51
|
Abstract
The most common prokaryotic signal transduction mechanisms are the one-component systems in which a single polypeptide contains both a sensory domain and a DNA-binding domain. Among the >20 classes of one-component systems, the TetR family of regulators (TFRs) are widely associated with antibiotic resistance and the regulation of genes encoding small-molecule exporters. However, TFRs play a much broader role, controlling genes involved in metabolism, antibiotic production, quorum sensing, and many other aspects of prokaryotic physiology. There are several well-established model systems for understanding these important proteins, and structural studies have begun to unveil the mechanisms by which they bind DNA and recognize small-molecule ligands. The sequences for more than 200,000 TFRs are available in the public databases, and genomics studies are identifying their target genes. Three-dimensional structures have been solved for close to 200 TFRs. Comparison of these structures reveals a common overall architecture of nine conserved α helices. The most important open question concerning TFR biology is the nature and diversity of their ligands and how these relate to the biochemical processes under their control.
Collapse
|
52
|
van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 2013; 77:628-95. [PMID: 24296575 PMCID: PMC3973380 DOI: 10.1128/mmbr.00025-13] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now.
Collapse
|
53
|
Nguyen-Duc T, van Oeffelen L, Song N, Hassanzadeh-Ghassabeh G, Muyldermans S, Charlier D, Peeters E. The genome-wide binding profile of the Sulfolobus solfataricus transcription factor Ss-LrpB shows binding events beyond direct transcription regulation. BMC Genomics 2013; 14:828. [PMID: 24274039 PMCID: PMC4046817 DOI: 10.1186/1471-2164-14-828] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 11/15/2013] [Indexed: 11/18/2022] Open
Abstract
Background Gene regulatory processes are largely resulting from binding of transcription factors to specific genomic targets. Leucine-responsive Regulatory Protein (Lrp) is a prevalent transcription factor family in prokaryotes, however, little information is available on biological functions of these proteins in archaea. Here, we study genome-wide binding of the Lrp-like transcription factor Ss-LrpB from Sulfolobus solfataricus. Results Chromatin immunoprecipitation in combination with DNA microarray analysis (ChIP-chip) has revealed that Ss-LrpB interacts with 36 additional loci besides the four previously identified local targets. Only a subset of the newly identified binding targets, concentrated in a highly variable IS-dense genomic region, is also bound in vitro by pure Ss-LrpB. There is no clear relationship between the in vitro measured DNA-binding specificity of Ss-LrpB and the in vivo association suggesting a limited permissivity of the crenarchaeal chromatin for transcription factor binding. Of 37 identified binding regions, 29 are co-bound by LysM, another Lrp-like transcription factor in S. solfataricus. Comparative gene expression analysis in an Ss-lrpB mutant strain shows no significant Ss-LrpB-mediated regulation for most targeted genes, with exception of the CRISPR B cluster, which is activated by Ss-LrpB through binding to a specific motif in the leader region. Conclusions The genome-wide binding profile presented here implies that Ss-LrpB is associated at additional genomic binding sites besides the local gene targets, but acts as a specific transcription regulator in the tested growth conditions. Moreover, we have provided evidence that two Lrp-like transcription factors in S. solfataricus, Ss-LrpB and LysM, interact in vivo. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-14-828) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eveline Peeters
- Research group of Microbiology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
54
|
Lango-Scholey L, Brachmann AO, Bode HB, Clarke DJ. The expression of stlA in Photorhabdus luminescens is controlled by nutrient limitation. PLoS One 2013; 8:e82152. [PMID: 24278476 PMCID: PMC3838401 DOI: 10.1371/journal.pone.0082152] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/24/2013] [Indexed: 11/22/2022] Open
Abstract
Photorhabdus is a genus of Gram-negative entomopathogenic bacteria that also maintain a mutualistic association with nematodes from the family Heterorhabditis. Photorhabdus has an extensive secondary metabolism that is required for the interaction between the bacteria and the nematode. A major component of this secondary metabolism is a stilbene molecule, called ST. The first step in ST biosynthesis is the non-oxidative deamination of phenylalanine resulting in the production of cinnamic acid. This reaction is catalyzed by phenylalanine-ammonium lyase, an enzyme encoded by the stlA gene. In this study we show, using a stlA-gfp transcriptional fusion, that the expression of stlA is regulated by nutrient limitation through a regulatory network that involves at least 3 regulators. We show that TyrR, a LysR-type transcriptional regulator that regulates gene expression in response to aromatic amino acids in E. coli, is absolutely required for stlA expression. We also show that stlA expression is modulated by σS and Lrp, regulators that are implicated in the regulation of the response to nutrient limitation in other bacteria. This work is the first that describes pathway-specific regulation of secondary metabolism in Photorhabdus and, therefore, our study provides an initial insight into the complex regulatory network that controls secondary metabolism, and therefore mutualism, in this model organism.
Collapse
Affiliation(s)
| | - Alexander O. Brachmann
- Molecular Biotechnology, Institute for Molecular Biosciences, Goethe University, Frankfurt, Frankfurt, Germany
| | - Helge B. Bode
- Molecular Biotechnology, Institute for Molecular Biosciences, Goethe University, Frankfurt, Frankfurt, Germany
| | - David J. Clarke
- Department of Microbiology, University College Cork, Cork, Ireland
- * E-mail:
| |
Collapse
|
55
|
Jarboe LR, Royce LA, Liu P. Understanding biocatalyst inhibition by carboxylic acids. Front Microbiol 2013; 4:272. [PMID: 24027566 PMCID: PMC3760142 DOI: 10.3389/fmicb.2013.00272] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/20/2013] [Indexed: 11/13/2022] Open
Abstract
Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic, and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity, and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance.
Collapse
Affiliation(s)
- Laura R Jarboe
- Department of Chemical and Biological Engineering, Iowa State University Ames, IA, USA ; Department of Microbiology, Iowa State University Ames, IA, USA
| | | | | |
Collapse
|
56
|
Bihmidine S, Hunter CT, Johns CE, Koch KE, Braun DM. Regulation of assimilate import into sink organs: update on molecular drivers of sink strength. FRONTIERS IN PLANT SCIENCE 2013; 4:177. [PMID: 23761804 PMCID: PMC3671192 DOI: 10.3389/fpls.2013.00177] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/17/2013] [Indexed: 05/18/2023]
Abstract
Recent developments have altered our view of molecular mechanisms that determine sink strength, defined here as the capacity of non-photosynthetic structures to compete for import of photoassimilates. We review new findings from diverse systems, including stems, seeds, flowers, and fruits. An important advance has been the identification of new transporters and facilitators with major roles in the accumulation and equilibration of sugars at a cellular level. Exactly where each exerts its effect varies among systems. Sugarcane and sweet sorghum stems, for example, both accumulate high levels of sucrose, but may do so via different paths. The distinction is central to strategies for targeted manipulation of sink strength using transporter genes, and shows the importance of system-specific analyses. Another major advance has been the identification of deep hypoxia as a feature of normal grain development. This means that molecular drivers of sink strength in endosperm operate in very low oxygen levels, and under metabolic conditions quite different than previously assumed. Successful enhancement of sink strength has nonetheless been achieved in grains by up-regulating genes for starch biosynthesis. Additionally, our understanding of sink strength is enhanced by awareness of the dual roles played by invertases (INVs), not only in sucrose metabolism, but also in production of the hexose sugar signals that regulate cell cycle and cell division programs. These contributions of INV to cell expansion and division prove to be vital for establishment of young sinks ranging from flowers to fruit. Since INV genes are themselves sugar-responsive "feast genes," they can mediate a feed-forward enhancement of sink strength when assimilates are abundant. Greater overall productivity and yield have thus been attained in key instances, indicating that even broader enhancements may be achievable as we discover the detailed molecular mechanisms that drive sink strength in diverse systems.
Collapse
Affiliation(s)
- Saadia Bihmidine
- Division of Biological Sciences, University of MissouriColumbia, MO, USA
- Interdisciplinary Plant Group, University of MissouriColumbia, MO, USA
- Missouri Maize Center, University of MissouriColumbia, MO, USA
| | - Charles T. Hunter
- Horticultural Sciences Department, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | - Christine E. Johns
- Horticultural Sciences Department, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | - Karen E. Koch
- Horticultural Sciences Department, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | - David M. Braun
- Division of Biological Sciences, University of MissouriColumbia, MO, USA
- Interdisciplinary Plant Group, University of MissouriColumbia, MO, USA
- Missouri Maize Center, University of MissouriColumbia, MO, USA
| |
Collapse
|
57
|
Peeters E, van Oeffelen L, Nadal M, Forterre P, Charlier D. A thermodynamic model of the cooperative interaction between the archaeal transcription factor Ss-LrpB and its tripartite operator DNA. Gene 2013; 524:330-40. [PMID: 23603352 DOI: 10.1016/j.gene.2013.03.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/07/2013] [Indexed: 10/26/2022]
Abstract
Ss-LrpB is a transcription factor of the archaeon Sulfolobus solfataricus that belongs to the leucine-responsive regulatory protein family. This protein binds to three distinct binding sites in the control region of its own gene, suggestive of autoregulation. Here, we present a detailed study of the thermodynamic and conformational rules that govern the interaction between Ss-LrpB and its tripartite operator DNA. Lane-per-lane partition analysis of macroscopic binding state populations in electrophoretic mobility shift assays, probing binding to full-length, truncated and mutated forms of the operator, allowed determination of equilibrium association constants and cooperativity parameters. The resulting thermodynamic model demonstrates that the Ss-LrpB-operator regulatory complex is formed with a significant positive cooperativity, which is mostly arising from dimer-dimer interactions between pairs of adjacent binding sites. There is a constraint on the spacing between these binding sites, with a preference for a cis-alignment on the DNA helix and with a 16-bp linker yielding maximal pairwise cooperativity. DNase I footprinting assays demonstrated that the extent of Ss-LrpB-induced DNA deformations depends on linker length. The knowledge of the thermodynamic principles underlying the Ss-LrpB-operator interaction, presented here, will contribute to unraveling of the cis-regulatory code of Ss-LrpB autoregulation.
Collapse
Affiliation(s)
- Eveline Peeters
- Research group of Microbiology, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
58
|
Song N, Nguyen Duc T, van Oeffelen L, Muyldermans S, Peeters E, Charlier D. Expanded target and cofactor repertoire for the transcriptional activator LysM from Sulfolobus. Nucleic Acids Res 2013; 41:2932-49. [PMID: 23355617 PMCID: PMC3597687 DOI: 10.1093/nar/gkt021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Previously, Lrp-like transcriptional regulator LysM from the hyperthermoacidophilic crenarchaeon Sulfolobus solfataricus was proposed to have a single target, the lysWXJK operon of lysine biosynthesis, and a single effector molecule, l-lysine. Here we identify ∼70 novel binding sites for LysM in the S. solfataricus genome with a LysM-specific nanobody-based chromatin immunoprecipitation assay coupled to microarray hybridization (ChIP-chip) and in silico target site prediction using an energy-based position weight matrix, and validate these findings with in vitro binding. LysM binds to intergenic and coding regions, including promoters of various amino acid biosynthesis and transport genes. We confirm that l-lysine is the most potent effector molecule that reduces, but does not completely abolish, LysM binding, and show that several other amino acids and derivatives, including d-lysine, l-arginine, l-homoarginine, l-glutamine and l-methionine and branched-chain amino acids l-leucine, l-isoleucine and l-valine, significantly affect DNA-binding properties of LysM. Therefore, it appears from this study that LysM is a much more versatile regulator than previously thought, and that it uses a variety of amino acids to sense nutritional quality of the environment and to modulate expression of the metabolic machinery of Sulfolobus accordingly.
Collapse
Affiliation(s)
- Ningning Song
- Research Group of Microbiology, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
59
|
Sun Y, O'Riordan MXD. Regulation of bacterial pathogenesis by intestinal short-chain Fatty acids. ADVANCES IN APPLIED MICROBIOLOGY 2013; 85:93-118. [PMID: 23942149 PMCID: PMC4029053 DOI: 10.1016/b978-0-12-407672-3.00003-4] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human gut microbiota is inextricably linked to health and disease. One important function of the commensal organisms living in the intestine is to provide colonization resistance against invading enteric pathogens. Because of the complex nature of the interaction between the microbiota and its host, multiple mechanisms likely contribute to resistance. In this review, we dissect the biological role of short-chain fatty acids (SCFA), which are fermentation end products of the intestinal microbiota, in host-pathogen interactions. SCFA exert an extensive influence on host physiology through nutritional, regulatory, and immunomodulatory functions and can also affect bacterial fitness as a form of acid stress. Moreover, SCFA act as a signal for virulence gene regulation in common enteric pathogens. Taken together, these studies highlight the importance of the chemical environment where the biology of the host, the microbiota, and the pathogen intersects, which provides a basis for designing effective infection prevention and control.
Collapse
Affiliation(s)
- Yvonne Sun
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
60
|
Lassak K, Ghosh A, Albers SV. Diversity, assembly and regulation of archaeal type IV pili-like and non-type-IV pili-like surface structures. Res Microbiol 2012; 163:630-44. [PMID: 23146836 DOI: 10.1016/j.resmic.2012.10.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/04/2012] [Indexed: 11/25/2022]
Abstract
Archaea have evolved fascinating surface structures allowing rapid adaptation to changing environments. The archaeal surface appendages display such diverse biological roles as motility, adhesion, biofilm formation, exchange of genetic material and species-specific interactions and, in turn, increase fitness of the cells. Intriguingly, despite sharing the same functions with their bacterial counterparts, the assembly mechanism of many archaeal surface structures is rather related to assembly of bacterial type IV pili. This review summarizes our state-of-the-art knowledge about unique structural and biochemical properties of archaeal surface appendages with a particular focus on archaeal type IV pili-like structures. The latter comprise not only widely distributed archaella (formerly known as archaeal flagella), but also different highly specialized archaeal pili, which are often restricted to certain species. Recent findings regarding assembly mechanisms, structural aspects and physiological roles of these type IV pili-like structures will be discussed in detail. Recently, first regulatory proteins involved in transition from both planktonic to sessile lifestyle and in assembly of archaella were identified. To conclude, we provide novel insights into regulatory mechanisms underlying the assembly of archaeal surface structures.
Collapse
Affiliation(s)
- Kerstin Lassak
- Max Planck Institute for Terrestrial Microbiology, Molecular Biology of Archaea, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | | | | |
Collapse
|
61
|
Cysteine catabolism and cysteine desulfhydrase (CdsH/STM0458) in Salmonella enterica serovar typhimurium. J Bacteriol 2012; 194:4366-76. [PMID: 22685283 DOI: 10.1128/jb.00729-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cysteine is potentially toxic and can affect diverse functions such as oxidative stress, antibiotic resistance, and swarming motility. The contribution of cysteine catabolism in modulating responses to cysteine has not been examined, in part because the genes have not been identified and mutants lacking these genes have not been isolated or characterized. We identified the gene for a previously described cysteine desulfhydrase, which we designated cdsH (formerly STM0458). We also identified a divergently transcribed gene that regulates cdsH expression, which we designated cutR (formerly ybaO, or STM0459). CdsH appears to be the major cysteine-degrading and sulfide-producing enzyme aerobically but not anaerobically. Mutants with deletions of cdsH and ybaO exhibited increased sensitivity to cysteine toxicity and altered swarming motility but unaltered cysteine-enhanced antibiotic resistance and survival in macrophages.
Collapse
|
62
|
Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch VF. Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for l-methionine and branched-chain amino acids. J Biotechnol 2012; 158:231-41. [DOI: 10.1016/j.jbiotec.2011.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/13/2011] [Accepted: 06/01/2011] [Indexed: 11/17/2022]
|
63
|
KynR, a Lrp/AsnC-type transcriptional regulator, directly controls the kynurenine pathway in Pseudomonas aeruginosa. J Bacteriol 2011; 193:6567-75. [PMID: 21965577 DOI: 10.1128/jb.05803-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa can utilize a variety of carbon sources and produces many secondary metabolites to help survive harsh environments. P. aeruginosa is part of a small group of bacteria that use the kynurenine pathway to catabolize tryptophan. Through the kynurenine pathway, tryptophan is broken down into anthranilate, which is further degraded into tricarboxylic acid cycle intermediates or utilized to make numerous aromatic compounds, including the Pseudomonas quinolone signal (PQS). We have previously shown that the kynurenine pathway is a critical source of anthranilate for PQS synthesis and that the kynurenine pathway genes (kynA and kynBU) are upregulated in the presence of kynurenine. A putative Lrp/AsnC-type transcriptional regulator (gene PA2082, here called kynR), is divergently transcribed from the kynBU operon and is highly conserved in gram-negative bacteria that harbor the kynurenine pathway. We show that a mutation in kynR renders P. aeruginosa unable to utilize L-tryptophan as a sole carbon source and decreases PQS production. In addition, we found that the increase of kynA and kynB transcriptional activity in response to kynurenine was completely abolished in a kynR mutant, further indicating that KynR mediates the kynurenine-dependent expression of the kynurenine pathway genes. Finally, we found that purified KynR specifically bound the kynA promoter in the presence of kynurenine and bound the kynB promoter in the absence or presence of kynurenine. Taken together, our data show that KynR directly regulates the kynurenine pathway genes.
Collapse
|
64
|
Graveline R, Mourez M, Hancock MA, Martin C, Boisclair S, Harel J. Lrp-DNA complex stability determines the level of ON cells in type P fimbriae phase variation. Mol Microbiol 2011; 81:1286-99. [PMID: 21752106 DOI: 10.1111/j.1365-2958.2011.07761.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
F165(1) and the pyelonephritis-associated pili (Pap) are two members of the type P family of adhesive factors that play a key role in the establishment of disease caused by extraintestinal Escherichia coli (ExPEC) strains. They are both under the control of an epigenetic and reversible switch that defines the number of fimbriated (ON) and afimbriated (OFF) cells within a clonal population. Our present study demonstrates that the high level of ON cells found during F165(1) phase variation is due to altered stability of the DNA complex formed by the leucine-responsive regulatory protein (Lrp) at its repressor binding sites 1-3; after each cell cycle, complex formation is also modulated by the local regulator FooI (homologue to PapI) which promotes the transit of Lrp towards its activator binding sites 4-6. Furthermore, we identified two nucleotides (T490, G508) surrounding the Lrp binding site 1 that are critical to maintaining a high OFF to ON switch rate during F165(1) phase variation, as well as switching Pap fimbriae towards the OFF state.
Collapse
Affiliation(s)
- Richard Graveline
- Groupe de Recherche sur les Maladies Infectieuses du Porc and Centre de Recherche en Infectiologie Porcine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
65
|
Recognition of DNA by the helix-turn-helix global regulatory protein Lrp is modulated by the amino terminus. J Bacteriol 2011; 193:3794-803. [PMID: 21642464 DOI: 10.1128/jb.00191-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The AsnC/Lrp family of regulatory proteins links bacterial and archaeal transcription patterns to metabolism. In Escherichia coli, Lrp regulates approximately 400 genes, over 200 of them directly. In earlier studies, lrp genes from Vibrio cholerae, Proteus mirabilis, and E. coli were introduced into the same E. coli background and yielded overlapping but significantly different regulons. These differences were seen despite amino acid sequence identities of 92% (Vibrio) and 98% (Proteus) to E. coli Lrp, including complete conservation of the helix-turn-helix motifs. The N-terminal region contains many of the sequence differences among these Lrp orthologs, which led us to investigate its role in Lrp function. Through the generation of hybrid proteins, we found that the N-terminal diversity is responsible for some of the differences between orthologs in terms of DNA binding (as revealed by mobility shift assays) and multimerization (as revealed by gel filtration, dynamic light scattering, and analytical ultracentrifugation). These observations indicate that the N-terminal tail plays a significant role in modulating Lrp function, similar to what is seen for a number of other regulatory proteins.
Collapse
|
66
|
Abstract
Growth rate regulation in bacteria has been an important issue in bacterial physiology for the past 50 years. This review, using Escherichia coli as a paradigm, summarizes the mechanisms for the regulation of rRNA synthesis in the context of systems biology, particularly, in the context of genome-wide competition for limited RNA polymerase (RNAP) in the cell under different growth conditions including nutrient starvation. The specific location of the seven rrn operons in the chromosome and the unique properties of the rrn promoters contribute to growth rate regulation. The length of the rrn transcripts, coupled with gene dosage effects, influence the distribution of RNAP on the chromosome in response to growth rate. Regulation of rRNA synthesis depends on multiple factors that affect the structure of the nucleoid and the allocation of RNAP for global gene expression. The magic spot ppGpp, which acts with DksA synergistically, is a key effector in both the growth rate regulation and the stringent response induced by nutrient starvation, mainly because the ppGpp level changes in response to environmental cues. It regulates rRNA synthesis via a cascade of events including both transcription initiation and elongation, and can be explained by an RNAP redistribution (allocation) model.
Collapse
Affiliation(s)
- Ding Jun Jin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | | | | |
Collapse
|
67
|
The Lrp family of transcription regulators in archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010:750457. [PMID: 21151646 PMCID: PMC2995911 DOI: 10.1155/2010/750457] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/20/2010] [Indexed: 11/26/2022]
Abstract
Archaea possess a eukaryotic-type basal transcription apparatus that is regulated by bacteria-like transcription regulators. A universal and abundant family of transcription regulators are the bacterial/archaeal Lrp-like regulators. The Lrp family is one of the best studied regulator families in archaea, illustrated by investigations of proteins from the archaeal model organisms: Sulfolobus, Pyrococcus, Methanocaldococcus, and Halobacterium. These regulators are extremely versatile in their DNA-binding properties, response to effector molecules, and molecular regulatory mechanisms. Besides being involved in the regulation of the amino acid metabolism, they also regulate central metabolic processes. It appears that these regulatory proteins are also involved in large regulatory networks, because of hierarchical regulations and the possible combinatorial use of different Lrp-like proteins. Here, we discuss the recent developments in our understanding of this important class of regulators.
Collapse
|
68
|
Altay G, Emmert-Streib F. Inferring the conservative causal core of gene regulatory networks. BMC SYSTEMS BIOLOGY 2010; 4:132. [PMID: 20920161 PMCID: PMC2955605 DOI: 10.1186/1752-0509-4-132] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 09/28/2010] [Indexed: 11/18/2022]
Abstract
Background Inferring gene regulatory networks from large-scale expression data is an important problem that received much attention in recent years. These networks have the potential to gain insights into causal molecular interactions of biological processes. Hence, from a methodological point of view, reliable estimation methods based on observational data are needed to approach this problem practically. Results In this paper, we introduce a novel gene regulatory network inference (GRNI) algorithm, called C3NET. We compare C3NET with four well known methods, ARACNE, CLR, MRNET and RN, conducting in-depth numerical ensemble simulations and demonstrate also for biological expression data from E. coli that C3NET performs consistently better than the best known GRNI methods in the literature. In addition, it has also a low computational complexity. Since C3NET is based on estimates of mutual information values in conjunction with a maximization step, our numerical investigations demonstrate that our inference algorithm exploits causal structural information in the data efficiently. Conclusions For systems biology to succeed in the long run, it is of crucial importance to establish methods that extract large-scale gene networks from high-throughput data that reflect the underlying causal interactions among genes or gene products. Our method can contribute to this endeavor by demonstrating that an inference algorithm with a neat design permits not only a more intuitive and possibly biological interpretation of its working mechanism but can also result in superior results.
Collapse
Affiliation(s)
- Gökmen Altay
- Computational Biology and Machine Learning, Center for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | |
Collapse
|
69
|
Crawford JM, Kontnik R, Clardy J. Regulating alternative lifestyles in entomopathogenic bacteria. Curr Biol 2010; 20:69-74. [PMID: 20022247 DOI: 10.1016/j.cub.2009.10.059] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 10/16/2009] [Accepted: 10/20/2009] [Indexed: 02/01/2023]
Abstract
Bacteria belonging to the genera Photorhabdus and Xenorhabdus participate in a trilateral symbiosis in which they enable their nematode hosts to parasitize insect larvae. The bacteria switch from persisting peacefully in a nematode's digestive tract to a lifestyle in which pathways to produce insecticidal toxins, degrading enzymes to digest the insect for consumption, and antibiotics to ward off bacterial and fungal competitors are activated. This study addresses three questions: (1) What molecular signal triggers antibiotic production in the bacteria? (2) What small molecules are regulated by the signal? And (3), how do the bacteria recognize the signal? Differential metabolomic profiling in Photorhabdus luminescens TT01 and Xenorhabdus nematophila revealed that L-proline in the insect's hemolymph initiates a metabolic shift. Small molecules known to be crucial for virulence and antibiosis in addition to previously unknown metabolites are dramatically upregulated by L-proline, linking the recognition of host environment to bacterial metabolic regulation. To identify the L-proline-induced signaling pathway, we deleted the proline transporters putP and proU in P. luminescens TT01. Studies of these strains support a model in which acquisition of L-proline both regulates the metabolic shift and maintains the bacterial proton motive force that ultimately regulates the downstream bacterial pathways affecting virulence and antibiotic production.
Collapse
Affiliation(s)
- Jason M Crawford
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
70
|
Corcoran CP, Dorman CJ. DNA relaxation-dependent phase biasing of the fim genetic switch in Escherichia coli depends on the interplay of H-NS, IHF and LRP. Mol Microbiol 2009; 74:1071-82. [PMID: 19889099 DOI: 10.1111/j.1365-2958.2009.06919.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reversible inversion of the DNA element fimS is responsible for the phase variable expression of type 1 fimbriae in Escherichia coli. The FimB tyrosine integrase site-specific recombinase inverts fimS in the on-to-off and off-to-on directions with approximately equal efficiencies. However, when DNA supercoiling is relaxed, fimS adopts predominantly the on orientation. This orientational bias is known to require binding of the nucleoid-associated protein LRP within fimS. Here we show that binding of the IHF protein to a site immediately adjacent to fimS is also required for phase-on orientational bias. In the absence of both LRP and IHF binding, fimS adopts the off orientation and the H-NS protein is required to maintain this alternative orientational bias. Thus, fimS has three Recombination Directionality Factors, H-NS, IHF and LRP. The relevant H-NS binding site straddles the left inverted repeat in phase-off fimS and this site is disrupted when fimS inverts to the on orientation. The inversion of fimS with the associated creation and removal of an H-NS binding site required for DNA inversion biasing represents a novel mechanism for modulating the interaction of H-NS with a DNA target and for influencing a site-specific recombination reaction.
Collapse
Affiliation(s)
- Colin P Corcoran
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
71
|
Shrivastava T, Dey A, Ramachandran R. Ligand-Induced Structural Transitions, Mutational Analysis, and ‘Open’ Quaternary Structure of the M. tuberculosis Feast/Famine Regulatory Protein (Rv3291c). J Mol Biol 2009; 392:1007-19. [DOI: 10.1016/j.jmb.2009.07.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/16/2009] [Accepted: 07/22/2009] [Indexed: 01/09/2023]
|
72
|
Yokoyama K, Nogami H, Kabasawa M, Ebihara S, Shimowasa A, Hashimoto K, Kawashima T, Ishijima SA, Suzuki M. The DNA-recognition mode shared by archaeal feast/famine-regulatory proteins revealed by the DNA-binding specificities of TvFL3, FL10, FL11 and Ss-LrpB. Nucleic Acids Res 2009; 37:4407-19. [PMID: 19468044 PMCID: PMC2715240 DOI: 10.1093/nar/gkp378] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The DNA-binding mode of archaeal feast/famine-regulatory proteins (FFRPs), i.e. paralogs of the Esherichia coli leucine-responsive regulatory protein (Lrp), was studied. Using the method of systematic evolution of ligands by exponential enrichment (SELEX), optimal DNA duplexes for interacting with TvFL3, FL10, FL11 and Ss-LrpB were identified as TACGA[AAT/ATT]TCGTA, GTTCGA[AAT/ATT]TCGAAC, CCGAAA[AAT/ATT]TTTCGG and TTGCAA[AAT/ATT]TTGCAA, respectively, all fitting into the form abcdeWWWedcba. Here W is A or T, and e.g. a and a are bases complementary to each other. Apparent equilibrium binding constants of the FFRPs and various DNA duplexes were determined, thereby confirming the DNA-binding specificities of the FFRPs. It is likely that these FFRPs recognize DNA in essentially the same way, since their DNA-binding specificities were all explained by the same pattern of relationship between amino-acid positions and base positions to form chemical interactions. As predicted from this relationship, when Gly36 of TvFL3 was replaced by Thr, the b base in the optimal DNA duplex changed from A to T, and, when Thr36 of FL10 was replaced by Ser, the b base changed from T to G/A. DNA-binding characteristics of other archaeal FFRPs, Ptr1, Ptr2, Ss-Lrp and LysM, are also consistent with the relationship.
Collapse
Affiliation(s)
- Katsushi Yokoyama
- National Institute of Advanced Industrial Science and Technology, Tsukuba Center 6-10, Tsukuba 305-8566, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Richards GR, Goodrich-Blair H. Masters of conquest and pillage: Xenorhabdus nematophila global regulators control transitions from virulence to nutrient acquisition. Cell Microbiol 2009; 11:1025-33. [PMID: 19374654 DOI: 10.1111/j.1462-5822.2009.01322.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Invertebrate animal models are experimentally tractable and have immunity and disease symptoms that mirror those of vertebrates. Therefore they are of particular utility in understanding fundamental aspects of pathogenesis. Indeed, artificial models using human pathogens and invertebrate hosts have revealed conserved and novel molecular mechanisms of bacterial infection and host immune responses. Additional insights may be gained from investigating interactions between invertebrates and pathogens they encounter in their natural environments. For example, enteric bacteria in the genera Photorhabdus and Xenorhabdus are pathogens of insects that also mutualistically associate with nematodes in the genera Heterorhabditis and Steinernema respectively. These bacteria serve as models to understand naturally occurring symbiotic associations that result in disease in or benefit for animals. Xenorhabdus nematophila is the best-studied species of its genus with regard to the molecular mechanisms of its symbiotic associations. In this review, we summarize recent advances in understanding X. nematophila-host interactions. We emphasize regulatory cascades involved in coordinating transitions between various stages of the X. nematophila life cycle: infection, reproduction and transmission.
Collapse
|
74
|
Yamada M, Ishijima SA, Suzuki M. Interactions between the archaeal transcription repressor FL11 and its coregulators lysine and arginine. Proteins 2009; 74:520-5. [PMID: 19004003 DOI: 10.1002/prot.22269] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mitsugu Yamada
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
| | | | | |
Collapse
|
75
|
Peeters E, Albers SV, Vassart A, Driessen AJM, Charlier D. Ss-LrpB, a transcriptional regulator fromSulfolobus solfataricus, regulates a gene cluster with a pyruvate ferredoxin oxidoreductase-encoding operon and permease genes. Mol Microbiol 2009; 71:972-88. [DOI: 10.1111/j.1365-2958.2008.06578.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
76
|
Santos CL, Tavares F, Thioulouse J, Normand P. A phylogenomic analysis of bacterial helix-turn-helix transcription factors. FEMS Microbiol Rev 2008; 33:411-29. [PMID: 19076237 DOI: 10.1111/j.1574-6976.2008.00154.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Perception by each individual organism of its environment's parameters is a key factor for survival. In a constantly changing environment, the ability to assess nutrient sources and potentially stressful situations constitutes the main basis for ecological adaptability. Transcription regulators are key decision-making proteins that mediate the communication between environmental conditions and DNA transcription through a multifaceted network. The parallel study of these regulators across microbial organisms adapted to contrasting biotopes constitutes an unexplored approach to understand the evolution of genome plasticity and cell function. We present here a reassessment of bacterial helix-turn-helix regulator diversity in different organisms from a multidisciplinary perspective, on the interface that links metabolism, ecology and phylogeny, further sustained by a statistically based approach. The present revision brought to light evidence of patterns among families of regulators, suggesting that multiple selective forces modulate the number and kind of regulators present in a given genome. Besides being an important step towards understanding the adaptive traits that influence the microbial responses to the varying environment on the very first and most prevalent line of reaction, the transcription of DNA, this approach is a promising tool to extract biological trends from genomic databases.
Collapse
Affiliation(s)
- Catarina L Santos
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | | | | | | |
Collapse
|
77
|
Genome-scale reconstruction of the Lrp regulatory network in Escherichia coli. Proc Natl Acad Sci U S A 2008; 105:19462-7. [PMID: 19052235 DOI: 10.1073/pnas.0807227105] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Broad-acting transcription factors (TFs) in bacteria form regulons. Here, we present a 4-step method to fully reconstruct the leucine-responsive protein (Lrp) regulon in Escherichia coli K-12 MG 1655 that regulates nitrogen metabolism. Step 1 is composed of obtaining high-resolution ChIP-chip data for Lrp, the RNA polymerase and expression profiles under multiple environmental conditions. We identified 138 unique and reproducible Lrp-binding regions and classified their binding state under different conditions. In the second step, the analysis of these data revealed 6 distinct regulatory modes for individual ORFs. In the third step, we used the functional assignment of the regulated ORFs to reconstruct 4 types of regulatory network motifs around the metabolites that are affected by the corresponding gene products. In the fourth step, we determined how leucine, as a signaling molecule, shifts the regulatory motifs for particular metabolites. The physiological structure that emerges shows the regulatory motifs for different amino acid fall into the traditional classification of amino acid families, thus elucidating the structure and physiological functions of the Lrp-regulon. The same procedure can be applied to other broad-acting TFs, opening the way to full bottom-up reconstruction of the transcriptional regulatory network in bacterial cells.
Collapse
|
78
|
Miyazono KI, Tsujimura M, Kawarabayasi Y, Tanokura M. Crystal structure of STS042, a stand-alone RAM module protein, from hyperthermophilic archaeon Sulfolobus tokodaii strain 7. Proteins 2008; 71:1557-62. [PMID: 18300246 DOI: 10.1002/prot.21987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ken-ichi Miyazono
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
79
|
TrpY regulation of trpB2 transcription in Methanothermobacter thermautotrophicus. J Bacteriol 2008; 190:2637-41. [PMID: 18263726 DOI: 10.1128/jb.01926-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TrpY binds specifically to TRP box sequences upstream of trpB2, but the repression of trpB2 transcription requires additional TrpY assembly that is stimulated by but not dependent on the presence of tryptophan. Inhibitory complex formation is prevented by insertions within the regulatory region and by a G149R substitution in TrpY, even though TrpY(G149R) retains both TRP box DNA- and tryptophan-binding abilities.
Collapse
|
80
|
Kawashima T, Aramaki H, Oyamada T, Makino K, Yamada M, Okamura H, Yokoyama K, Ishijima SA, Suzuki M. Transcription Regulation by Feast/Famine Regulatory Proteins, FFRPs, in Archaea and Eubacteria. Biol Pharm Bull 2008; 31:173-86. [DOI: 10.1248/bpb.31.173] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tsuyoshi Kawashima
- National Institute of Advanced Industrial Science and Technology
- Japan Science and Technology Agency, Core Research for Evolutionary Science and Technology
- Yokohama College of Pharmacy, Laboratory of Molecular Biology
| | - Hironori Aramaki
- Department of Molecular Biology, Daiichi College of Pharmaceutical Sciences
| | - Tomoya Oyamada
- Department of Applied Chemistry, National Defense Academy
| | - Kozo Makino
- Department of Applied Chemistry, National Defense Academy
| | - Mitsugu Yamada
- National Institute of Advanced Industrial Science and Technology
- Japan Science and Technology Agency, Core Research for Evolutionary Science and Technology
| | - Hideyasu Okamura
- National Institute of Advanced Industrial Science and Technology
- Japan Science and Technology Agency, Core Research for Evolutionary Science and Technology
| | - Katsushi Yokoyama
- National Institute of Advanced Industrial Science and Technology
- Japan Science and Technology Agency, Core Research for Evolutionary Science and Technology
| | - Sanae Arakawa Ishijima
- National Institute of Advanced Industrial Science and Technology
- Japan Science and Technology Agency, Core Research for Evolutionary Science and Technology
| | - Masashi Suzuki
- National Institute of Advanced Industrial Science and Technology
- Japan Science and Technology Agency, Core Research for Evolutionary Science and Technology
| |
Collapse
|
81
|
Mackenzie C, Eraso JM, Choudhary M, Roh JH, Zeng X, Bruscella P, Puskás A, Kaplan S. Postgenomic adventures with Rhodobacter sphaeroides. Annu Rev Microbiol 2007; 61:283-307. [PMID: 17506668 DOI: 10.1146/annurev.micro.61.080706.093402] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review describes some of the recent highlights taken from the studies of Rhodobacter sphaeroides 2.4.1. The review is not intended to be comprehensive, but to reflect the bias of the authors as to how the availability of a sequenced and annotated genome, a gene-chip, and proteomic profile as well as comparative genomic analyses can direct the progress of future research in this system.
Collapse
Affiliation(s)
- Chris Mackenzie
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
A structural code for discriminating between transcription signals revealed by the feast/famine regulatory protein DM1 in complex with ligands. Structure 2007; 15:1325-38. [PMID: 17937921 DOI: 10.1016/j.str.2007.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 07/13/2007] [Accepted: 07/25/2007] [Indexed: 11/20/2022]
Abstract
Feast/famine regulatory proteins (FFRPs) comprise the largest group of archaeal transcription factors. Crystal structures of an FFRP, DM1 from Pyrococcus, were determined in complex with isoleucine, which increases the association state of DM1 to form octamers, and with selenomethionine, which decreases it to maintain dimers under some conditions. Asp39 and Thr/Ser at 69-71 were identified as being important for interaction with the ligand main chain. By analyzing residues surrounding the ligand side chain, partner ligands were identified for various FFRPs from Pyrococcus, e.g., lysine facilitates homo-octamerization of FL11, and arginine facilitates hetero-octamerization of FL11 and DM1. Transcription of the fl11 gene and lysine synthesis are regulated by shifting the equilibrium between association states of FL11 and by shifting the equilibrium toward association with DM1, in response to amino acid availability. With FFRPs also appearing in eubacteria, the origin of such regulation can be traced back to the common ancestor of all extant organisms, serving as a prototype of transcription regulations, now highly diverged.
Collapse
|
83
|
Yokoyama K, Ishijima SA, Koike H, Kurihara C, Shimowasa A, Kabasawa M, Kawashima T, Suzuki M. Feast/Famine Regulation by Transcription Factor FL11 for the Survival of the Hyperthermophilic Archaeon Pyrococcus OT3. Structure 2007; 15:1542-54. [DOI: 10.1016/j.str.2007.10.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 10/12/2007] [Accepted: 10/12/2007] [Indexed: 11/26/2022]
|
84
|
Shrivastava T, Ramachandran R. Mechanistic insights from the crystal structures of a feast/famine regulatory protein from Mycobacterium tuberculosis H37Rv. Nucleic Acids Res 2007; 35:7324-35. [PMID: 17962306 PMCID: PMC2175373 DOI: 10.1093/nar/gkm850] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Rv3291c gene from Mycobacterium tuberculosis codes for a transcriptional regulator belonging to the (leucine responsive regulatory protein/regulator of asparigine synthase C gene product) Lrp/AsnC-family. We have identified a novel effector-binding site from crystal structures of the apo protein, complexes with a variety of amino acid effectors, X-ray based ligand screening and qualitative fluorescence spectroscopy experiments. The new effector site is in addition to the structural characterization of another distinct site in the protein conserved in the related AsnC-family of regulators. The structures reveal that the ligand-binding loops of two crystallographically independent subunits adopt different conformations to generate two distinct effector-binding sites. A change in the conformation of the binding site loop 100–106 in the B subunit is apparently necessary for octameric association and also allows the loop to interact with a bound ligand in the newly identified effector-binding site. There are four sites of each kind in the octamer and the protein preferentially binds to aromatic amino acids. While amino acids like Phe, Tyr and Trp exhibit binding to only one site, His exhibits binding to both sites. Binding of Phe is accompanied by a conformational change of 3.7 Å in the 75–83 loop, which is advantageously positioned to control formation of higher oligomers. Taken together, the present studies suggest an elegant control mechanism for global transcription regulation involving binding of ligands to the two sites, individually or collectively.
Collapse
Affiliation(s)
- Tripti Shrivastava
- Molecular & Structural Biology Division, Central Drug Research Institute, P.O. Box 173, Chattar Manzil, Mahatma Gandhi Marg, Lucknow-226001, India
| | | |
Collapse
|
85
|
Makarova KS, Omelchenko MV, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Lapidus A, Copeland A, Kim E, Land M, Mavromatis K, Pitluck S, Richardson PM, Detter C, Brettin T, Saunders E, Lai B, Ravel B, Kemner KM, Wolf YI, Sorokin A, Gerasimova AV, Gelfand MS, Fredrickson JK, Koonin EV, Daly MJ. Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks. PLoS One 2007; 2:e955. [PMID: 17895995 PMCID: PMC1978522 DOI: 10.1371/journal.pone.0000955] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 09/04/2007] [Indexed: 11/19/2022] Open
Abstract
Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to resistance; and strengthen the case for a role in survival of systems involved in manganese and iron homeostasis.
Collapse
Affiliation(s)
- Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail: (KM); (MD)
| | - Marina V. Omelchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elena K. Gaidamakova
- Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, United States of America
| | - Vera Y. Matrosova
- Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, United States of America
| | - Alexander Vasilenko
- Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, United States of America
| | - Min Zhai
- Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, United States of America
| | - Alla Lapidus
- US Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
| | - Alex Copeland
- US Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
| | - Edwin Kim
- US Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
| | - Miriam Land
- US Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
| | - Konstantinos Mavromatis
- US Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
| | - Samuel Pitluck
- US Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
| | - Paul M. Richardson
- US Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
| | - Chris Detter
- US Department of Energy, Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Thomas Brettin
- US Department of Energy, Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Elizabeth Saunders
- US Department of Energy, Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Barry Lai
- Environmental Research Division and Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Bruce Ravel
- Environmental Research Division and Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Kenneth M. Kemner
- Environmental Research Division and Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander Sorokin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anna V. Gerasimova
- Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia
| | - Mikhail S. Gelfand
- Institute for Information Transmission Problems of RAS, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - James K. Fredrickson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael J. Daly
- Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail: (KM); (MD)
| |
Collapse
|
86
|
Abstract
Comparisons of mutualistic and pathogenic relationships are necessary to decipher the common language of microorganism-host interactions, as well as the subtle differences in dialect that distinguish types of symbiosis. One avenue towards making such comparisons is to study a single organism that speaks both dialects, such as the gamma-proteobacterium Xenorhabdus nematophila. X. nematophila inhabits and influences the lives of two host animals, helping one to reproduce optimally while killing the other.
Collapse
Affiliation(s)
- Erin E Herbert
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
87
|
Yang H, Wang L, Xie Z, Tian Y, Liu G, Tan H. The tyrosine degradation gene hppD is transcriptionally activated by HpdA and repressed by HpdR in Streptomyces coelicolor, while hpdA is negatively autoregulated and repressed by HpdR. Mol Microbiol 2007; 65:1064-77. [PMID: 17640269 DOI: 10.1111/j.1365-2958.2007.05848.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Streptomyces coelicolor produces a brown pigment on nutrient-limited agar medium (Tyr-PM) using l-tyrosine as the sole nitrogen and carbon source. The pigment production is associated with the second step of l-tyrosine catabolism catalysed by 4-hydroxyphenylpyruvate dioxygenase (HppD), which converts 4-hydroxyphenylpyruvate (4HPP) to 2, 5-dihydroxyphenylacetate (homogentisate) to provide the carbon and energy substrates for the growth of S. coelicolor on Tyr-PM. An hppD mutant did not produce brown pigment, and its normal growth was impaired on Tyr-PM. hpdA and hpdR, located close to hppD, were identified as activator and repressor genes for hppD transcription in the presence of tyrosine. hpdA, divergently transcribed from hppD, is negatively autoregulated in the absence of tyrosine, whereas it is repressed by both its own protein and HpdR in the presence of tyrosine. Electrophoretic mobility shift assays and footprinting experiments showed that HpdA and HpdR each bind to an overlapping region spanning the promoters of both hppD and hpdA, and that 4HPP, instead of tyrosine, is the specific ligand modulating the binding patterns and footprints of HpdA and HpdR on the hppD-hpdA promoter region. These results suggested that the transcription of hppD is subject to coarse and fine control by a complex regulatory system.
Collapse
Affiliation(s)
- Haihua Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Science, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
88
|
Cowles KN, Cowles CE, Richards GR, Martens EC, Goodrich-Blair H. The global regulator Lrp contributes to mutualism, pathogenesis and phenotypic variation in the bacterium Xenorhabdus nematophila. Cell Microbiol 2007; 9:1311-23. [PMID: 17223926 DOI: 10.1111/j.1462-5822.2006.00873.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xenorhabdus nematophila is a Gram-negative bacterium that leads both pathogenic and mutualistic lifestyles. In this study, we examine the role of Lrp, the leucine-responsive regulatory protein, in regulating both of these lifestyles. lrp mutants have attenuated virulence towards Manduca sexta insects and are defective in suppression of both cellular and humoral insect immunity. In addition, an lrp mutant is deficient in initiating colonization of and growth within mutualistic host nematodes. Furthermore, nematodes reared on lrp mutant lawns exhibit decreased overall numbers of nematode progeny. To our knowledge, this is the first demonstration of virulence attenuation associated with an lrp mutation in any bacterium, as well as the first report of a factor involved in both X. nematophila symbioses. Protein profiles of wild-type and mutant cells indicate that Lrp is a global regulator of expression in X. nematophila, affecting approximately 65% of 290 proteins. We show that Lrp binds to the promoter regions of genes known to be involved in basic metabolism, mutualism and pathogenesis, demonstrating that the regulation of at least some host interaction factors is likely direct. Finally, we demonstrate that Lrp influences aspects of X. nematophila phenotypic variation, a spontaneous process that occurs during prolonged growth in stationary phase.
Collapse
Affiliation(s)
- Kimberly N Cowles
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
89
|
O Cróinín T, Carroll RK, Kelly A, Dorman CJ. Roles for DNA supercoiling and the Fis protein in modulating expression of virulence genes during intracellular growth of Salmonella enterica serovar Typhimurium. Mol Microbiol 2006; 62:869-82. [PMID: 16999831 DOI: 10.1111/j.1365-2958.2006.05416.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adaptation of bacterial pathogens to an intracellular environment requires resetting of the expression levels of a wide range of both virulence and housekeeping genes. We investigated the possibility that changes in DNA supercoiling could modulate the expression of genes known to be important in the intracellular growth of the pathogen Salmonella enterica serovar Typhimurium. Our data show that DNA becomes relaxed when Salmonella grows in murine macrophage but not in epithelial cells, indicating that DNA supercoiling plays a role in discrimination between two types of intracellular environment. The ssrA regulatory gene within the SPI-2 pathogenicity island that is required for survival in macrophage was found to be upregulated by DNA relaxation. This enhancement of expression also required the Fis nucleoid-associated protein. Manipulating the level of the Fis protein modulated both the level of DNA supercoiling and ssrA transcription. We discuss a model of bacterial intracellular adaptation in which Fis and DNA supercoiling collaborate to fine-tune virulence gene expression.
Collapse
Affiliation(s)
- Tadhg O Cróinín
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Ireland
| | | | | | | |
Collapse
|
90
|
Nakano N, Okazaki N, Satoh S, Takio K, Kuramitsu S, Shinkai A, Yokoyama S. Structure of the stand-alone RAM-domain protein from Thermus thermophilus HB8. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:855-60. [PMID: 16946463 PMCID: PMC2242884 DOI: 10.1107/s1744309106031150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 08/08/2006] [Indexed: 11/11/2022]
Abstract
The stand-alone RAM (regulation of amino-acid metabolism) domain protein SraA from Thermus thermophilus HB8 (TTHA0845) was crystallized in the presence of zinc ions. The X-ray crystal structure was determined using a multiple-wavelength anomalous dispersion technique and was refined at 2.4 A resolution to a final R factor of 25.0%. The monomeric structure is a betaalphabetabetaalphabeta fold and it dimerizes mainly through interactions between the antiparallel beta-sheets. Furthermore, five SraA dimers form a ring with external and internal diameters of 70 and 20 A, respectively. This decameric structure is unique compared with the octameric and dodecameric structures found for other stand-alone RAM-domain proteins and the C-terminal RAM domains of Lrp/AsnC-family proteins.
Collapse
Affiliation(s)
- Noboru Nakano
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Nobuo Okazaki
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Shinya Satoh
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Koji Takio
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Seiki Kuramitsu
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Akeo Shinkai
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Shigeyuki Yokoyama
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Correspondence e-mail:
| |
Collapse
|