51
|
Kaul H, Ventikos Y. On the genealogy of tissue engineering and regenerative medicine. TISSUE ENGINEERING. PART B, REVIEWS 2015; 21:203-17. [PMID: 25343302 PMCID: PMC4390213 DOI: 10.1089/ten.teb.2014.0285] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this article, we identify and discuss a timeline of historical events and scientific breakthroughs that shaped the principles of tissue engineering and regenerative medicine (TERM). We explore the origins of TERM concepts in myths, their application in the ancient era, their resurgence during Enlightenment, and, finally, their systematic codification into an emerging scientific and technological framework in recent past. The development of computational/mathematical approaches in TERM is also briefly discussed.
Collapse
Affiliation(s)
- Himanshu Kaul
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|
52
|
Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic–inorganic composite scaffolds for bone repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:301-9. [DOI: 10.1016/j.msec.2014.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 11/03/2014] [Accepted: 12/04/2014] [Indexed: 01/23/2023]
|
53
|
Nanoparticle labeling of bone marrow-derived rat mesenchymal stem cells: their use in differentiation and tracking. BIOMED RESEARCH INTERNATIONAL 2015; 2015:298430. [PMID: 25654092 PMCID: PMC4310257 DOI: 10.1155/2015/298430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/10/2014] [Accepted: 09/22/2014] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are promising candidates for cellular therapies due to their ability to migrate to damaged tissue without inducing immune reaction. Many techniques have been developed to trace MSCs and their differentiation efficacy; however, all of these methods have limitations. Conjugated polymer based water-dispersible nanoparticles (CPN) represent a new class of probes because they offer high brightness, improved photostability, high fluorescent quantum yield, and noncytotoxicity comparing to conventional dyes and quantum dots. We aimed to use this tool for tracing MSCs' fate in vitro and in vivo. MSC marker expression, survival, and differentiation capacity were assessed upon CPN treatment. Our results showed that after CPN labeling, MSC markers did not change and significant number of cells were found to be viable as revealed by MTT. Fluorescent signals were retained for 3 weeks after they were differentiated into osteocytes, adipocytes, and chondrocytes in vitro. We also showed that the labeled MSCs migrated to the site of injury and retained their labels in an in vivo liver regeneration model. The utilization of nanoparticle could be a promising tool for the tracking of MSCs in vivo and in vitro and therefore can be a useful tool to understand differentiation and homing mechanisms of MSCs.
Collapse
|
54
|
Peric M, Dumic-Cule I, Grcevic D, Matijasic M, Verbanac D, Paul R, Grgurevic L, Trkulja V, Bagi CM, Vukicevic S. The rational use of animal models in the evaluation of novel bone regenerative therapies. Bone 2015; 70:73-86. [PMID: 25029375 DOI: 10.1016/j.bone.2014.07.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/30/2014] [Accepted: 07/05/2014] [Indexed: 12/31/2022]
Abstract
Bone has a high potential for endogenous self-repair. However, due to population aging, human diseases with impaired bone regeneration are on the rise. Current strategies to facilitate bone healing include various biomolecules, cellular therapies, biomaterials and different combinations of these. Animal models for testing novel regenerative therapies remain the gold standard in pre-clinical phases of drug discovery and development. Despite improvements in animal experimentation, excessive poorly designed animal studies with inappropriate endpoints and inaccurate conclusions are being conducted. In this review, we discuss animal models, procedures, methods and technologies used in bone repair studies with the aim to assist investigators in planning and performing scientifically sound experiments that respect the wellbeing of animals. In the process of designing an animal study for bone repair investigators should consider: skeletal characteristics of the selected animal species; a suitable animal model that mimics the intended clinical indication; an appropriate assessment plan with validated methods, markers, timing, endpoints and scoring systems; relevant dosing and statistically pre-justified sample sizes and evaluation methods; synchronization of the study with regulatory requirements and additional evaluations specific to cell-based approaches. This article is part of a Special Issue entitled "Stem Cells and Bone".
Collapse
Affiliation(s)
- Mihaela Peric
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Department for Intercellular Communication, Salata 2, Zagreb, Croatia.
| | - Ivo Dumic-Cule
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Salata 11, Zagreb, Croatia
| | - Danka Grcevic
- University of Zagreb School of Medicine, Department of Physiology and Immunology, Salata 3, Zagreb, Croatia
| | - Mario Matijasic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Department for Intercellular Communication, Salata 2, Zagreb, Croatia
| | - Donatella Verbanac
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Department for Intercellular Communication, Salata 2, Zagreb, Croatia
| | - Ruth Paul
- Paul Regulatory Services Ltd, Fisher Hill Way, Cardiff CF15 8DR, UK
| | - Lovorka Grgurevic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Salata 11, Zagreb, Croatia
| | - Vladimir Trkulja
- University of Zagreb School of Medicine, Department of Pharmacology, Salata 11, Zagreb, Croatia
| | - Cedo M Bagi
- Pfizer Inc., Global Research and Development, Global Science and Technology, 100 Eastern Point Road, Groton, CT 06340, USA
| | - Slobodan Vukicevic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Salata 11, Zagreb, Croatia.
| |
Collapse
|
55
|
Gómez-Barrena E, Rosset P, Lozano D, Stanovici J, Ermthaller C, Gerbhard F. Bone fracture healing: cell therapy in delayed unions and nonunions. Bone 2015; 70:93-101. [PMID: 25093266 DOI: 10.1016/j.bone.2014.07.033] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/26/2014] [Accepted: 07/28/2014] [Indexed: 12/14/2022]
Abstract
Bone fracture healing impairment related to mechanical problems has been largely corrected by advances in fracture management. Better protocols, more strict controls of time and function, and hardware and surgical technique evolution have contributed to better prognosis, even in complex fractures. However, atrophic nonunion persists in clinical cases where, for different reasons, the osteogenic capability is impaired. When this is the case, a better understanding of the basic mechanisms under bone repair and augmentation techniques may put in perspective the current possibilities and future opportunities. Among those, cell therapy particularly aims to correct this insufficient osteogenesis. However, the launching of safe and efficacious cell therapies still requires substantial amount of research, especially clinical trials. This review will envisage the current clinical trials on bone healing augmentation based on cell therapy, with the experience provided by the REBORNE Project, and the insight from investigator-driven clinical trials on advanced therapies towards the future. This article is part of a Special Issue entitled Stem Cells and Bone.
Collapse
Affiliation(s)
- Enrique Gómez-Barrena
- Dept. of Orthopaedic Surgery and Traumatology, Hospital La Paz-IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Philippe Rosset
- Service of Orthopaedic Surgery and Traumatology, CHU Tours, Université François-Rabelais de Tours, PRES Centre-Val de Loire Université, Tours, France; Inserm U957, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives (LPRO), Faculté de Médecine, Université de Nantes, France
| | - Daniel Lozano
- Metabolic Bone Research Unit, Instituto de Investigación Sanitaria FJD, Madrid, Spain
| | - Julien Stanovici
- Service of Orthopaedic Surgery and Traumatology, CHU Tours, Université François-Rabelais de Tours, PRES Centre-Val de Loire Université, Tours, France; Inserm U957, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives (LPRO), Faculté de Médecine, Université de Nantes, France
| | - Christian Ermthaller
- Klinik für Unfallchirurgie-, Hand-, Plastische und Wiederherstellungschirurgie Zentrum für Chirurgie Universitätsklinikum Ulm, Ulm, Germany
| | - Florian Gerbhard
- Klinik für Unfallchirurgie-, Hand-, Plastische und Wiederherstellungschirurgie Zentrum für Chirurgie Universitätsklinikum Ulm, Ulm, Germany
| |
Collapse
|
56
|
Lin SP, Chiu FY, Wang Y, Yen ML, Kao SY, Hung SC. RB maintains quiescence and prevents premature senescence through upregulation of DNMT1 in mesenchymal stromal cells. Stem Cell Reports 2014; 3:975-86. [PMID: 25455074 PMCID: PMC4264040 DOI: 10.1016/j.stemcr.2014.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 10/05/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022] Open
Abstract
Many cell therapies currently being tested are based on mesenchymal stromal cells (MSCs). However, MSCs start to enter the senescent state upon long-term expansion. The role of retinoblastoma (RB) protein in regulating MSC properties is not well studied. Here, we show that RB levels are higher in early-passage MSCs compared with late-passage MSCs. RB knockdown induces premature senescence and reduced differentiation potentials in early-passage MSCs. RB overexpression inhibits senescence and increases differentiation potentials in late-passage MSCs. Expression of DNMT1, but not DNMT3A or DNMT3B, is also higher in early-passage MSCs than in late-passage MSCs. Furthermore, DNMT1 knockdown in early-passage MSCs induces senescence and reduces differentiation potentials, whereas DNMT1 overexpression in late-passage MSCs has the opposite effect. These results demonstrate that RB expressed in early-passage MSCs upregulates DNMT1 expression and inhibits senescence in MSCs. Therefore, genetic modification of RB could be a way to improve the efficiency of MSCs in clinical use.
Collapse
Affiliation(s)
- Shih-Pei Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan, ROC
| | - Fang-Yao Chiu
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan, ROC
| | - Yu Wang
- Department of Dentistry Sciences, National Yang-Ming University, Taipei 112, Taiwan, ROC; Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan, ROC
| | - Men-Luh Yen
- Departments of Primary Care Medicine and Obstetrics/Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Shou-Yen Kao
- Department of Dentistry Sciences, National Yang-Ming University, Taipei 112, Taiwan, ROC; Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan, ROC.
| | - Shih-Chieh Hung
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan, ROC; Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan, ROC; Institute of Traditional Medicine, Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan, ROC; Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan, ROC; Stem Cell Laboratory, Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112, Taiwan, ROC; Institute of Biomedical Sciences, Academia Sinica, Taipei 105, Taiwan, ROC.
| |
Collapse
|
57
|
Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, Lattanzi W, Logroscino G. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2445-61. [PMID: 24865980 PMCID: PMC4169585 DOI: 10.1007/s10856-014-5240-2] [Citation(s) in RCA: 616] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/09/2014] [Indexed: 05/04/2023]
Abstract
Bone substitutes are being increasingly used in surgery as over two millions bone grafting procedures are performed worldwide per year. Autografts still represent the gold standard for bone substitution, though the morbidity and the inherent limited availability are the main limitations. Allografts, i.e. banked bone, are osteoconductive and weakly osteoinductive, though there are still concerns about the residual infective risks, costs and donor availability issues. As an alternative, xenograft substitutes are cheap, but their use provided contrasting results, so far. Ceramic-based synthetic bone substitutes are alternatively based on hydroxyapatite (HA) and tricalcium phosphates, and are widely used in the clinical practice. Indeed, despite being completely resorbable and weaker than cortical bone, they have exhaustively proved to be effective. Biomimetic HAs are the evolution of traditional HA and contains ions (carbonates, Si, Sr, Fl, Mg) that mimic natural HA (biomimetic HA). Injectable cements represent another evolution, enabling mininvasive techniques. Bone morphogenetic proteins (namely BMP2 and 7) are the only bone inducing growth factors approved for human use in spine surgery and for the treatment of tibial nonunion. Demineralized bone matrix and platelet rich plasma did not prove to be effective and their use as bone substitutes remains controversial. Experimental cell-based approaches are considered the best suitable emerging strategies in several regenerative medicine application, including bone regeneration. In some cases, cells have been used as bioactive vehicles delivering osteoinductive genes locally to achieve bone regeneration. In particular, mesenchymal stem cells have been widely exploited for this purpose, being multipotent cells capable of efficient osteogenic potential. Here we intend to review and update the alternative available techniques used for bone fusion, along with some hints on the advancements achieved through the experimental research in this field.
Collapse
Affiliation(s)
- V. Campana
- Department of Orthopaedics and Traumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - G. Milano
- Department of Orthopaedics and Traumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - E. Pagano
- Department of Orthopaedics and Traumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - M. Barba
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - C. Cicione
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G. Salonna
- Department of Orthopaedics and Traumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - W. Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
- Latium Musculoskeletal Tissue Bank, Rome, Italy
| | - G. Logroscino
- Department of Orthopaedics and Traumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
58
|
Davies BM, Rikabi S, French A, Pinedo-Villanueva R, Morrey ME, Wartolowska K, Judge A, MacLaren RE, Mathur A, Williams DJ, Wall I, Birchall M, Reeve B, Atala A, Barker RW, Cui Z, Furniss D, Bure K, Snyder EY, Karp JM, Price A, Carr A, Brindley DA. Quantitative assessment of barriers to the clinical development and adoption of cellular therapies: A pilot study. J Tissue Eng 2014; 5:2041731414551764. [PMID: 25383173 PMCID: PMC4221931 DOI: 10.1177/2041731414551764] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/20/2014] [Indexed: 01/08/2023] Open
Abstract
There has been a large increase in basic science activity in cell therapy and a growing portfolio of cell therapy trials. However, the number of industry products available for widespread clinical use does not match this magnitude of activity. We hypothesize that the paucity of engagement with the clinical community is a key contributor to the lack of commercially successful cell therapy products. To investigate this, we launched a pilot study to survey clinicians from five specialities and to determine what they believe to be the most significant barriers to cellular therapy clinical development and adoption. Our study shows that the main concerns among this group are cost-effectiveness, efficacy, reimbursement, and regulation. Addressing these concerns can best be achieved by ensuring that future clinical trials are conducted to adequately answer the questions of both regulators and the broader clinical community.
Collapse
Affiliation(s)
- Benjamin M Davies
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sarah Rikabi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Anna French
- The Oxford-UCL Centre for the Advancement of Sustainable Medical Innovation (CASMI), University of Oxford, Oxford, UK
| | - Rafael Pinedo-Villanueva
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK ; MRC Lifecourse Epidemiology Unit, Southampton General Hospital, Southampton, UK
| | - Mark E Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Karolina Wartolowska
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Andrew Judge
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK ; MRC Lifecourse Epidemiology Unit, Southampton General Hospital, Southampton, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
| | - Anthony Mathur
- NIHR Cardiovascular Biomedical Research Unit, London Chest Hospital, London, UK ; Department of Cardiology, Barts Health NHS Trust, London, UK ; Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - David J Williams
- Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Ivan Wall
- Department of Biochemical Engineering, University College London, London, UK ; Department of Nanobiomedical Science & BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea ; Biomaterials and Tissue Engineering Lab, Department of Nanobiomedical Science and WCU Research Center, Dankook University, Cheonan, Republic of Korea
| | | | - Brock Reeve
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Richard W Barker
- The Oxford-UCL Centre for the Advancement of Sustainable Medical Innovation (CASMI), University of Oxford, Oxford, UK
| | - Zhanfeng Cui
- Oxford Centre for Tissue Engineering and Bioprocessing, University of Oxford, Oxford, UK
| | - Dominic Furniss
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Kim Bure
- Sartorius Stedim, Göttingen, Germany
| | - Evan Y Snyder
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA ; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA ; Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Jeffrey M Karp
- Harvard Stem Cell Institute, Cambridge, MA, USA ; Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA ; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA ; Harvard Medical School, Cambridge, MA, USA
| | - Andrew Price
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Andrew Carr
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK ; The Oxford-UCL Centre for the Advancement of Sustainable Medical Innovation (CASMI), University of Oxford, Oxford, UK
| | - David A Brindley
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK ; The Oxford-UCL Centre for the Advancement of Sustainable Medical Innovation (CASMI), University of Oxford, Oxford, UK ; Harvard Stem Cell Institute, Cambridge, MA, USA ; Centre for Behavioural Medicine, UCL School of Pharmacy, University College London, London, UK
| |
Collapse
|
59
|
Hayrapetyan A, Jansen JA, van den Beucken JJJP. Signaling pathways involved in osteogenesis and their application for bone regenerative medicine. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:75-87. [PMID: 25015093 DOI: 10.1089/ten.teb.2014.0119] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bone regeneration is a well organized but complex physiological process, in which different cell types and their activated signaling pathways are involved. In bone regeneration and remodeling processes, mesenchymal stem cells (MSCs) have a crucial role, and their differentiation during these processes is regulated by specific signaling molecules (growth factors/cytokines and hormones) and their activated intracellular networks. Especially the utilization of the molecular machinery seems crucial to consider prior to developing bone implants, bone-substitute materials, and cell-based constructs for bone regeneration. The aim of this review is to provide an overview of the signaling mechanisms involved in bone regeneration and remodeling and the osteogenic potential of MSCs to become a key cellular resource for such regeneration and remodeling processes. Additionally, an overview of possibilities to beneficially exploit cell signaling processes to optimize bone regeneration is provided.
Collapse
|
60
|
Zhu J, Shang J, Jia Y, Pei R, Stojanovic M, Lin Q. Spatially selective release of aptamer-captured cells by temperature mediation. IET Nanobiotechnol 2014; 8:2-9. [PMID: 24888185 DOI: 10.1049/iet-nbt.2013.0028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Isolation of cells from heterogeneous biological samples is critical in both basic biological research and clinical diagnostics. Affinity-based methods, such as those that recognise cells by binding antibodies to cell membrane biomarkers, can be used to achieve specific cell isolation. Microfluidic techniques have been employed to achieve more efficient and effective cell isolation. By employing aptamers as surface-immobilised ligands, cells can be easily released and collected after specific capture. However, these methods still have limitations in cell release efficiency and spatial selectivity. This study presents an aptamer-based microfluidic device that not only achieves specific affinity cell capture, but also enables spatially selective temperature-mediated release and retrieval of cells without detectable damage. The specific cell capture is realised by using surface-patterned aptamers in a microchamber on a temperature-control chip. Spatially selective cell release is achieved by utilising a group of microheater and temperature sensor that restricts temperature changes, and therefore the disruption of cell-aptamer interactions, to a design-specified region. Experimental results with CCRF-CEM cells and sgc8c aptamers have demonstrated the specific cell capture and temperature-mediated release of selected groups of cells with negligible disruption to their viability.
Collapse
|
61
|
Arcos D, Boccaccini A, Bohner M, Díez-Pérez A, Epple M, Gómez-Barrena E, Herrera A, Planell J, Rodríguez-Mañas L, Vallet-Regí M. The relevance of biomaterials to the prevention and treatment of osteoporosis. Acta Biomater 2014; 10:1793-805. [PMID: 24418434 DOI: 10.1016/j.actbio.2014.01.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/24/2013] [Accepted: 01/03/2014] [Indexed: 02/08/2023]
Abstract
Osteoporosis is a worldwide disease with a very high prevalence in humans older than 50. The main clinical consequences are bone fractures, which often lead to patient disability or even death. A number of commercial biomaterials are currently used to treat osteoporotic bone fractures, but most of these have not been specifically designed for that purpose. Many drug- or cell-loaded biomaterials have been proposed in research laboratories, but very few have received approval for commercial use. In order to analyze this scenario and propose alternatives to overcome it, the Spanish and European Network of Excellence for the Prevention and Treatment of Osteoporotic Fractures, "Ageing", was created. This network integrates three communities, e.g. clinicians, materials scientists and industrial advisors, tackling the same problem from three different points of view. Keeping in mind the premise "living longer, living better", this commentary is the result of the thoughts, proposals and conclusions obtained after one year working in the framework of this network.
Collapse
|
62
|
Gómez-Barrena E, Solá CA, Bunu CP. Regulatory authorities and orthopaedic clinical trials on expanded mesenchymal stem cells. INTERNATIONAL ORTHOPAEDICS 2014; 38:1803-9. [PMID: 24728347 DOI: 10.1007/s00264-014-2332-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 03/16/2014] [Indexed: 11/25/2022]
Abstract
Skeletal injuries requiring bone augmentation techniques are increasing in the context of avoiding or treating difficult cases with bone defects, bone healing problems, and bone regeneration limitations. Musculoskeletal severe trauma, osteoporosis-related fractures, and conditions where bone defect, bone collapse or insufficient bone regeneration occur are prone to disability and serious complications. Bone cell therapy has emerged as a promising technique to augment and promote bone regeneration. Interest in the orthopaedic community is considerable, although many aspects related to the research of this technique in specific indications may be insufficiently recognised by many orthopaedic surgeons. Clinical trials are the ultimate research in real patients that may confirm or refute the value of this new therapy. However, before launching the required trials in bone cell therapy towards bone regeneration, preclinical data is needed with the cell product to be implanted in patients to ensure safety and efficacy. These preclinical studies support the end-points that need to be evaluated in clinical trials. Orthopaedic surgeons are the ultimate players that, through their research, would confirm in clinical trials the benefit of bone cell therapies. To further foster this research, the pathway to eventually obtain authorisation from the National Competent Authorities and Research Ethics Committees under the European regulation is reviewed, and the experience of the REBORNE European project offers information and important clues about the current Voluntary Harmonization Procedure and other opportunities that need to be considered by surgeons and researchers on the topic.
Collapse
Affiliation(s)
- Enrique Gómez-Barrena
- Department of Orthopaedic Surgery and Traumatology, Hospital La Paz and Universidad Autónoma de Madrid, Madrid, Spain,
| | | | | |
Collapse
|
63
|
Soininen A, Kaivosoja E, Sillat T, Virtanen S, Konttinen YT, Tiainen VM. Osteogenic differentiation on DLC-PDMS-h surface. J Biomed Mater Res B Appl Biomater 2014; 102:1462-72. [PMID: 24574187 DOI: 10.1002/jbm.b.33125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 01/21/2014] [Accepted: 01/30/2014] [Indexed: 11/08/2022]
Abstract
The hypothesis was that anti-fouling diamond-like carbon polydimethylsiloxane hybrid (DLC-PDMS-h) surface impairs early and late cellular adhesion and matrix-cell interactions. The effect of hybrid surface on cellular adhesion and cytoskeletal organization, important for osteogenesis of human mesenchymal stromal cells (hMSC), where therefore compared with plain DLC and titanium (Ti). hMSCs were induced to osteogenesis and followed over time using scanning electron microscopy (SEM), time-of-flight secondary ion mass spectrometry (ToF-SIMS), immunofluorescence staining, quantitative real-time polymerase chain reaction (qRT-PCR), and hydroxyapatite (HA) staining. SEM at 7.5 hours showed that initial adherence and spreading of hMSC was poor on DLC-PDMS-h. At 5 days some hMSC were undergoing condensation and apoptotic fragmentation, whereas cells on DLC and Ti grew well. DAPI-actin-vinculin triple staining disclosed dwarfed cells with poorly organized actin cytoskeleton-focal complex/adhesion-growth substrate attachments on hybrid coating, whereas spread cells, organized microfilament bundles, and focal adhesions were seen on DLC and in particular on Ti. Accordingly, at day one ToF-SIMS mass peaks showed poor protein adhesion to DLC-PDMS-h compared with DLC and Ti. COL1A1, ALP, OP mRNA levels at days 0, 7, 14, 21, and/or 28 and lack of HA deposition at day 28 demonstrated delayed or failed osteogenesis on DLC-PDMS-h. Anti-fouling DLC-PDMS-h is a poor cell adhesion substrate during the early protein adsorption-dependent phase and extracellular matrix-dependent late phase. Accordingly, some hMSCs underwent anoikis-type apoptosis and failed to complete osteogenesis, due to few focal adhesions and poor cell-to-ECM contacts. DLC-PDMS-h seems to be a suitable coating for non-integrating implants/devices designed for temporary use.
Collapse
Affiliation(s)
- Antti Soininen
- ORTON Research Institute, Helsinki, Finland; ORTON Orthopedic Hospital, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
64
|
Osteotomy and fracture fixation in children and teenagers. Orthop Traumatol Surg Res 2014; 100:S139-48. [PMID: 24394918 DOI: 10.1016/j.otsr.2013.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 11/08/2013] [Accepted: 11/15/2013] [Indexed: 02/02/2023]
Abstract
Significant changes have occurred recently in fixation methods following fracture or osteotomy in children and teenagers. Children have benefited the most from these advances. A child's growth is anatomically and physiologically ensured by the growth plate and periosteum. The need to keep the periosteum intact during trauma cases has led to the introduction of flexible intramedullary nailing. We will review the basic principles of this safe, universally adopted technique, and also describe available material, length and diameter options. The problems and the limitations of this method will be discussed extensively. In orthopedics, the desire to preserve the periosteum has led to the use of locking compression plates. Because of their low profile and high stability, they allow the micromovements essential for bone union. These new methods reduce the immobilization period and allow autonomy to be regained more quickly, which is especially important in children with neurological impairment. The need to preserve the growth plate, which is well known in pediatric surgery, is reviewed with the goal of summarizing current experimental data on standard fracture and osteotomy fixation methods. Adjustable block stop wires provide better control over compression. These provide an alternate means of fixation between K-wires and screws (now cannulated) and have contributed to the development of minimally invasive surgical techniques. The aim of this lecture is to provide a rationale for the distinct technical features of pediatric surgery, while emphasizing the close relationship between the physiology of growth, bone healing and technical advances.
Collapse
|
65
|
Fekete N, Rojewski MT, Lotfi R, Schrezenmeier H. Essential Components for Ex Vivo Proliferation of Mesenchymal Stromal Cells. Tissue Eng Part C Methods 2014; 20:129-39. [DOI: 10.1089/ten.tec.2013.0061] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Natalie Fekete
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, University Hospital Ulm, Ulm, Germany
| | - Markus Thomas Rojewski
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, University Hospital Ulm, Ulm, Germany
| | - Ramin Lotfi
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, University Hospital Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
66
|
Rosset P, Deschaseaux F, Layrolle P. Cell therapy for bone repair. Orthop Traumatol Surg Res 2014; 100:S107-12. [PMID: 24411717 DOI: 10.1016/j.otsr.2013.11.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 11/08/2013] [Accepted: 11/15/2013] [Indexed: 02/07/2023]
Abstract
When natural bone repair mechanisms fail, autologous bone grafting is the current standard of care. The osteogenic cells and bone matrix in the graft provide the osteo-inductive and osteo-conductive properties required for successful bone repair. Bone marrow (BM) mesenchymal stem cells (MSCs) can differentiate into osteogenic cells. MSC-based cell therapy holds promise for promoting bone repair. The amount of MSCs available from iliac-crest aspirates is too small to be clinically useful, and either concentration or culture must therefore be used to expand the MSC population. MSCs can be administered alone via percutaneous injection or implanted during open surgery with a biomaterial, usually biphasic hydroxyapatite/β-calcium-triphosphate granules. Encouraging preliminary results have been obtained in patients with delayed healing of long bone fractures or avascular necrosis of the femoral head. Bone tissue engineering involves in vitro MSC culturing on biomaterials to obtain colonisation of the biomaterial and differentiation of the cells. The biomaterial-cell construct is then implanted into the zone to be treated. Few published data are available on bone tissue engineering. Much work remains to be done before determining whether this method is suitable for the routine filling of bone tissue defects. Increasing cell survival and promoting implant vascularisation are major challenges. Improved expertise with culturing techniques, together with the incorporation of regulatory requirements, will open the way to high-quality clinical trials investigating the usefulness of cell therapy as a method for achieving bone repair. Cell therapy avoids the drawbacks of autologous bone grafting, preserving the bone stock and diminishing treatment invasiveness.
Collapse
Affiliation(s)
- P Rosset
- Service de chirurgie orthopédique 2, hôpital Trousseau, Université François-Rabelais de Tours, CHU de Tours, 37044 Tours cedex 09, France; Inserm U957, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives (LPRO), Faculté de Médecine, Université de Nantes, Nantes, France.
| | - F Deschaseaux
- StromaLab, UMR CNRS 5273, U1031 Inserm, Établissement Français du Sang Pyrénées-Méditerranée, Université P.-Sabatier, Toulouse, France
| | - P Layrolle
- Inserm U957, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives (LPRO), Faculté de Médecine, Université de Nantes, Nantes, France
| |
Collapse
|
67
|
Spinal fusion in the next generation: gene and cell therapy approaches. ScientificWorldJournal 2014; 2014:406159. [PMID: 24672316 PMCID: PMC3927763 DOI: 10.1155/2014/406159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/28/2013] [Indexed: 12/24/2022] Open
Abstract
Bone fusion represents a challenge in the orthopedics practice, being especially indicated for spine disorders. Spinal fusion can be defined as the bony union between two vertebral bodies obtained through the surgical introduction of an osteoconductive, osteoinductive, and osteogenic compound. Autogenous bone graft provides all these three qualities and is considered the gold standard. However, a high morbidity is associated with the harvest procedure. Intensive research efforts have been spent during the last decades to develop new approaches and technologies for successful spine fusion. In recent years, cell and gene therapies have attracted great interest from the scientific community. The improved knowledge of both mesenchymal stem cell biology and osteogenic molecules allowed their use in regenerative medicine, representing attractive approaches to achieve bone regeneration also in spinal surgery applications. In this review we aim to describe the developing gene- and cell-based bone regenerative approaches as promising future trends in spine fusion.
Collapse
|
68
|
Dirckx N, Van Hul M, Maes C. Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration. ACTA ACUST UNITED AC 2013; 99:170-91. [DOI: 10.1002/bdrc.21047] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 08/17/2013] [Indexed: 01/20/2023]
Affiliation(s)
- Naomi Dirckx
- are from the Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE); Department of Development and Regeneration; KU Leuven Leuven Belgium
| | - Matthias Van Hul
- are from the Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE); Department of Development and Regeneration; KU Leuven Leuven Belgium
| | - Christa Maes
- are from the Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE); Department of Development and Regeneration; KU Leuven Leuven Belgium
| |
Collapse
|
69
|
Giannotti S, Trombi L, Bottai V, Ghilardi M, D'Alessandro D, Danti S, Dell'Osso G, Guido G, Petrini M. Use of autologous human mesenchymal stromal cell/fibrin clot constructs in upper limb non-unions: long-term assessment. PLoS One 2013; 8:e73893. [PMID: 24023694 PMCID: PMC3758315 DOI: 10.1371/journal.pone.0073893] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 07/25/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Tissue engineering appears to be an attractive alternative to the traditional approach in the treatment of fracture non-unions. Mesenchymal stromal cells (MSCs) are considered an appealing cell source for clinical intervention. However, ex vivo cell expansion and differentiation towards the osteogenic lineage, together with the design of a suitable scaffold have yet to be optimized. Major concerns exist about the safety of MSC-based therapies, including possible abnormal overgrowth and potential cancer evolution. AIMS We examined the long-term efficacy and safety of ex vivo expanded bone marrow MSCs, embedded in autologous fibrin clots, for the healing of atrophic pseudarthrosis of the upper limb. Our research work relied on three main issues: use of an entirely autologous context (cells, serum for ex vivo cell culture, scaffold components), reduced ex vivo cell expansion, and short-term MSC osteoinduction before implantation. METHODS AND FINDINGS Bone marrow MSCs isolated from 8 patients were expanded ex vivo until passage 1 and short-term osteo-differentiated in autologous-based culture conditions. Tissue-engineered constructs designed to embed MSCs in autologous fibrin clots were locally implanted with bone grafts, calibrating their number on the extension of bone damage. Radiographic healing was evaluated with short- and long-term follow-ups (range averages: 6.7 and 76.0 months, respectively). All patients recovered limb function, with no evidence of tissue overgrowth or tumor formation. CONCLUSIONS Our study indicates that highly autologous treatment can be effective and safe in the long-term healing of bone non-unions. This tissue engineering approach resulted in successful clinical and functional outcomes for all patients.
Collapse
Affiliation(s)
- Stefano Giannotti
- Dept. of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Luisa Trombi
- Dept. of Clinical and Experimental Medicine, Hematology Division, University of Pisa, Pisa, Italy
| | - Vanna Bottai
- Dept. of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Ghilardi
- Dept. of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Delfo D'Alessandro
- Dept. of Surgical, Medical, Molecular Pathology and Emergency, University of Pisa, Pisa, Italy
| | - Serena Danti
- Dept. of Surgical, Medical, Molecular Pathology and Emergency, University of Pisa, Pisa, Italy
| | - Giacomo Dell'Osso
- Dept. of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giulio Guido
- Dept. of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mario Petrini
- Dept. of Clinical and Experimental Medicine, Hematology Division, University of Pisa, Pisa, Italy
| |
Collapse
|
70
|
Rath SN, Strobel LA, Arkudas A, Beier JP, Maier AK, Greil P, Horch RE, Kneser U. Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions. J Cell Mol Med 2013; 16:2350-61. [PMID: 22304383 PMCID: PMC3823428 DOI: 10.1111/j.1582-4934.2012.01545.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In many tissue engineering approaches, the basic difference between in vitro and in vivo conditions for cells within three-dimensional (3D) constructs is the nutrition flow dynamics. To achieve comparable results in vitro, bioreactors are advised for improved cell survival, as they are able to provide a controlled flow through the scaffold. We hypothesize that a bioreactor would enhance long-term differentiation conditions of osteogenic cells in 3D scaffolds. To achieve this either primary rat osteoblasts or bone marrow stromal cells (BMSC) were implanted on uniform-sized biphasic calcium phosphate (BCP) scaffolds produced by a 3D printing method. Three types of culture conditions were applied: static culture without osteoinduction (Group A); static culture with osteoinduction (Group B); dynamic culture with osteoinduction (Group C). After 3 and 6 weeks, the scaffolds were analysed by alkaline phosphatase (ALP), dsDNA amount, SEM, fluorescent labelled live-dead assay, and real-time RT-PCR in addition to weekly alamarBlue assays. With osteoinduction, increased ALP values and calcium deposition are observed; however, under static conditions, a significant decrease in the cell number on the biomaterial is observed. Interestingly, the bioreactor system not only reversed the decreased cell numbers but also increased their differentiation potential. We conclude from this study that a continuous flow bioreactor not only preserves the number of osteogenic cells but also keeps their differentiation ability in balance providing a suitable cell-seeded scaffold product for applications in regenerative medicine.
Collapse
Affiliation(s)
- Subha N Rath
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Non-union fracture is a pathological condition having some impairment of the cellular part of the repair: a reduction of MSC and of the osteoblastic activation. Non union is therefore a good indication for cell-based therapies using stem cells. We described the rational of this treatment and described the technique of autologous bone marrow concentrate implantation that was until now used. With the development of stem cell research and regenerative medicine, we believed that therapy based on cytotherapy has great potential. In this review, clinical applications of cytotherapy are summarized and analyzed. Current problems and future challenges are discussed.
Collapse
Affiliation(s)
- Y Homma
- Department of Orthopaedic Surgery, Juntendo University, Tokyo, Japan
| | | | | |
Collapse
|
72
|
Current world literature. Curr Opin Organ Transplant 2012; 17:688-99. [PMID: 23147911 DOI: 10.1097/mot.0b013e32835af316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
73
|
Mothe AJ, Tator CH. Advances in stem cell therapy for spinal cord injury. J Clin Invest 2012; 122:3824-34. [PMID: 23114605 DOI: 10.1172/jci64124] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition producing great personal and societal costs and for which there is no effective treatment. Stem cell transplantation is a promising therapeutic strategy, though much preclinical and clinical research work remains. Here, we briefly describe SCI epidemiology, pathophysiology, and experimental and clinical stem cell strategies. Research in stem cell biology and cell reprogramming is rapidly advancing, with the hope of moving stem cell therapy closer to helping people with SCI. We examine issues important for clinical translation and provide a commentary on recent developments, including termination of the first human embryonic stem cell transplantation trial in human SCI.
Collapse
Affiliation(s)
- Andrea J Mothe
- Toronto Western Research Institute and Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
74
|
Zhu J, Nguyen T, Pei R, Stojanovic M, Lin Q. Specific capture and temperature-mediated release of cells in an aptamer-based microfluidic device. LAB ON A CHIP 2012; 12:3504-13. [PMID: 22854859 PMCID: PMC3976991 DOI: 10.1039/c2lc40411g] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Isolation of cells from heterogeneous mixtures is critically important in both basic cell biology studies and clinical diagnostics. Cell isolation can be realized based on physical properties such as size, density and electrical properties. Alternatively, affinity binding of target cells by surface-immobilized ligands, such as antibodies, can be used to achieve specific cell isolation. Microfluidics technology has recently been used in conjunction with antibody-based affinity isolation methods to capture, purify and isolate cells with higher yield rates, better efficiencies and lower costs. However, a method that allows easy release and collection of live cells from affinity surfaces for subsequent analysis and detection has yet to be developed. This paper presents a microfluidic device that not only achieves specific affinity capture and enrichment, but also enables non-destructive, temperature-mediated release and retrieval of cells. Specific cell capture is achieved using surface-immobilized aptamers in a microchamber. Release of the captured cells is realized by a moderate temperature change, effected via integrated heaters and a temperature sensor, to reversibly disrupt the cell-aptamer interaction. Experimental results with CCRF-CEM cells have demonstrated that the device is capable of specific capture and temperature-mediated release of cells, that the released cells remain viable and that the aptamer-functionalized surface is regenerable.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027
| | - ThaiHuu Nguyen
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027
| | - Renjun Pei
- Department of Medicine, Columbia University, New York, NY, 10032
| | - Milan Stojanovic
- Department of Medicine, Columbia University, New York, NY, 10032
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027
- ; Tel: +1 212 854 1906
| |
Collapse
|
75
|
Diederichs S, Shine KM, Tuan RS. The promise and challenges of stem cell-based therapies for skeletal diseases: stem cell applications in skeletal medicine: potential, cell sources and characteristics, and challenges of clinical translation. Bioessays 2012; 35:220-30. [PMID: 22948900 DOI: 10.1002/bies.201200068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite decades of research, remaining safety concerns regarding disease transmission, heterotopic tissue formation, and tumorigenicity have kept stem cell-based therapies largely outside the standard-of-care for musculoskeletal medicine. Recent insights into trophic and immune regulatory activities of mesenchymal stem cells (MSCs), although incomplete, have stimulated a plethora of new clinical trials for indications far beyond simply supplying progenitors to replenish or re-build lost/damaged tissues. Cell banks are being established and cell-based products are in active clinical trials. Moreover, significant advances have also been made in the field of pluripotent stem cells, in particular the recent development of induced pluripotent stem cells. Their indefinite proliferation potential promises to overcome the limited supply of tissue-specific cells and adult stem cells. However, substantial hurdles related to their safety must be overcome for these cells to be clinically applicable.
Collapse
Affiliation(s)
- Solvig Diederichs
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | |
Collapse
|
76
|
Bibliography Current World Literature. CURRENT ORTHOPAEDIC PRACTICE 2012. [DOI: 10.1097/bco.0b013e31826b35c1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
77
|
Eyckmans J, Lin GL, Chen CS. Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells. Biol Open 2012; 1:1058-68. [PMID: 23213385 PMCID: PMC3507189 DOI: 10.1242/bio.20122162] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 06/27/2012] [Indexed: 11/23/2022] Open
Abstract
It has previously been demonstrated that cell shape can influence commitment of human bone marrow-derived mesenchymal stem cells (hBMCs) to adipogenic, osteogenic, chondrogenic, and other lineages. Human periosteum-derived cells (hPDCs) exhibit multipotency similar to hBMCs, but hPDCs may offer enhanced potential for osteogenesis and chondrogenesis given their apparent endogenous role in bone and cartilage repair in vivo. Here, we examined whether hPDC differentiation is regulated by adhesive and mechanical cues comparable to that reported for hBMC differentiation. When cultured in the appropriate induction media, hPDCs at high cell seeding density demonstrated enhanced levels of adipogenic or chondrogenic markers as compared with hPDCs at low cell seeding density. Cell seeding density correlated inversely with projected area of cell spreading, and directly limiting cell spreading with micropatterned substrates promoted adipogenesis or chondrogenesis while substrates promoting cell spreading supported osteogenesis. Interestingly, cell seeding density influenced differentiation through both changes in cell shape and non-shape-mediated effects: density-dependent adipogenesis and chondrogenesis were regulated primarily by cell shape whereas non-shape effects strongly influenced osteogenic potential. Inhibition of cytoskeletal contractility by adding the Rho kinase inhibitor Y27632 further enhanced adipogenic differentiation and discouraged osteogenic differentiation of hPDCs. Together, our results suggest that multipotent lineage decisions of hPDCs are impacted by cell adhesive and mechanical cues, though to different extents than hBMCs. Thus, future studies of hPDCs and other primary stem cell populations with clinical potential should consider varying biophysical metrics for more thorough optimization of stem cell differentiation.
Collapse
Affiliation(s)
- Jeroen Eyckmans
- Department of Bioengineering, University of Pennsylvania , 510 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 , USA ; Laboratory for Skeletal Development and Joint Disorders, Katholieke Universiteit Leuven , Herestraat 49, Box 813, B-3000 Leuven , Belgium
| | | | | |
Collapse
|
78
|
Norambuena GA, Khoury M, Jorgensen C. Mesenchymal stem cells in osteoarticular pediatric diseases: an update. Pediatr Res 2012; 71:452-8. [PMID: 22430381 DOI: 10.1038/pr.2011.68] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular therapy has gained an increasing popularity in recent years. Mesenchymal stem cells (MSCs) have the potential to differentiate into bone, cartilage, or fat tissue. In recent studies, these cells have also shown healing capability by improving angiogenesis and preventing fibrosis, which could have a role in tissue repair and tissue regeneration. Preclinical and clinical orthopedic studies conducted in the adult population support the use of MSCs for bone-healing problems, early stages of osteonecrosis, and local bone defects. Only a few published studies support the use of MSCs in pediatric osteoarticular disorders, probably due to the unknown long-term results of cellular therapy. The purpose of this review is to explain the mechanism by which MSCs could exhibit a therapeutic role in pediatric osteoarticular disorders.
Collapse
|
79
|
Ginis I, Grinblat B, Shirvan MH. Evaluation of bone marrow-derived mesenchymal stem cells after cryopreservation and hypothermic storage in clinically safe medium. Tissue Eng Part C Methods 2012; 18:453-63. [PMID: 22196031 DOI: 10.1089/ten.tec.2011.0395] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Achievements in tissue engineering using mesenchymal stem cells (MSC) demand a clinically acceptable "off-the-shelf" cell therapy product. Efficacy of cryopreservation of human bone marrow-derived MSC in clinically safe, animal product-free medium containing 2%, 5%, and 10% dimethyl sulfoxide (DMSO) was evaluated by measuring cell recovery, viability, apoptosis, proliferation rate, expression of a broad panel of MSC markers, and osteogenic differentiation. Rate-controlled freezing in CryoStor media was performed in a programmable cell freezer. About 95% of frozen cells were recovered as live cells after freezing in CryoStor solutions with 5% and 10% DMSO followed by storage in liquid nitrogen for 1 month. Cell recovery after 5 months storage was 72% and 80% for 5% and 10% DMSO, respectively. Measurements of caspase 3 activity demonstrated that 15.5% and 12.8% of cells after 1 month and 18.3% and 12.9% of cells after 5 months storage in 5% and 10% DMSO, respectively, were apoptotic. Proliferation of MSC recovered after cryopreservation was measured during 2 weeks post-plating. Proliferation rate was not compromised and was even enhanced. Cryopreservation did not alter expression of MSC markers. Quantitative analysis of alkaline phosphatase (ALP) activity, ALP surface expression and Ca⁺⁺ deposition in previously cryopreserved MSC and then differentiated for 3 weeks in osteogenic medium demonstrated the same degree of osteogenic differentiation as in unfrozen parallel cultures. Cell viability and functional parameters were analyzed in MSC after short-term storage at 4°C in HypoThermosol-FRS solution, also free of animal products. Hypothermic storage for 2 and 4 days resulted in about 100% and 85% cell recovery, respectively, less than 10% of apoptotic cells, and normal proliferation, marker expression, and osteogenic potential. Overall, our results demonstrate that human MSC could be successfully cryopreserved for banking and clinical applications and delivered to the bedside in clinically safe protective reagents.
Collapse
Affiliation(s)
- Irene Ginis
- Cell Therapy Laboratory, Teva Pharmaceutical Industries, Petach Tikva, Israel.
| | | | | |
Collapse
|
80
|
Salter E, Goh B, Hung B, Hutton D, Ghone N, Grayson WL. Bone Tissue Engineering Bioreactors: A Role in the Clinic? TISSUE ENGINEERING PART B-REVIEWS 2012; 18:62-75. [DOI: 10.1089/ten.teb.2011.0209] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Erin Salter
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Brian Goh
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Ben Hung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Daphne Hutton
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Nalinkanth Ghone
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Warren L. Grayson
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
81
|
Chen FM, Zhao YM, Jin Y, Shi S. Prospects for translational regenerative medicine. Biotechnol Adv 2011; 30:658-72. [PMID: 22138411 DOI: 10.1016/j.biotechadv.2011.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 11/12/2011] [Accepted: 11/15/2011] [Indexed: 02/06/2023]
Abstract
Translational medicine is an evolutional concept that encompasses the rapid translation of basic research for use in clinical disease diagnosis, prevention and treatment. It follows the idea "from bench to bedside and back", and hence relies on cooperation between laboratory research and clinical care. In the past decade, translational medicine has received unprecedented attention from scientists and clinicians and its fundamental principles have penetrated throughout biomedicine, offering a sign post that guides modern medical research toward a patient-centered focus. Translational regenerative medicine is still in its infancy, and significant basic research investment has not yet achieved satisfactory clinical outcomes for patients. In particular, there are many challenges associated with the use of cell- and tissue-based products for clinical therapies. This review summarizes the transformation and global progress in translational medicine over the past decade. The current obstacles and opportunities in translational regenerative medicine are outlined in the context of stem cell therapy and tissue engineering for the safe and effective regeneration of functional tissue. This review highlights the requirement for multi-disciplinary and inter-disciplinary cooperation to ensure the development of the best possible regenerative therapies within the shortest timeframe possible for the greatest patient benefit.
Collapse
Affiliation(s)
- Fa-Ming Chen
- Department of Periodontology & Oral Medicine, School of Stomatology, Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China.
| | | | | | | |
Collapse
|
82
|
Role of the blood service in cellular therapy. Biologicals 2011; 40:218-21. [PMID: 22063066 DOI: 10.1016/j.biologicals.2011.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/18/2011] [Indexed: 11/21/2022] Open
Abstract
Cellular therapy is a novel form of medical or surgical treatment using cells in place of or in addition to traditional chemical drugs. The preparation of cellular products - called advanced therapy medicinal products - ATMP in Europe, requires compliance with good manufacturing practices (GMP). Based on long-term experience in blood component manufacturing, product traceability and hemovigilance, selected blood services may represent ideal settings for the development and experimental use of ATMP. International harmonization of the protocols and procedures for the preparation of ATMP is of paramount importance to facilitate the development of multicenter clinical trials with adequate sample size, which are urgently needed to determine the clinical efficacy of ATMP. This article describes European regulations on cellular therapy and summarizes the activities of the 'Franco Calori' Cell Factory, a GMP unit belonging to the department of regenerative medicine of a large public university hospital, which acquired a certification for the GMP production of ATMP in 2007 and developed nine experimental clinical protocols during 2003-2011.
Collapse
|