size and number of offspring via multiple mechanisms. First, temperature influences the performance of offspring, which directly affects the optimal size of offspring. Second, temperature influences maternal body size, which indirectly affects the optimal size and/or number of offspring when larger females acquire more energetic resources or provide better parental care. Although traditional statistical approaches might distinguish the relative importance of these effects, an information-theoretic approach enables one to estimate effects more accurately by identifying the best evolutionary model in a set of candidate models. Here, we use the Akaike Information Criterion to calculate the likelihoods of seven path models, each derived from one or more optimality models of reproduction. Variation in reproductive traits among populations of lizards (Sceloporus undulatus) was used to quantify support for the models. Our results overwhelmingly supported a model based on an indirect effect of temperature that is mediated by maternal size. Path coefficients of this model were consistent with the hypotheses that, first, larger females can acquire more energy for reproduction and, second, the survival of offspring depends on both their size and their density. Our analyses exemplify how information theory can identify evolutionary hypotheses that merit experimental testing.
Collapse
Affiliation(s)
- Michael J Angilletta
- Department of Ecology and Organismal Biology, Indiana State University, Terre Haute, Indiana 47809, USA.
| | | | | |
Collapse
|
52
|
Hassall M, Walters RJ, Telfer M, Hassall MRJ. Why does a grasshopper have fewer, larger offspring at its range limits? J Evol Biol 2006; 19:267-76. [PMID: 16405597 DOI: 10.1111/j.1420-9101.2005.00967.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Analysis of size of offspring reared through three laboratory generations from populations of the field grasshopper Chorthippus brunneus from 27 sites around the British Isles showed that offspring were larger towards the cooler-wetter conditions in the western and northern limits of the range. This variation had a significant genetic component. There was a trade-off between clutch size and offspring size between and within populations. Under favourable thermal and feeding conditions maternal fitness was optimal when individuals produced the largest clutches of the smallest eggs, but under poor conditions maternal fitness was optimal when individuals produced small clutches of very large offspring. Calculation of geometric mean fitness over time indicated that having larger offspring near to the edge of the range could be advantageous as a conservative risk-spreading strategy. As well as geographic variation in egg size, significant environment-genotype interactions in egg size in relation to temperature were observed.
Collapse
Affiliation(s)
- M Hassall
- Centre for Ecology, Evolution and Conservation, School of Environmental Sciences, University of East Anglia, Norwich, UK.
| | | | | | | |
Collapse
|
53
|
Hoffmann AA, Weeks AR. Climatic selection on genes and traits after a 100 year-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia. Genetica 2006; 129:133-47. [PMID: 16955331 DOI: 10.1007/s10709-006-9010-z] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 12/01/2005] [Indexed: 10/24/2022]
Abstract
Drosophila melanogaster invaded Australia around 100 years ago, most likely through a northern invasion. The wide range of climatic conditions in eastern Australia across which D. melanogaster is now found provides an opportunity for researchers to identify traits and genes that are associated with climatic adaptation. Allozyme studies indicate clinal patterns for at least four loci including a strong linear cline in Adh and a non-linear cline in alpha-Gpdh. Inversion clines were initially established from cytological studies but have now been validated with larger sample sizes using molecular markers for breakpoints. Recent collections indicate that some genetic markers (Adh and In(3R)Payne) have changed over the last 20 years reflecting continuing evolution. Heritable clines have been established for quantitative traits including wing length/area, thorax length and cold and heat resistance. A cline in egg size independent of body size and a weak cline in competitive ability have also been established. Postulated clinal patterns for resistance to desiccation and starvation have not been supported by extensive sampling. Experiments under laboratory and semi-natural conditions have suggested selective factors generating clinal patterns, particularly for reproductive patterns over winter. Attempts are being made to link clinal variation in traits to specific genes using QTL analysis and the candidate locus approach, and to identify the genetic architecture of trait variation along the cline. This is proving difficult because of inversion polymorphisms that generate disequilibrium among genes. Substantial gaps still remain in linking clines to field selection and understanding the genetic and physiological basis of the adaptive shifts. However D. melanogaster populations in eastern Australia remain an excellent resource for understanding past and future evolutionary responses to climate change.
Collapse
Affiliation(s)
- Ary A Hoffmann
- Centre for Environmental Stress and Adaptation Research, Department of Genetics, University of Melbourne, Melbourne, Vic., 3010, Australia.
| | | |
Collapse
|
54
|
Trotta V, Calboli FCF, Ziosi M, Guerra D, Pezzoli MC, David JR, Cavicchi S. Thermal plasticity in Drosophila melanogaster: a comparison of geographic populations. BMC Evol Biol 2006; 6:67. [PMID: 16942614 PMCID: PMC1569442 DOI: 10.1186/1471-2148-6-67] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 08/30/2006] [Indexed: 11/13/2022] Open
Abstract
Background Populations of Drosophila melanogaster show differences in many morphometrical traits according to their geographic origin. Despite the widespread occurrence of these differences in more than one Drosophila species, the actual selective mechanisms controlling the genetic basis of such variation are not fully understood. Thermal selection is considered to be the most likely cause explaining these differences. Results In our work, we investigated several life history traits (body size, duration of development, preadult survival, longevity and productivity) in two tropical and two temperate natural populations of D. melanogaster recently collected, and in a temperate population maintained for twelve years at the constant temperature of 18°C in the laboratory. In order to characterise the plasticity of these life history traits, the populations were grown at 12, 18, 28 and 31.2°C. Productivity was the fitness trait that showed clearly adaptive differences between latitudinal populations: tropical flies did better in the heat but worse in the cold environments with respect to temperate flies. Differences for the plasticity of other life history traits investigated between tropical and temperate populations were also found. The differences were particularly evident at stressful temperatures (12 and 31.2°C). Conclusion Our results evidence a better cold tolerance in temperate populations that seems to have been evolved during the colonisation of temperate countries by D. melanogaster Afrotropical ancestors, and support the hypothesis of an adaptive response of plasticity to the experienced environment.
Collapse
Affiliation(s)
- Vincenzo Trotta
- Alma Mater Studiorum, Università di Bologna, Dipartimento di Biologia Evoluzionistica Sperimentale, via Selmi 3, 40126 Bologna, Italy
| | - Federico CF Calboli
- Department of Epidemiology and Public Health, Imperial College, St Mary's Campus Norfolk Place, London W2 1PG, UK
| | - Marcello Ziosi
- Alma Mater Studiorum, Università di Bologna, Dipartimento di Biologia Evoluzionistica Sperimentale, via Selmi 3, 40126 Bologna, Italy
| | - Daniela Guerra
- Alma Mater Studiorum, Università di Bologna, Dipartimento di Biologia Evoluzionistica Sperimentale, via Selmi 3, 40126 Bologna, Italy
| | - Maria C Pezzoli
- Alma Mater Studiorum, Università di Bologna, Dipartimento di Biologia Evoluzionistica Sperimentale, via Selmi 3, 40126 Bologna, Italy
| | - Jean R David
- CNRS, Laboratoire Populations, Génétique et Evolution, 91198 – Gif sur Yvette Cedex, France
| | - Sandro Cavicchi
- Alma Mater Studiorum, Università di Bologna, Dipartimento di Biologia Evoluzionistica Sperimentale, via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
55
|
Vasemägi A. The adaptive hypothesis of clinal variation revisited: single-locus clines as a result of spatially restricted gene flow. Genetics 2006; 173:2411-4. [PMID: 16849603 PMCID: PMC1569722 DOI: 10.1534/genetics.106.059881] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
56
|
Wayne ML, Soundararajan U, Harshman LG. Environmental stress and reproduction in Drosophila melanogaster: starvation resistance, ovariole numbers and early age egg production. BMC Evol Biol 2006; 6:57. [PMID: 16848899 PMCID: PMC1550266 DOI: 10.1186/1471-2148-6-57] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 07/18/2006] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The Y model of resource allocation predicts a tradeoff between reproduction and survival. Environmental stress could affect a tradeoff between reproduction and survival, but the physiological mechanisms underlying environmental mediation of the tradeoff are largely unknown. One example is the tradeoff between starvation resistance and early fecundity. One goal of the present study was to determine if reduced early age fecundity was indeed a robust indirect response to selection for starvation resistance, by investigation of a set of D. melanogaster starvation selected lines which had not previously been characterized for age specific egg production. Another goal of the present study was to investigate a possible relationship between ovariole number and starvation resistance. Ovariole number is correlated with maximum daily fecundity in outbred D. melanogaster. Thus, one might expect that a negative genetic correlation between starvation resistance and early fecundity would be accompanied by a decrease in ovariole number. RESULTS Selection for early age female starvation resistance favored survival under food deprivation conditions apparently at the expense of early age egg production. The total number of eggs produced by females from selected and control lines was approximately the same for the first 26 days of life, but the timing of egg production differed such that selected females produced fewer eggs early in adult life. Females from lines selected for female starvation resistance exhibited a greater number of ovarioles than did unselected lines. Moreover, maternal starvation resulted in progeny with a greater number of ovarioles in both selected and unselected lines. CONCLUSION Reduced early age egg production is a robust response to laboratory selection for starvation survival. Ovariole numbers increased in response to selection for female starvation resistance indicating that ovariole number does not account for reduced early age egg production. Further, ovariole number increased in a parallel response to maternal starvation, suggesting an evolutionary association between maternal environment and the reproductive system of female progeny.
Collapse
Affiliation(s)
- Marta L Wayne
- Department of Zoology, University of Florida, Gainesville, FL32611, USA
| | - Usha Soundararajan
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Lawrence G Harshman
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
57
|
Collinge JE, Hoffmann AA, McKechnie SW. Altitudinal patterns for latitudinally varying traits and polymorphic markers in Drosophila melanogaster from eastern Australia. J Evol Biol 2006; 19:473-82. [PMID: 16599923 DOI: 10.1111/j.1420-9101.2005.01016.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Altitudinal changes in traits and genetic markers can complement the studies on latitudinal patterns and provide evidence of natural selection because of climatic factors. In Drosophila melanogaster, latitudinal variation is well known but altitudinal patterns have rarely been investigated. Here, we examine five traits and five genetic markers on chromosome 3R in D. melanogaster collected at high and low altitudes from five latitudes along the eastern coast of Australia. Significant altitudinal differentiation was observed for cold tolerance, development time, ovariole number in unmated females, and the microsatellite marker DMU25686. Differences tended to match latitudinal patterns, in that trait values at high altitudes were also found at high latitudes, suggesting that factors linked to temperature are likely selective agents. Cold tolerance was closely associated with average temperature and other climatic factors, but no significant associations were detected for the other traits. Genes around DMU25686 represent good candidates for climatic adaptation.
Collapse
Affiliation(s)
- J E Collinge
- Centre for Environmental Stress and Adaptation Research (CESAR), School of Biological Sciences, Monash University, Victoria, Australia
| | | | | |
Collapse
|
58
|
Oufiero CE, Angilletta MJ. CONVERGENT EVOLUTION OF EMBRYONIC GROWTH AND DEVELOPMENT IN THE EASTERN FENCE LIZARD (SCELOPORUS UNDULATUS). Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01183.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
59
|
Orgogozo V, Broman KW, Stern DL. High-resolution quantitative trait locus mapping reveals sign epistasis controlling ovariole number between two Drosophila species. Genetics 2006; 173:197-205. [PMID: 16489225 PMCID: PMC1461429 DOI: 10.1534/genetics.105.054098] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 02/11/2006] [Indexed: 12/27/2022] Open
Abstract
Identifying the genes underlying genetically complex traits is of fundamental importance for medicine, agriculture, and evolutionary biology. However, the level of resolution offered by traditional quantitative trait locus (QTL) mapping is usually coarse. We analyze here a trait closely related to fitness, ovariole number. Our initial interspecific mapping between Drosophila sechellia (8 ovarioles/ovary) and D. simulans (15 ovarioles/ovary) identified a major QTL on chromosome 3 and a minor QTL on chromosome 2. To refine the position of the major QTL, we selected 1038 additional recombinants in the region of interest using flanking morphological markers (selective phenotyping). This effort generated approximately one recombination event per gene and increased the mapping resolution by approximately seven times. Our study thus shows that using visible markers to select for recombinants can efficiently increase the resolution of QTL mapping. We resolved the major QTL into two epistatic QTL, QTL3a and QTL3b. QTL3a shows sign epistasis: it has opposite effects in two different genetic backgrounds, the presence vs. the absence of the QTL3b D. sechellia allele. This property of QTL3a allows us to reconstruct the probable order of fixation of the QTL alleles during evolution.
Collapse
Affiliation(s)
- Virginie Orgogozo
- Department of Ecology and Evolutionary Biology, Princeton University, New Jersey 08544, USA.
| | | | | |
Collapse
|
60
|
Fischer K, Bot ANM, Brakefield PM, Zwaan BJ. Do mothers producing large offspring have to sacrifice fecundity? J Evol Biol 2006; 19:380-91. [PMID: 16599914 DOI: 10.1111/j.1420-9101.2005.01046.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We artificially selected on egg size in a butterfly to study the consequences for fecundity, reproductive effort and offspring fitness. Correlated responses in either pupal mass, larval or pupal development time were virtually absent. Offspring size was positively related to fitness, but only partly traded off against fecundity. Rather, total reproductive effort (measured as fresh mass), egg water content and the decline of egg size with female age increased in the large-egg selected lines compared to either small-egg or control lines. Accounting for these effects showed that reproductive investment (in dry mass) was in fact similar across lines. Such mechanisms may enable increased investment in (early) offspring without a reduction in their number, revealing a much more complex picture than a simple trade-off between offspring size and number. Substantial variation among replicates suggests that there are different underlying mechanisms for change, rather than any single, unitary pathway.
Collapse
Affiliation(s)
- K Fischer
- Department of Animal Ecology I, University of Bayreuth, Bayreuth, Germany.
| | | | | | | |
Collapse
|
61
|
Adaptive significance of egg size plasticity in response to temperature in the migrant skipper, Parnara guttata guttata (Lepidoptera: Hesperiidae). POPUL ECOL 2006. [DOI: 10.1007/s10144-006-0253-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
62
|
Telonis-Scott M, McIntyre LM, Wayne ML. Genetic architecture of two fitness-related traits in Drosophila melanogaster: ovariole number and thorax length. Genetica 2006; 125:211-22. [PMID: 16247693 DOI: 10.1007/s10709-005-8549-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 06/08/2005] [Indexed: 10/25/2022]
Abstract
In Drosophila melanogaster, ovariole number and thorax length are morphological characters thought to be associated with fitness. Maximum daily egg production in females is positively correlated with ovariole number, while thorax length is correlated with male reproductive success and female fecundity. Though both traits are related to fitness, ovariole number is likely to be under stabilizing selection, while thorax length appears to be under directional selection. Current research has focused on examining the sources of variation for ovariole number in relation to fitness, with a view towards elucidating how segregating variation is maintained in natural populations. Here, we utilize a diallel design to explore the genetic architecture of ovariole number and thorax length in nine isogenic lines derived from a natural population. The full diallel design allows the estimation of general combining ability (GCA), specific combining ability (SCA), and also describes variation due to reciprocal effects (RGCA and RSCA). Ovariole number and thorax length differed with respect to their genetic architecture, reflective of the independent selective forces acting on the traits. For ovariole number, GCA accounted for the majority (67.3%) of variation segregating between the lines, with no evidence of reciprocal effects or inbreeding depression; SCA accounted for a small percentage (3.9%) of the variance, suggesting dominance variation; no reciprocal effects were observed. In contrast, for thorax length, the majority of the non-error variance was accounted for by SCA (17.9%), with only one third as much variance (6.2%) due to GCA. Interestingly, RSCA (nuclear-extranuclear interactions) accounted for slightly more variation (7.5%) than GCA in these data. Thus, genetic variation for thorax length is largely in accord with predictions for a fitness trait under directional selection: little additive genetic variation and substantial dominance variation (including a suggestion of inbreeding depression); while the mechanisms underlying the maintenance of variation for ovariole number are more complex.
Collapse
Affiliation(s)
- M Telonis-Scott
- Department of Zoology, University of Florida, Gainesville, FL, USA.
| | | | | |
Collapse
|
63
|
Oufiero CE, Angilletta MJ. CONVERGENT EVOLUTION OF EMBRYONIC GROWTH AND DEVELOPMENT IN THE EASTERN FENCE LIZARD (SCELOPORUS UNDULATUS). Evolution 2006. [DOI: 10.1554/05-202.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
64
|
Wayne ML, Korol A, Mackay TFC. Microclinal variation for ovariole number and body size in Drosophila melanogaster in ?Evolution Canyon? Genetica 2005; 123:263-70. [PMID: 15954497 DOI: 10.1007/s10709-004-5056-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sites that display strong environmental contrasts in close proximity, such as 'Evolution Canyon' on Mt. Carmel, Israel, are natural theatres for investigating adaptive evolution in action. We reared Drosophila melanogaster from collection sites along altitudinal transects on the north- and south-facing canyon slopes in each of three temperature environments, and assessed genetic variation in ovariole number and body size between and within collection sites, and temperature plasticity. Both traits exhibited significant genetic variation within collection sites and phenotypic plasticity in response to temperature, but not genetic variation for plasticity. Between-site genetic variation in ovariole number was negatively correlated with altitude on both slopes of the canyon, and collections from the north- and south-facing slopes were genetically differentiated for male, but not female, body size. Genetic variation between sites within easy dispersal range is consistent with the action of strong natural selection, although neither the selective agent(s) nor the direct targets of selection are known.
Collapse
Affiliation(s)
- Marta L Wayne
- Departament of Genetics, Campus Box 7614, North Carolina State University, Raleigh, NC 27695-7614, USA.
| | | | | |
Collapse
|
65
|
Sgrò CM, Blows MW. The genetic covariance among clinal environments after adaptation to an environmental gradient in Drosophila serrata. Genetics 2005; 167:1281-91. [PMID: 15280242 PMCID: PMC1470939 DOI: 10.1534/genetics.103.026120] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We examined the genetic basis of clinal adaptation by determining the evolutionary response of life-history traits to laboratory natural selection along a gradient of thermal stress in Drosophila serrata. A gradient of heat stress was created by exposing larvae to a heat stress of 36 degrees for 4 hr for 0, 1, 2, 3, 4, or 5 days of larval development, with the remainder of development taking place at 25 degrees. Replicated lines were exposed to each level of this stress every second generation for 30 generations. At the end of selection, we conducted a complete reciprocal transfer experiment where all populations were raised in all environments, to estimate the realized additive genetic covariance matrix among clinal environments in three life-history traits. Visualization of the genetic covariance functions of the life-history traits revealed that the genetic correlation between environments generally declined as environments became more different and even became negative between the most different environments in some cases. One exception to this general pattern was a life-history trait representing the classic trade-off between development time and body size, which responded to selection in a similar genetic fashion across all environments. Adaptation to clinal environments may involve a number of distinct genetic effects along the length of the cline, the complexity of which may not be fully revealed by focusing primarily on populations at the ends of the cline.
Collapse
Affiliation(s)
- Carla M Sgrò
- Centre for Environmental Stress and Adaptation Research, La Trobe University, Melbourne 3083, Victoria, Australia.
| | | |
Collapse
|
66
|
Steigenga MJ, Zwaan BJ, Brakefield PM, Fischer K. The evolutionary genetics of egg size plasticity in a butterfly. J Evol Biol 2005; 18:281-9. [PMID: 15715834 DOI: 10.1111/j.1420-9101.2004.00855.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abstract The evolution of phenotypic plasticity requires that it is adaptive, genetically determined, and exhibits sufficient genetic variation. For the tropical butterfly Bicyclus anynana there is evidence that temperature-mediated plasticity in egg size is an adaptation to predictable seasonal change. Here we set out to investigate heritability in egg size and genetic variation in the plastic response to temperature in this species, using a half-sib breeding design. Egg size of individual females was first measured at a high temperature 4 days after eclosion. Females were then transferred to a low temperature and egg size was measured after acclimation periods of 6 and 12 days respectively. Overall, additive genetic variance explained only 3-11% of the total phenotypic variance, whereas maternal effects were more pronounced. Genotype-environment interactions and cross-environmental correlations of less than unity suggest that there is potential for short-term evolutionary change. Our findings strengthen the support for the adaptive nature of temperature-mediated plasticity in egg size.
Collapse
Affiliation(s)
- M J Steigenga
- Department of Animal Ecology I, University of Bayreuth, Bayreuth, Germany.
| | | | | | | |
Collapse
|
67
|
Schmidt PS, Matzkin L, Ippolito M, Eanes WF. GEOGRAPHIC VARIATION IN DIAPAUSE INCIDENCE, LIFE-HISTORY TRAITS, AND CLIMATIC ADAPTATION IN DROSOPHILA MELANOGASTER. Evolution 2005. [DOI: 10.1554/05-115.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
68
|
Santos M, Iriarte PF, Céspedes W, Balanyà J, Fontdevila A, Serra L. Swift laboratory thermal evolution of wing shape (but not size) in Drosophila subobscura and its relationship with chromosomal inversion polymorphism. J Evol Biol 2004; 17:841-55. [PMID: 15271084 DOI: 10.1111/j.1420-9101.2004.00721.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Latitudinal clinal variation in wing size and shape has evolved in North American populations of Drosophila subobscura within about 20 years since colonization. While the size cline is consistent to that found in original European populations (and globally in other Drosophila species), different parts of the wing have evolved on the two continents. This clearly suggests that 'chance and necessity' are simultaneously playing their roles in the process of adaptation. We report here rapid and consistent thermal evolution of wing shape (but not size) that apparently is at odds with that suggestion. Three replicated populations of D. subobscura derived from an outbred stock at Puerto Montt (Chile) were kept at each of three temperatures (13, 18 and 22 degrees C) for 1 year and have diverged for 27 generations at most. We used the methods of geometric morphometrics to study wing shape variation in both females and males from the thermal stocks, and rates of genetic divergence for wing shape were found to be as fast or even faster than those previously estimated for wing size on a continental scale. These shape changes did not follow a neat linear trend with temperature, and are associated with localized shifts of particular landmarks with some differences between sexes. Wing shape variables were found to differ in response to male genetic constitution for polymorphic chromosomal inversions, which strongly suggests that changes in gene arrangement frequencies as a response to temperature underlie the correlated changes in wing shape because of gene-inversion linkage disequilibria. In fact, we also suggest that the shape cline in North America likely predated the size cline and is consistent with the quite different evolutionary rates between inversion and size clines. These findings cast strong doubts on the supposed 'unpredictability' of the geographical cline for wing traits in D. subobscura North American colonizing populations.
Collapse
Affiliation(s)
- M Santos
- Grup de Biologia Evolutiva (GBE), Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
69
|
Prasad NG, Joshi A. What have two decades of laboratory life-history evolution studies on Drosophila melanogaster taught us? J Genet 2004; 82:45-76. [PMID: 14631102 DOI: 10.1007/bf02715881] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of laboratory selection experiments on Drosophila melanogaster over the past two decades has provided insights into the specifics of life-history tradeoffs in the species and greatly refined our understanding of how ecology and genetics interact in life-history evolution. Much of what has been learnt from these studies about the subtlety of the microevolutionary process also has significant implications for experimental design and inference in organismal biology beyond life-history evolution, as well as for studies of evolution in the wild. Here we review work on the ecology and evolution of life-histories in laboratory populations of D. melanogaster, emphasizing how environmental effects on life-history-related traits can influence evolutionary change. We discuss life-history tradeoffs - many unexpected - revealed by selection experiments, and also highlight recent work that underscores the importance to life-history evolution of cross-generation and cross-life-stage effects and interactions, sexual antagonism and sexual dimorphism, population dynamics, and the possible role of biological clocks in timing life-history events. Finally, we discuss some of the limitations of typical selection experiments, and how these limitations might be transcended in the future by a combination of more elaborate and realistic selection experiments, developmental evolutionary biology, and the emerging discipline of phenomics.
Collapse
Affiliation(s)
- N G Prasad
- Evolutionary Biology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, P.O. Box 6436, Jakkur, Bangalore 560 064, India
| | | |
Collapse
|
70
|
Fischer K, Bot ANM, Zwaan BJ, Brakefield PM. Genetic and environmental sources of egg size variation in the butterfly Bicyclus anynana. Heredity (Edinb) 2004; 92:163-9. [PMID: 14722579 DOI: 10.1038/sj.hdy.6800382] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
By dividing families of the tropical butterfly, Bicyclus anynana, among different larval (including early pupal) and adult (including late pupal) temperatures, we investigate the genetic and environmental effects on egg size. Both sources of variation affected egg size to similar extents. As previously found in other arthropods, egg size tended to increase at lower temperatures. Our data suggest that the plastic response in egg size can be induced during the pupal stage. Females reared as larvae at the same high temperature tended to lay larger eggs when transferred to a lower temperature, either as prepupae or pupae, compared to those remaining at the high temperature. Additionally, females reared as larvae at different temperatures, but maintained at the same temperature from the early pupal stage onwards, laid larger eggs after larval growth at a low temperature. Heritability estimates for egg size were about 0.4 (parent-offspring regression) and 0.2 (variance component estimates using the full-sib families). Although there seemed to be some variation in the plastic response to temperature among families, genotype-environment interactions were nonsignificant.
Collapse
Affiliation(s)
- K Fischer
- Institute of Biology, Leiden University, PO Box 9516, Leiden NL-2300 RA, The Netherlands.
| | | | | | | |
Collapse
|
71
|
Moran AL. EGG SIZE EVOLUTION IN TROPICAL AMERICAN ARCID BIVALVES: THE COMPARATIVE METHOD AND THE FOSSIL RECORD. Evolution 2004. [DOI: 10.1554/04-142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
72
|
Fischer K, Bot ANM, Brakefield PM, Zwaan BJ. Fitness consequences of temperature-mediated egg size plasticity in a butterfly. Funct Ecol 2003. [DOI: 10.1111/j.1365-2435.2003.00798.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
73
|
De Jong G, Bochdanovits Z. Latitudinal clines inDrosophila melanogaster: Body size, allozyme frequencies, inversion frequencies, and the insulin-signalling pathway. J Genet 2003; 82:207-23. [PMID: 15133196 DOI: 10.1007/bf02715819] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many latitudinal clines exist in Drosophila melanogaster: in adult body size, in allele frequency at allozyme loci, and in frequencies of common cosmopolitan inversions. The question is raised whether these latitudinal clines are causally related. This review aims to connect data from two very different fields of study, evolutionary biology and cell biology, in explaining such natural genetic variation in D. melanogaster body size and development time. It is argued that adult body size clines, inversion frequency clines, and clines in allele frequency at loci involved in glycolysis and glycogen storage are part of the same adaptive strategy. Selection pressure is expected to differ at opposite ends of the clines. At high latitudes, selection on D. melanogaster would favour high larval growth rate at low temperatures, and resource storage in adults to survive winter. At low latitudes selection would favour lower larval critical size to survive crowding, and increased male activity leading to high male reproductive success. Studies of the insulin-signalling pathway in D. melanogaster point to the involvement of this pathway in metabolism and adult body size. The genes involved in the insulin-signalling pathway are associated with common cosmopolitan inversions that show latitudinal clines. Each chromosome region connected with a large common cosmopolitan inversion possesses a gene of the insulin transmembrane complex, a gene of the intermediate pathway and a gene of the TOR branch. The hypothesis is presented that temperate D. melanogaster populations have a higher frequency of a 'thrifty' genotype corresponding to high insulin level or high signal level, while tropical populations possess a more 'spendthrift' genotype corresponding to low insulin or low signal level.
Collapse
Affiliation(s)
- Gerdien De Jong
- Evolutionary Population Biology, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, Netherlands.
| | | |
Collapse
|
74
|
Magiafoglou A, Hoffmann A. Thermal adaptation inDrosophila serrata under conditions linked to its southern border: Unexpected patterns from laboratory selection suggest limited evolutionary potential. J Genet 2003; 82:179-89. [PMID: 15133194 DOI: 10.1007/bf02715817] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
To investigate the ability of Drosophila serrata to adapt to thermal conditions over winter at the species southern border, replicate lines from three source locations were held as discrete generations over three years at either 19 degrees C (40 generations) or temperatures fluctuating between 7 degrees C and 18 degrees C (20 generations). Populations in the fluctuating environment were maintained either with an adult 0 degrees C cold shock or without a shock. These conditions were expected to result in temperature-specific directional selection for increased viability and productivity under both temperature regimes, and reduced development time under the fluctuating-temperature regime. Selection responses of all lines were tested under both temperature regimes after controlling for carry-over effects by rearing lines in these environments for two generations. When tested in the 19 degrees C environment, lines evolving at 19 degrees C showed a faster development time and a lower productivity relative to the other lines, while cold shock reduced development time and productivity of all lines. When tested in the fluctuating environment, productivity of the 7-18 degrees C lines selected with a cold shock was relatively lower than that of lines selected without a shock, but this pattern was not observed in the other populations. Viability and body size as measured by wing length were not altered by selection or cold shock, although there were consistent effects of source population on wing length. These results provide little evidence for temperature-specific adaptation in D. serrata-although the lines had diverged for some traits, these changes were not consistent with a priori predictions. In particular, there was no evidence for life-history changes reflecting adaptation to winter conditions at the southern border. The potential for D. serrata to adapt to winter conditions may therefore be limited.
Collapse
Affiliation(s)
- Andréa Magiafoglou
- Centre for Environmental Stress and Adaptation Research, La Trobe University, Bundoora, Victoria 3086, Australia
| | | |
Collapse
|
75
|
Fischer K, Eenhoorn E, Bot ANM, Brakefield PM, Zwaan BJ. Cooler butterflies lay larger eggs: developmental plasticity versus acclimation. Proc Biol Sci 2003; 270:2051-6. [PMID: 14561294 PMCID: PMC1691478 DOI: 10.1098/rspb.2003.2470] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We use a full factorial design to investigate the effects of maternal and paternal developmental temperature, as well as female oviposition temperature, on egg size in the butterfly Bicyclus anynana. Butterflies were raised at two different temperatures and mated in four possible sex-by-parental-temperature crosses. The mated females were randomly divided between high and low oviposition temperatures. On the first day after assigning the females to different temperatures, only female developmental temperature affected egg size. Females reared at the lower temperature laid larger eggs than those reared at a higher temperature. When eggs were measured again after an acclimation period of 10 days, egg size was principally determined by the prevailing temperature during oviposition, with females ovipositing at a lower temperature laying larger eggs. In contrast to widely used assumptions, the effects of developmental temperature were largely reversible. Male developmental temperature did not affect egg size in either of the measurements. Overall, developmental plasticity and acclimation in the adult stage resulted in very similar patterns of egg size plasticity. Consequently, we argue that the most important question when testing the significance of acclamatory changes is not at which stage a given plasticity is induced, but rather whether plastic responses to environmental change are adaptive or merely physiological constraints.
Collapse
Affiliation(s)
- Klaus Fischer
- Institute of Biology, Leiden University, PO Box 9516, NL-2300 RA Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
76
|
Laugen AT, Laurila A, Räsänen K, Merilä J. Latitudinal countergradient variation in the common frog (Rana temporaria) development rates - evidence for local adaptation. J Evol Biol 2003; 16:996-1005. [PMID: 14635915 DOI: 10.1046/j.1420-9101.2003.00560.x] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adaptive genetic differentiation along a climatic gradient as a response to natural selection is not necessarily expressed at phenotypic level if environmental effects on population mean phenotypes oppose the genotypic effects. This form of cryptic evolution--called countergradient variation--has seldom been explicitly demonstrated for terrestrial vertebrates. We investigated the patterns of phenotypic and genotypic differentiation in developmental rates of common frogs (Rana temporaria) along a ca. 1600 km latitudinal gradient across Scandinavia. Developmental rates in the field were not latitudinally ordered, but displayed large variation even among different ponds within a given latitudinal area. In contrast, development rates assessed in the laboratory increased strongly and linearly with increasing latitude, suggesting a genetic capacity for faster development in the northern than the southern larvae. Experiments further revealed that environmental effects (temperature and food) could easily override the genetic effects on developmental rates, providing a possible mechanistic explanation as to why the genetic differentiation was not seen in the samples collected from the wild. Our results suggest that the higher developmental rates of the northern larvae are likely to be related to selection stemming from seasonal time constrains, rather than from selection dictated by low ambient temperatures per se. All in all, the results provide a demonstration of environmental effects concealing substantial latitudinally ordered genetic differentiation understandable in terms of adaptation to clinal variation in time constrains.
Collapse
Affiliation(s)
- A T Laugen
- Department of Population Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
77
|
Determinants of clinal variation in life history of dusky salamanders (Desmognathus ocoee): prey abundance and ecological limits on foraging time restrict opportunities for larval growth. J Zool (1987) 2003. [DOI: 10.1017/s0952836903003406] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
78
|
Anderson AR, Collinge JE, Hoffmann AA, Kellett M, McKechnie SW. Thermal tolerance trade-offs associated with the right arm of chromosome 3 and marked by the hsr-omega gene in Drosophila melanogaster. Heredity (Edinb) 2003; 90:195-202. [PMID: 12634827 DOI: 10.1038/sj.hdy.6800220] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Drosophila melanogaster occurs in diverse climatic regions and shows opposing clinal changes in resistance to heat and resistance to cold along a 3000 km latitudinal transect on the eastern coast of Australia. We report here on variation at a polymorphic 8 bp-indel site in the heat shock hsr-omega gene that maps to the right arm of chromosome 3. The frequency of the genetic element marked by the L form of the gene was strongly and positively associated with latitude along this transect, and latitudinal differences in L frequency were robustly associated with latitudinal differences in maximum temperature for the hottest month. On a genetic background mixed for genes from each end of the cline a set of 10 lines was derived, five of which were fixed for the L marker, the absence of In(3R)P and 12 kb of repeats at a second polymorphic site at the 3' end of hsr-omega, and five that were fixed for the S marker, In(3R)P and 15 kb of hsr-omega repeats. For two different measures of heat tolerance S lines outperformed L lines, and for two different measures of cold tolerance L lines outperformed S lines. These data suggest that an element on the right arm of chromosome 3, possibly In(3R)P, confers heat resistance but carries the trade-off of also conferring susceptibility to cold. This element occurs at high frequency near the equator. The alternate element on the other hand, at high frequency at temperate latitudes, confers cold resistance at the cost of heat susceptibility.
Collapse
Affiliation(s)
- A R Anderson
- Centre for Environmental Stress and Adaptation Research, School of Biological Sciences, Monash University, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
79
|
|
80
|
Sgrò CM, Blows MW. EVOLUTION OF ADDITIVE AND NONADDITIVE GENETIC VARIANCE IN DEVELOPMENT TIME ALONG A CLINE IN DROSOPHILA SERRATA. Evolution 2003. [DOI: 10.1554/03-050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
81
|
Weeks AR, McKechnie SW, Hoffmann AA. Dissecting adaptive clinal variation: markers, inversions and size/stress associations in Drosophila melanogaster from a central field population. Ecol Lett 2002. [DOI: 10.1046/j.1461-0248.2002.00380.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
82
|
Hoffmann AA, Anderson A, Hallas R. Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol Lett 2002. [DOI: 10.1046/j.1461-0248.2002.00367.x] [Citation(s) in RCA: 370] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
83
|
Gockel J, Robinson SJW, Kennington WJ, Goldstein DB, Partridge L. Quantitative genetic analysis of natural variation in body size in Drosophila melanogaster. Heredity (Edinb) 2002; 89:145-53. [PMID: 12136418 DOI: 10.1038/sj.hdy.6800121] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2001] [Accepted: 04/28/2002] [Indexed: 11/08/2022] Open
Abstract
Latitudinal, genetic variation in body size is a commonly observed phenomenon in many invertebrate species and is shaped by natural selection. In this study, we use a chromosome substitution and a quantitative trait locus (QTL) mapping approach to identify chromosomes and genomic regions associated with adaptive variation in body size in natural populations of Drosophila melanogaster from the extreme ends of clines in South America and Australia. Chromosome substitution revealed the largest effects on chromosome three in both continents, and minor effects on the X and second chromosome. Similarly, QTL analysis of the Australian cline identified QTL with largest effects on the third chromosome, with smaller effects on the second. However, no QTL were found on the X chromosome. We also compared the coincidence of locations of QTL with the locations of five microsatellite loci previously shown to vary clinally in Australia. Permutation tests using both the sum of the LOD scores and the sum distance to nearest QTL peak revealed there were no significant associations between locations of clinal markers and QTL's. The lack of significance may, in part, be due to broad QTL peaks identified in this study. Future studies using higher resolution QTL maps should reveal whether the degree of clinality in microsatellite allele frequencies can be used to identify QTL in traits that vary along an environmental gradient.
Collapse
Affiliation(s)
- J Gockel
- Department of Biology, University College London, London, UK
| | | | | | | | | |
Collapse
|
84
|
Carlson KA, Nusbaum TJ, Rose MR, Harshman LG. Oocyte maturation and ovariole number in lines ofDrosophila melanogasterselected for postponed senescence. Funct Ecol 2002. [DOI: 10.1046/j.1365-2435.1998.00224.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
85
|
|
86
|
Robinson SJW, Partridge L. Temperature and clinal variation in larval growth efficiency inDrosophila melanogaster. J Evol Biol 2001; 14:14-21. [DOI: 10.1046/j.1420-9101.2001.00259.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
87
|
Verrelli BC, Eanes WF. Clinal variation for amino acid polymorphisms at the Pgm locus in Drosophila melanogaster. Genetics 2001; 157:1649-63. [PMID: 11290720 PMCID: PMC1461594 DOI: 10.1093/genetics/157.4.1649] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Clinal variation is common for enzymes in the glycolytic pathway for Drosophila melanogaster and is generally accepted as an adaptive response to different climates. Although the enzyme phosphoglucomutase (PGM) possesses several allozyme polymorphisms, it is unique in that it had been reported to show no clinal variation. Our recent DNA sequence investigation of Pgm found extensive cryptic amino acid polymorphism segregating with the allozyme alleles. In this study, we characterize the geographic variation of Pgm amino acid polymorphisms at the nucleotide level along a latitudinal cline in the eastern United States. A survey of 15 SNPs across the Pgm gene finds significant clinal differentiation for the allozyme polymorphisms as well as for many of the cryptic amino acid polymorphisms. A test of independence shows that pervasive linkage disequilibrium across this gene region can explain many of the amino acid clines. A single Pgm haplotype defined by two amino acid polymorphisms shows the strongest correlation with latitude and the steepest change in allele frequency across the cline. We propose that clinal selection at Pgm may in part explain the extensive amino acid polymorphism at this locus and is consistent with a multilocus response to selection in the glycolytic pathway.
Collapse
Affiliation(s)
- B C Verrelli
- Department of Ecology and Evolution, State University of New York, Stony Brook, New York 11794-5245, USA.
| | | |
Collapse
|
88
|
Armbruster P, Bradshaw WE, Ruegg K, Holzapfel CM. GEOGRAPHIC VARIATION AND THE EVOLUTION OF REPRODUCTIVE ALLOCATION IN THE PITCHER-PLANT MOSQUITO, WYEOMYIA SMITHII. Evolution 2001. [DOI: 10.1554/0014-3820(2001)055[0439:gvateo]2.0.co;2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
89
|
Ernsting G, Isaaks A. Ectotherms, Temperature, and Trade-offs: Size and Number of Eggs in a Carabid Beetle. Am Nat 2000; 155:804-813. [PMID: 10805645 DOI: 10.1086/303361] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We studied the allocation of total egg mass to size and number in the carabid beetle Notiophilus biguttatus F. at several temperature and day length regimes. Eggs increase in number and decrease in size with increasing (constant) temperature. Day length interacts with temperature: at short day the effect of temperature on size and number of eggs is weaker than at long day. In diurnally fluctuating temperature regimes, egg size is affected disproportionately by the high temperature period. All treatments, however, are similar in affecting number and size of eggs in an opposite direction. Consequently, egg size is explained to a high degree by egg production rate. The relationship between size and number of eggs among treatments is furthermore characterized by a decrease in egg size with an increase in total egg mass production. Within treatments, rate of egg production and egg size are negatively correlated among females in the low-temperature groups but not in the high-temperature groups; the correlations among females are also characterized by a decrease in egg size, with an increase in total egg mass production. Hence, possible trade-offs between size and number of eggs are masked by phenotypic variation in reproductive effort. The observations enable us to propose a simple conceptual model that explains the within-treatment correlation by the same causal factor as the negative relationship among treatment means.
Collapse
|
90
|
Robinson SJW, Zwaan B, Partridge L. STARVATION RESISTANCE AND ADULT BODY COMPOSITION IN A LATITUDINAL CLINE OF DROSOPHILA MELANOGASTER. Evolution 2000. [DOI: 10.1554/0014-3820(2000)054[1819:sraabc]2.0.co;2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
91
|
Hodin J, Riddiford LM. DIFFERENT MECHANISMS UNDERLIE PHENOTYPIC PLASTICITY AND INTERSPECIFIC VARIATION FOR A REPRODUCTIVE CHARACTER IN DROSOPHILIDS (INSECTA: DIPTERA). Evolution 2000. [DOI: 10.1554/0014-3820(2000)054[1638:dmuppa]2.0.co;2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
92
|
Abstract
Most models of optimal progeny size assume that there is a trade-off between progeny size and number, and that progeny fitness increases with increasing investment per young. We find that both assumptions are supported by empirical studies but that the trade-off is less apparent when organisms are iteroparous, use adult-acquired resources for reproduction, or provide parental care. We then review patterns of variation in progeny size among species, among populations within species, among individuals within populations, and among progeny produced by a single female. We argue that much of the variation in progeny size among species, and among populations within species, is likely due to variation in natural selection. However, few studies have manipulated progeny environments and demonstrated that the relationship between progeny size and fitness actually differs among environments, and fewer still have demonstrated why selection favors different sized progeny in different environments. We argue that much of the variation in progeny size among females within populations, and among progeny produced by a single female, is probably nonadaptive. However, some species of arthropods exhibit plasticity in progeny size in response to several environmental factors, and much of this plasticity is likely adaptive. We conclude that advances in theory have substantially outpaced empirical data. We hope that this review will stimulate researchers to examine the specific factors that result in variation in selection on progeny size within and among populations, and how this variation in selection influences the evolution of the patterns we observe.
Collapse
Affiliation(s)
- C W Fox
- Department of Entomology, University of Kentucky, Lexington 40546-0091, USA.
| | | |
Collapse
|
93
|
Schwarzkopf L, Blows MW, Caley MJ. Life-History Consequences of Divergent Selection on Egg Size in Drosophila melanogaster. Am Nat 1999; 154:333-340. [PMID: 10506548 DOI: 10.1086/303242] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Life histories are generally assumed to evolve via antagonistic pleiotropy (negative genetic correlations) among traits, and trade-offs between life-history traits are typically studied using either phenotypic manipulations or selection experiments. We investigated the trade-off between egg size and fecundity in Drosophila melanogaster by examining both the phenotypic and genetic relationships between these traits after artificial selection for large and small eggs, relative to female body size. Egg size responded strongly to selection in both directions, increasing in the large-egg selected lines and decreasing in the small-egg selected lines. Phenotypic correlations between egg size and fecundity in the large-egg selected lines were negative, but no relationship between these traits occurred in either the control or small-egg selected lines. There was no negative genetic correlation between egg size and fecundity. Total reproductive allocation decreased in the small-egg selected lines but did not increase in the large-egg lines. Our results have three implications. First, our selection procedure may have forced females selected for large eggs into a physiological trade-off not reflected in a negative genetic correlation between these traits. Second, the lack of a negative genetic correlation between egg size and number suggests that the phenotypic trade-off frequently observed between egg size and number in other organisms may not evolve over the short term via a direct genetic trade-off whereby increases in egg size are automatically accompanied by decreased fecundity. Finally, total reproductive allocation may not evolve independently of egg size as commonly assumed.
Collapse
|
94
|
Wayne ML, Mackay TF. Quantitative genetics of ovariole number in Drosophila melanogaster. II. Mutational variation and genotype-environment interaction. Genetics 1998; 148:201-10. [PMID: 9475732 PMCID: PMC1459805 DOI: 10.1093/genetics/148.1.201] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The rare alleles model of mutation-selection balance (MSB) hypothesis for the maintenance of genetic variation was evaluated for two quantitative traits, ovariole number and body size. Mutational variances (VM) for these traits, estimated from mutation accumulation lines, were 4.75 and 1.97 x 10(-4) times the environmental variance (VE), respectively. The mutation accumulation lines were studied in three environments to test for genotype x environment interaction (GEI) of new mutations; significant mutational GEI was found for both traits. Mutations for ovariole number have a quadratic relationship with competitive fitness, suggesting stabilizing selection for the trait; there is no significant correlation between mutations for body size and competitive fitness. Under MSB, the ratio of segregating genetic variance, VG, to mutational variance, VM, estimates the inverse of the selection coefficient against a heterozygote for a new mutation. Estimates of VG/VM for ovariole number and body size were both approximately 1.1 x 10(4). Thus, MSB can explain the level of variation, if mutations affecting these traits are under very weak selection, which is inconsistent with the empirical observation of stabilizing selection, or if the estimate of VM is biased downward by two orders of magnitude. GEI is a possible alternative explanation.
Collapse
Affiliation(s)
- M L Wayne
- Department of Genetics, North Carolina State University, Raleigh 27695-7614, USA.
| | | |
Collapse
|