51
|
Naderi A, de Oliveira EP, Ziegenfuss TN, Willems MT. Timing, Optimal Dose and Intake Duration of Dietary Supplements with Evidence-Based Use in Sports Nutrition. J Exerc Nutrition Biochem 2016; 20:1-12. [PMID: 28150472 PMCID: PMC5545206 DOI: 10.20463/jenb.2016.0031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
[Purpose] The aim of the present narrative review was to consider the evidence on the timing, optimal dose and intake duration of the main dietary supplements in sports nutrition, i.e. β-alanine, nitrate, caffeine, creatine, sodium bicarbonate, carbohydrate and protein. [Methods] This review article focuses on timing, optimal dose and intake duration of main dietary supplements in sports nutrition. [Results] This paper reviewed the evidence to determine the optimal time, efficacy doses and intake duration for sports supplements verified by scientific evidence that report a performance enhancing effect in both situation of laboratory and training settings. [Conclusion] Consumption of the supplements are usually suggested into 5 specific times, such as pre-exercise (nitrate, caffeine, sodium bicarbonate, carbohydrate and protein), during exercise (carbohydrate), post-exercise (creatine, carbohydrate, protein), meal time (β-alanine, creatine, sodium bicarbonate, nitrate, carbohydrate and protein), and before sleep (protein). In addition, the recommended dosing protocol for the supplements nitrate and β-alanine are fixed amounts irrespective of body weight, while dosing protocol for sodium bicarbonate, caffeine and creatine supplements are related to corrected body weight (mg/kg bw). Also, intake duration is suggested for creatine and β-alanine, being effective in chronic daily time < 2 weeks while caffeine, sodium bicarbonate are effective in acute daily time (1-3 hours). Plus, ingestion of nitrate supplement is required in both chronic daily time < 28 days and acute daily time (2- 2.5 h) prior exercise.
Collapse
Affiliation(s)
- Alireza Naderi
- Department of Sport Physiology, Boroujerd Branch, Islamic Azad University, Boroujerd, Iran
| | - Erick P de Oliveira
- School of Medicine, Federal University of Uberlandia, Uberlandia, Minas Gerais State, Brazil
| | | | - MarkE T Willems
- Department of Sport and Exercise Sciences, University of Chichester, College Lane, Chichester, United Kingdom
| |
Collapse
|
52
|
Krings BM, Rountree JA, McAllister MJ, Cummings PM, Peterson TJ, Fountain BJ, Smith JW. Effects of acute carbohydrate ingestion on anaerobic exercise performance. J Int Soc Sports Nutr 2016; 13:40. [PMID: 27843418 PMCID: PMC5105234 DOI: 10.1186/s12970-016-0152-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/05/2016] [Indexed: 11/10/2022] Open
Abstract
Background Carbohydrate (CHO) supplementation during endurance exercises has been shown to increase performance, but there is limited research with CHO supplementation during strength and conditioning exercises. Therefore, the purpose of this study was to examine the effects of various levels of CHO ingestion during acute testing sessions requiring participants to complete a strength and conditioning program designed for collegiate athletes. Methods Participants (n = 7) performed a series of exercises while ingesting an amino-acid electrolyte control (CON) or CON plus varying levels of CHO. The CHO beverages delivered a 2:1 (glucose: fructose) ratio at rates of 15 g/h, 30 g/h, and 60 g/h. The exercise protocol consisted of a series of short sprints, full body resistance training exercises, jumping, and shuttle running. Performance measurements were taken for sprint times, repetitions until failure [bench press, bent over row, biceps curl, overhead triceps extension], summation of total repetitions for all repetitions until failure, repetitions in a set time for two-foot line jumps, and 137-m shuttle times. Results A significant main effect (p < 0.05) was found in relation to CHO dose during the bench press final set repetitions to failure. Pairwise comparison with Bonferroni’s correction identified that there was significant difference (p = 0.0024) between the dosage of 15 g/h and CON during bench press. Inferential statistics identified overall RT performance with a dosage of 15 g/h compared to 60 g/h and CON was 99.2 % (very likely) and 96.7 % (very likely) to have a beneficial effect. Conclusions The results from this study suggest acute ingestion of CHO does not result in decrements in performance and may provide a beneficial effect to strength and conditioning performance. Strength and conditioning coaches may recommend their athletes ingest CHO during training sessions in order to maximize muscular adaptations.
Collapse
Affiliation(s)
- Ben M Krings
- Department of Kinesiology, Mississippi State University, Mississippi State, MS 39762 USA
| | - Jaden A Rountree
- Department of Kinesiology, Mississippi State University, Mississippi State, MS 39762 USA
| | - Matthew J McAllister
- Department of Kinesiology, Mississippi State University, Mississippi State, MS 39762 USA
| | - Patrick M Cummings
- Department of Kinesiology, Mississippi State University, Mississippi State, MS 39762 USA
| | - Timothy J Peterson
- Department of Kinesiology, Mississippi State University, Mississippi State, MS 39762 USA
| | - Brent J Fountain
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS 39762 USA
| | - JohnEric W Smith
- Department of Kinesiology, Mississippi State University, Mississippi State, MS 39762 USA
| |
Collapse
|
53
|
Pomportes L, Brisswalter J, Hays A, Davranche K. Effect of Carbohydrate Intake on Maximal Power Output and Cognitive Performances. Sports (Basel) 2016; 4:sports4040049. [PMID: 29910297 PMCID: PMC5968900 DOI: 10.3390/sports4040049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 11/17/2022] Open
Abstract
The present study aimed to assess the beneficial effect of acute carbohydrate (7% CHO) intake on muscular and cognitive performances. Seventeen high levels athletes in explosive sports (fencing and squash) participated in a randomized, double-blind study consisting in series of 6 sprints (5s) with a passive recovery (25s) followed by 15 min submaximal cycling after either maltodextrine and fructose (CHO) or placebo (Pl) intake. Cognitive performances were assessed before and after sprint exercise using a simple reaction time (SRT) task at rest, a visual scanning task (VS) and a Go/Nogo task (GNG) during a submaximal cycling exercise. Results showed a beneficial effect of exercise on VS task on both conditions (Pl: −283 ms; CHO: −423 ms) and on SRT only during CHO condition (−26 ms). In the CHO condition, SRT was faster after exercise whereas no effect of exercise was observed in the Pl condition. According to a qualitative statistical method, a most likely and likely positive effect of CHO was respectively observed on peak power (+4%) and tiredness (−23%) when compared to Pl. Furthermore, a very likely positive effect of CHO was observed on SRT (−8%) and a likely positive effect on visual scanning (−6%) and Go/Nogo tasks (−4%) without any change in accuracy. In conclusion acute ingestion of 250 mL of CHO, 60 min and 30 min before exercise, improve peak power output, decrease muscular tiredness and speed up information processing and visual detection without changing accuracy.
Collapse
Affiliation(s)
- Laura Pomportes
- Université Cote d'Azur, Laboratoire Motricité Humaine Expertise Sport Santé, Nice 06205, France.
- CREPS PACA, Aix en Provence 13098, France.
| | - Jeanick Brisswalter
- Université Cote d'Azur, Laboratoire Motricité Humaine Expertise Sport Santé, Nice 06205, France.
| | - Arnaud Hays
- Aix-Marseille Université, CNRS, ISM, Marseille 13288, France.
| | - Karen Davranche
- Aix-Marseille Université, CNRS, LPC UMR 7290, Marseille 13331, France.
| |
Collapse
|
54
|
Luden ND, Saunders MJ, D'Lugos AC, Pataky MW, Baur DA, Vining CB, Schroer AB. Carbohydrate Mouth Rinsing Enhances High Intensity Time Trial Performance Following Prolonged Cycling. Nutrients 2016; 8:nu8090576. [PMID: 27657117 PMCID: PMC5037560 DOI: 10.3390/nu8090576] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 11/17/2022] Open
Abstract
There is good evidence that mouth rinsing with carbohydrate (CHO) solutions can enhance endurance performance (≥30 min). The impact of a CHO mouth rinse on sprint performance has been less consistent, suggesting that CHO may confer benefits in conditions of ‘metabolic strain’. To test this hypothesis, the current study examined the impact of late-exercise mouth rinsing on sprint performance. Secondly, we investigated the effects of a protein mouth rinse (PRO) on performance. Eight trained male cyclists participated in three trials consisting of 120 min of constant-load cycling (55% Wmax) followed by a 30 km computer-simulated time trial, during which only water was provided. Following 15 min of muscle function assessment, 10 min of constant-load cycling (3 min at 35% Wmax, 7 min at 55% Wmax) was performed. This was immediately followed by a 2 km time trial. Subjects rinsed with 25 mL of CHO, PRO, or placebo (PLA) at min 5:00 and 14:30 of the 15 min muscle function phase, and min 8:00 of the 10-min constant-load cycling. Magnitude-based inferential statistics were used to analyze the effects of the mouth rinse on 2-km time trial performance and the following physiological parameters: Maximum Voluntary Contract (MVC), Rating of Perceived Exertion (RPE), Heart Rate (HR), and blood glucose levels. The primary finding was that CHO ‘likely’ enhanced performance vs. PLA (3.8%), whereas differences between PRO and PLA were unclear (0.4%). These data demonstrate that late-race performance is enhanced by a CHO rinse, but not PRO, under challenging metabolic conditions. More data should be acquired before this strategy is recommended for the later stages of cycling competition under more practical conditions, such as when carbohydrates are supplemented throughout the preceding minutes/hours of exercise.
Collapse
Affiliation(s)
- Nicholas D Luden
- Human Performance Lab, Department of Kinesiology, James Madison University, Harrisonburg, VA 22807, USA.
| | - Michael J Saunders
- Human Performance Lab, Department of Kinesiology, James Madison University, Harrisonburg, VA 22807, USA.
| | - Andrew C D'Lugos
- Human Performance Lab, Department of Kinesiology, James Madison University, Harrisonburg, VA 22807, USA.
| | - Mark W Pataky
- Human Performance Lab, Department of Kinesiology, James Madison University, Harrisonburg, VA 22807, USA.
| | - Daniel A Baur
- Human Performance Lab, Department of Kinesiology, James Madison University, Harrisonburg, VA 22807, USA.
| | - Caitlin B Vining
- Human Performance Lab, Department of Kinesiology, James Madison University, Harrisonburg, VA 22807, USA.
| | - Adam B Schroer
- Human Performance Lab, Department of Kinesiology, James Madison University, Harrisonburg, VA 22807, USA.
| |
Collapse
|
55
|
ATAIDE-SILVA THAYS, GHIARONE THAYSA, BERTUZZI ROMULO, STATHIS CHRISTOSGEORGE, LEANDRO CAROLGÓIS, LIMA-SILVA ADRIANOEDUARDO. CHO Mouth Rinse Ameliorates Neuromuscular Response with Lower Endogenous CHO Stores. Med Sci Sports Exerc 2016; 48:1810-20. [DOI: 10.1249/mss.0000000000000973] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
56
|
Pöchmüller M, Schwingshackl L, Colombani PC, Hoffmann G. A systematic review and meta-analysis of carbohydrate benefits associated with randomized controlled competition-based performance trials. J Int Soc Sports Nutr 2016; 13:27. [PMID: 27408608 PMCID: PMC4940907 DOI: 10.1186/s12970-016-0139-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background Carbohydrate supplements are widely used by athletes as an ergogenic aid before and during sports events. The present systematic review and meta-analysis aimed at synthesizing all available data from randomized controlled trials performed under real-life conditions. Methods MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials were searched systematically up to February 2015. Study groups were categorized according to test mode and type of performance measurement. Subgroup analyses were done with reference to exercise duration and range of carbohydrate concentration. Random effects and fixed effect meta-analyses were performed using the Software package by the Cochrane Collaboration Review Manager 5.3. Results Twenty-four randomized controlled trials met the objectives and were included in the present systematic review, 16 of which provided data for meta-analyses. Carbohydrate supplementations were associated with a significantly shorter exercise time in groups performing submaximal exercise followed by a time trial [mean difference −0.9 min (95 % confidence interval −1.7, −0.2), p = 0.02] as compared to controls. Subgroup analysis showed that improvements were specific for studies administering a concentration of carbohydrates between 6 and 8 % [mean difference −1.0 min (95 % confidence interval −1.9, −0.0), p = 0.04]. Concerning groups with submaximal exercise followed by a time trial measuring power accomplished within a fixed time or distance, mean power output was significantly higher following carbohydrate load (mean difference 20.2 W (95 % confidence interval 9.0, 31.5), p = 0.0004]. Likewise, mean power output was significantly increased following carbohydrate intervention in groups with time trial measuring power within a fixed time or distance (mean difference 8.1 W (95 % confidence interval 0.5, 15.7) p = 0.04]. Conclusion Due to the limitations of this systematic review, results can only be applied to a subset of athletes (trained male cyclists). For those, we could observe a potential ergogenic benefit of carbohydrate supplementation especially in a concentration range between 6 and 8 % when exercising longer than 90 min. Electronic supplementary material The online version of this article (doi:10.1186/s12970-016-0139-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Pöchmüller
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstraße 14 (UZAII), A-1090 Vienna, Austria
| | - Lukas Schwingshackl
- German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Paolo C Colombani
- Swiss Federal Institute of Sport Magglingen (SFISM), CH-2532 Magglingen, Switzerland
| | - Georg Hoffmann
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstraße 14 (UZAII), A-1090 Vienna, Austria
| |
Collapse
|
57
|
Devenney S, Collins K, Shortall M. Effects of various concentrations of carbohydrate mouth rinse on cycling performance in a fed state. Eur J Sport Sci 2016; 16:1073-8. [PMID: 27339107 DOI: 10.1080/17461391.2016.1196735] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The objective of this study was to identify the effects of mouth rinsing with a 6% and 16% carbohydrate solution (CHO) on time trial performance when compared to a 0% control (PLA) when in a fed state. Twelve recreationally active males underwent three trials by which they had to complete a set workload (600 ± 65 W) in a fed state. Throughout each trial, participants rinsed their mouths with a 25 ml bolus of a 0% PLA, 6% or 16% CHO (maltodextrin) for every 12.5% of work completed. Rating of perceived exertion (RPE) and heart rate were recorded every 12.5% of total work. Performance times and power output improved significantly when using the 6% and 16% CHO versus the PLA trial (6% versus PLA, p = .002 and 16% versus PLA, p = .001). When comparing the performance times of the 6% to 16% CHO, no significance was observed (p = .244). There was no significant difference between heart rate levels or RPE values across the three trials. In conclusion, mouth rinsing with a 6% or 16% CHO solution has a positive effect on a cycling time trial performance undertaken in a fed state.
Collapse
Affiliation(s)
- Simon Devenney
- a Department of Science , Centre for Exercise and Metabolic Science, Institute of Technology Tallaght , Dublin , Ireland
| | - Kieran Collins
- a Department of Science , Centre for Exercise and Metabolic Science, Institute of Technology Tallaght , Dublin , Ireland
| | - Marcus Shortall
- a Department of Science , Centre for Exercise and Metabolic Science, Institute of Technology Tallaght , Dublin , Ireland
| |
Collapse
|
58
|
Kulaksız TN, Koşar ŞN, Bulut S, Güzel Y, Willems MET, Hazir T, Turnagöl HH. Mouth Rinsing with Maltodextrin Solutions Fails to Improve Time Trial Endurance Cycling Performance in Recreational Athletes. Nutrients 2016; 8:nu8050269. [PMID: 27171108 PMCID: PMC4882682 DOI: 10.3390/nu8050269] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/01/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022] Open
Abstract
The carbohydrate (CHO) concentration of a mouth rinsing solution might influence the CHO sensing receptors in the mouth, with consequent activation of brain regions involved in reward, motivation and regulation of motor activity. The purpose of the present study was to examine the effects of maltodextrin mouth rinsing with different concentrations (3%, 6% and 12%) after an overnight fast on a 20 km cycling time trial performance. Nine recreationally active, healthy males (age: 24 ± 2 years; V ˙ O 2 m a x : 47 ± 5 mL·kg(-1)·min(-1)) participated in this study. A double-blind, placebo-controlled randomized study was conducted. Participants mouth-rinsed every 2.5 km for 5 s. Maltodextrin mouth rinse with concentrations of 3%, 6% or 12% did not change time to complete the time trial and power output compared to placebo (p > 0.05). Time trial completion times were 40.2 ± 4.0, 40.1 ± 3.9, 40.1 ± 4.4, and 39.3 ± 4.2 min and power output 205 ± 22, 206 ± 25, 210 ± 24, and 205 ± 23 W for placebo, 3%, 6%, and 12% maltodextrin conditions, respectively. Heart rate, lactate, glucose, and rating of perceived exertion did not differ between trials (p > 0.05). In conclusion, mouth rinsing with different maltodextrin concentrations after an overnight fast did not affect the physiological responses and performance during a 20 km cycling time trial in recreationally active males.
Collapse
Affiliation(s)
- Tuğba Nilay Kulaksız
- Division of Nutrition and Metabolism in Exercise, Faculty of Sport Sciences, Hacettepe University, Beytepe, Ankara 06800, Turkey.
- Department of Sport Sciences, Bağlıca Campus, Başkent University, Ankara 06530, Turkey.
| | - Şükran Nazan Koşar
- Division of Nutrition and Metabolism in Exercise, Faculty of Sport Sciences, Hacettepe University, Beytepe, Ankara 06800, Turkey.
| | - Suleyman Bulut
- Division of Nutrition and Metabolism in Exercise, Faculty of Sport Sciences, Hacettepe University, Beytepe, Ankara 06800, Turkey.
| | - Yasemin Güzel
- Division of Nutrition and Metabolism in Exercise, Faculty of Sport Sciences, Hacettepe University, Beytepe, Ankara 06800, Turkey.
| | | | - Tahir Hazir
- Division of Sport and Coaching, Faculty of Sport Sciences, Hacettepe University, Beytepe, Ankara 06800, Turkey.
| | - Hüseyin Hüsrev Turnagöl
- Division of Nutrition and Metabolism in Exercise, Faculty of Sport Sciences, Hacettepe University, Beytepe, Ankara 06800, Turkey.
| |
Collapse
|
59
|
Carbohydrate mouth rinsing has no effect on power output during cycling in a glycogen-reduced state. J Int Soc Sports Nutr 2016; 13:19. [PMID: 27110224 PMCID: PMC4842283 DOI: 10.1186/s12970-016-0131-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 04/18/2016] [Indexed: 11/10/2022] Open
Abstract
Background The effect of mouth rinsing with a carbohydrate (CHO) solution on exercise performance is inconclusive with no benefits observed in the fed state. This study examined the effect of CHO mouth rinse or CHO ingestion on performance in 9 moderately trained male cyclists. Methods Four trials were undertaken, separated by 7 days, in a randomized, counterbalanced design. Each trial included a 90-min glycogen-reducing exercise protocol, immediately followed by a low CHO meal and subsequent overnight fast; the following morning a 1-h cycling time trial was conducted. The trials included 15 % CHO mouth rinse (CHOR), 7.5 % CHO ingestion (CHOI), placebo mouth rinse and placebo ingestion. Solutions were provided after every 12.5 % of completed exercise: 1.5 mL · kg−1 and 0.33 mL · kg−1 body mass during ingestion and rinse trials, respectively. During rinse trials participants swirled the solution for 8 s before expectorating. Blood samples were taken at regular intervals before and during exercise. Results Performance time was not different between trials (P = 0.21) but the 4.5-5.2 % difference between CHOI and other trials showed moderate practical significance (Cohen’s d 0.57-0.65). Power output was higher in CHOI relative to other trials (P < 0.01). There were no differences between CHOR and placebo groups for any performance variables. Plasma glucose, insulin and lactate concentrations were higher in CHOI relative to other groups (P < 0.05). Conclusions In a fasted and glycogen-reduced state ingestion of a CHO solution during high-intensity exercise enhanced performance through stimulation of insulin-mediated glucose uptake. The CHO mouth rinsing had neither ergogenic effects nor changes in endocrine or metabolic responses relative to placebo.
Collapse
|
60
|
Carbohydrate Mouth Rinse Maintains Muscle Electromyographic Activity and Increases Time to Exhaustion during Moderate but not High-Intensity Cycling Exercise. Nutrients 2016; 8:49. [PMID: 27005660 PMCID: PMC4808835 DOI: 10.3390/nu8030049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 11/24/2022] Open
Abstract
The aim was to investigate the influence of a carbohydrate (CHO) mouth rinse on the vastus lateralis (VL) and rectus femoris (RF) electromyographic activity (EMG) and time to exhaustion (TE) during moderate (MIE) and high-intensity cycling exercise (HIE). Thirteen participants cycled at 80% of their respiratory compensation point and at 110% of their peak power output to the point of exhaustion. Before the trials and every 15 min during MIE, participants rinsed with the CHO or Placebo (PLA) solutions. The root mean square was calculated. CHO had no effect on the TE during HIE (CHO: 177.3 ± 42.2 s; PLA: 163.0 ± 26.7 s, p = 0.10), but the TE was increased during MIE (CHO: 76.6 ± 19.7 min; PLA: 65.4 ± 15.2 min; p = 0.01). The EMG activity in the VL was higher than PLA at 30 min (CHO: 10.5% ± 2.6%; PLA: 7.7% ± 3.3%; p = 0.01) and before exhaustion (CHO: 10.3% ± 2.5%; PLA: 8.0% ± 2.9%; p = 0.01) with CHO rinsing. There was no CHO effect on the EMG activity of RF during MIE or for VL and RF during HIE. CHO mouth rinse maintains EMG activity and enhances performance for MIE but not for HIE.
Collapse
|
61
|
Ispoglou T, OʼKelly D, Angelopoulou A, Bargh M, OʼHara JP, Duckworth LC. Mouth Rinsing With Carbohydrate Solutions at the Postprandial State Fail to Improve Performance During Simulated Cycling Time Trials. J Strength Cond Res 2016; 29:2316-25. [PMID: 25734778 DOI: 10.1519/jsc.0000000000000882] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mouth rinsing with carbohydrate (CHO) solutions during cycling time trials results in performance enhancements; however, most studies have used approximately 6% CHO solutions. Therefore, the purpose of this study was to compare the effectiveness of mouth rinsing with 4, 6, and 8% CHO solutions on 1-hour simulated cycling time trial performance. On 4 occasions, 7 trained male cyclists completed at the postprandial period, a set amount of work as fast as possible in a randomized counterbalanced order. The subjects rinsed their mouth for 5 seconds, on completion of each 12.5% of the trial, with 25 ml of a non-CHO placebo and 4, 6, and 8% CHO solutions. No additional fluids were consumed during the time trial. Heart rate (HR), ratings of perceived exertion (RPE), thirst (TH), and subjective feelings (SF) were recorded after each rinse. Furthermore, blood samples were drawn every 25% of the trial to measure blood glucose and blood lactate concentrations, whereas whole-body CHO oxidation was monitored continuously. Time to completion was not significant between conditions with the placebo, 4, 6, and 8% conditions completing the trials in 62.0 ± 3.0, 62.8 ± 4.0, 63.4 ± 3.4, and 63 ± 4.0 minutes, respectively. There were no significant differences between conditions in any of the variables mentioned above; however, significant time effects were observed for HR, RPE, TH, and SF. Post hoc analysis showed that TH and SF of subjects in the CHO conditions but not in the placebo were significantly increased by completion of the time trial. In conclusion, mouth rinsing with CHO solutions did not impact 1-hour cycling performance in the postprandial period and in the absence of fluid intake. Our findings suggest that there is scope for further research to explore the activation regions of the brain and whether they are receptive to CHO dose, before specific recommendations for athletic populations are established. Consequently, mouth rinsing as a practical strategy for coaches and athletes is questionable under specific conditions and should be carefully considered before its inclusion. Emphasis should be focused on appropriate dietary and fluid strategies during training and competition.
Collapse
Affiliation(s)
- Theocharis Ispoglou
- Carnegie Faculty, Carnegie Research Institute, Leeds Beckett University, Leeds, United Kingdom
| | | | | | | | | | | |
Collapse
|
62
|
Boyle N, Lawton C, Allen R, Croden F, Smith K, Dye L. No effects of ingesting or rinsing sucrose on depleted self-control performance. Physiol Behav 2016; 154:151-60. [DOI: 10.1016/j.physbeh.2015.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 10/22/2022]
|
63
|
Fairchild TJ, Dillon P, Curtis C, Dempsey AR. Glucose Ingestion Does Not Improve Maximal Isokinetic Force. J Strength Cond Res 2016; 30:194-9. [DOI: 10.1519/jsc.0000000000001057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
64
|
Cramer MN, Thompson MW, Périard JD. Thermal and Cardiovascular Strain Mitigate the Potential Benefit of Carbohydrate Mouth Rinse During Self-Paced Exercise in the Heat. Front Physiol 2015; 6:354. [PMID: 26635634 PMCID: PMC4658580 DOI: 10.3389/fphys.2015.00354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/10/2015] [Indexed: 11/23/2022] Open
Abstract
Purpose: To determine whether a carbohydrate mouth rinse can alter self-paced exercise performance independently of a high degree of thermal and cardiovascular strain. Methods: Eight endurance-trained males performed two 40-km cycling time trials in 35°C, 60% RH while swilling a 20-ml bolus of 6.5% maltodextrin (CHO) or a color- and taste-matched placebo (PLA) every 5 km. Heart rate, power output, rectal temperature (Tre), and mean skin temperature (Tsk) were recorded continuously; cardiac output, oxygen uptake (VO2), mean arterial pressure (MAP), and perceived exertion (RPE) were measured every 10 min. Results: Performance time and mean power output were similar between treatments, averaging 63.9 ± 3.2 and 64.3 ± 2.8 min, and 251 ± 23 and 242 ± 18 W in CHO and PLA, respectively. Power output, stroke volume, cardiac output, MAP, and VO2 decreased during both trials, increasing slightly or remaining stable during a final 2-km end-spurt. Tre, Tsk, heart rate, and RPE increased throughout exercise similarly with both treatments. Changes in RPE correlated with those in Tre (P < 0.005) and heart rate (P < 0.001). Conclusions: These findings suggest that carbohydrate mouth rinsing does not improve ~1-h time trial performance in hot-humid conditions, possibly due to a failure in down-regulating RPE, which may be influenced more by severe thermal and cardiovascular strain.
Collapse
Affiliation(s)
- Matthew N Cramer
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa Ottawa, ON, Canada ; Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney Lidcombe, NSW, Australia
| | - Martin W Thompson
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney Lidcombe, NSW, Australia
| | - Julien D Périard
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney Lidcombe, NSW, Australia ; Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital Doha, Qatar
| |
Collapse
|
65
|
Carbohydrate ingestion but not mouth rinse maintains sustained attention when fasted. Physiol Behav 2015; 153:33-9. [PMID: 26498427 DOI: 10.1016/j.physbeh.2015.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 12/22/2022]
Abstract
UNLABELLED Carbohydrate (CHO) receptors in the mouth signal brain areas involved in cognitive tasks relying upon motivation and task persistence; however, the minimal CHO dose that improves mental activity is unclear. PURPOSE To determine if CHO (via ingestion or oral rinse) influences sustained attention without eliciting glycemic responses when in a fasted state. METHODS Study A: Six healthy adults completed five treatment trials, ingesting 0-6% CHO solutions to evaluate glycemic response. Peak blood glucose for 6% and 1.5% CHO was greater (p<0.05) than 0% and 0.4% CHO; thus, the low 0.4% CHO was evaluated further. Study B: Following an overnight fast, ten healthy adults completed three trials in a crossover design: 1) 400 ml 0.4% CHO ingested serially via 25 ml boluses, 2) 375 ml 0% CHO control (CON) ingested followed by one 25 ml 6% CHO isocaloric (1.5 g CHO) mouth rinse, and 3) CON ingest followed by CON rinse. Following treatments, a 20 min Continuous Performance Task (CPT) was performed to assess accuracy and precision. RESULTS Accuracy and precision were not different during the first 5 min of CPT. However, accuracy was maintained with CHO ingest (p=1.0) but decreased over 20 min (p<0.05) with both CHO and CON rinse treatments. Precision tended to decline over 20 min CPT with CON (p=0.06) and CHO rinse (p=0.05) but were maintained with CHO ingest (p=1.0). No differences in glycemic responses were observed between treatments. CONCLUSIONS Compared to mouth rinsing CON or CHO (1.5 g in 6% CHO), ingestion of an isocaloric low-CHO drink maintained sustained attention over a mentally fatiguing task and appears effective after fasting without eliciting a glycemic response.
Collapse
|
66
|
Clarke ND, Kornilios E, Richardson DL. Carbohydrate and Caffeine Mouth Rinses Do Not Affect Maximum Strength and Muscular Endurance Performance. J Strength Cond Res 2015; 29:2926-31. [DOI: 10.1519/jsc.0000000000000945] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
67
|
Fraga C, Velasques B, Koch AJ, Machado M, Paulucio D, Ribeiro P, Pompeu FAMS. Carbohydrate mouth rinse enhances time to exhaustion during treadmill exercise. Clin Physiol Funct Imaging 2015; 37:17-22. [PMID: 26302885 DOI: 10.1111/cpf.12261] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 04/17/2015] [Indexed: 11/28/2022]
Abstract
Mouth rinsing with a CHO solution has been suggested to improve short (<1 h) endurance performance through central effect. We examined the effects of mouth rinsing with a CHO solution on running time to exhaustion on a treadmill. Six well-trained subjects ran to exhaustion at 85% VO2max , on three separate occasions. Subjects received either an 8% CHO solution or a placebo (PLA) every 15 min to mouth rinse (MR) or a 6% CHO solution to ingest (ING). Treatments were assigned in a randomized, counterbalanced fashion, with the mouth-rinsing treatments double-blinded. Blood samples were taken to assess glucose (Glu) and lactate (Lac), as well as the perceived exertion (RPE). Gas exchange and heart rate (HR) were collected during all trials. Subjects ran longer (P = 0·038) in both the MR (2583 ± 686 s) and ING (2625 ± 804 s) trials, compared to PLA (1935 ± 809 s), covering a greater distance (MR 9685 ± 3511·62 m; ING 9855 ± 4118·62; PLA 7295 ± 3727 m). RER was significantly higher in both ING and MR versus PLA. No difference among trials was observed for other metabolic or cardiovascular variables (VO2 , Lac, Glu, HR), nor for RPE. Endurance capacity, based on time to exhaustion on a treadmill, was improved when either mouth rinsing or ingesting a CHO solution, compared to PLA.
Collapse
Affiliation(s)
- Cindy Fraga
- Biometrics Laboratory (LADEBIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Velasques
- Physical Education Graduate Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexander J Koch
- Exercise Physiology Laboratory, Lenoir-Rhyne University, Hickory, NC, USA
| | - Marco Machado
- Laboratory of Human Movement Studies, Universitary Foundation of Itaperuna, Itaperuna, Brazil
| | - Dailson Paulucio
- Biometrics Laboratory (LADEBIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Ribeiro
- Physical Education Graduate Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Augusto Monteiro Saboia Pompeu
- Biometrics Laboratory (LADEBIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Physical Education Graduate Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
68
|
Beals KA, Mitchell A. Recent Recommendations and Current Controversies in Sport Nutrition. Am J Lifestyle Med 2015. [DOI: 10.1177/1559827613513410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Adequate nutrition is absolutely essential for optimal training and performance of the athlete. Unfortunately many athletes lack sufficient nutrition knowledge to guide proper food choices. Similarly, the health professionals that athletes most frequently turn to for nutrition advice are often ill-equipped to address specific nutritional needs and issues. This article will summarize the most recent macronutrient (i.e., carbohydrate, protein and fat) and fluid recommendations for athletes. Micronutrients that have been shown to be inadequate in the diets of athletes will also be addressed. Finally, current controversies in sport nutrition will be examined in light of the most recent research and guidelines for applications to the athlete will be provided.
Collapse
|
69
|
Jeffers R, Shave R, Ross E, Stevenson EJ, Goodall S. The effect of a carbohydrate mouth-rinse on neuromuscular fatigue following cycling exercise. Appl Physiol Nutr Metab 2015; 40:557-64. [DOI: 10.1139/apnm-2014-0393] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Carbohydrate (CHO) mouth-rinsing, rather than ingestion, is known to improve performance of high-intensity (>75% maximal oxygen uptake) short-duration (≤1 h) cycling exercise. Mechanisms responsible for this improvement, however, are unclear. The present study aimed to investigate the effect of a CHO mouth-rinse on cycling time-trial (TT) performance and mechanisms of fatigue. On 2 separate occasions, 9 male cyclists (mean ± SD; maximal oxygen uptake, 61 ± 5 mL·kg−1·min−1) completed 45 min at 70% maximum power output (preload) followed by a 15-min TT. At 7.5-min intervals during the preload and TT, participants were given either a tasteless 6.4% maltodextrin mouth-rinse (CHO) or water (placebo (PLA)) in a double-blind, counterbalanced fashion. Isometric knee-extension force and electromyographic responses to percutaneous electrical stimulation and transcranial magnetic stimulation were measured before, after the preload, and after the TT. There were greater decreases in maximal voluntary contraction after the TT in PLA (20% ± 10%) compared with the CHO (12% ± 8%; P = 0.019). Voluntary activation was reduced following exercise in both trials, but did not differ between conditions (PLA –10% ± 8% vs. CHO –5% ± 4%; P = 0.150). The attenuation in the manifestation of global fatigue did not translate into a TT improvement (248 ± 23 vs. 248 ± 39 W for CHO and PLA, respectively). Furthermore, no differences in heart rate or ratings of perceived exertion were found between the 2 conditions. These data suggest that CHO mouth-rinsing attenuates neuromuscular fatigue following endurance cycling. Although these changes did not translate into a performance improvement, further investigation is required into the role of CHO mouth-rinse in alleviating neuromuscular fatigue.
Collapse
Affiliation(s)
- Robert Jeffers
- School of Sport and Education, Brunel University, Uxbridge, UB8 3PH, UK
| | - Robert Shave
- Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, CF5 2YB, UK
| | - Emma Ross
- Physiology, English Institute of Sport, Manchester, M11 3FF, UK
| | - Emma J. Stevenson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle, NE1 8ST, UK
| | - Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University, Newcastle, NE1 8ST, UK
| |
Collapse
|
70
|
Přibyslavská V, Scudamore EM, Johnson SL, Green JM, Stevenson Wilcoxson MC, Lowe JB, O'Neal EK. Influence of carbohydrate mouth rinsing on running and jumping performance during early morning soccer scrimmaging. Eur J Sport Sci 2015; 16:441-7. [DOI: 10.1080/17461391.2015.1020345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
71
|
van Rijn I, de Graaf C, Smeets PA. Tasting calories differentially affects brain activation during hunger and satiety. Behav Brain Res 2015; 279:139-47. [DOI: 10.1016/j.bbr.2014.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/05/2014] [Accepted: 11/09/2014] [Indexed: 11/17/2022]
|
72
|
Abstract
Accumulating evidence suggests that diet and lifestyle can play an important role in delaying the onset or halting the progression of age-related health disorders and can improve cognitive function. Exercise has been promoted as a possible prevention for neurodegenerative diseases. Exercise will have a positive influence on cognition and it increases the brain-derived neurotrophic factor, an essential neurotrophin. Several dietary components have been identified as having effects on cognitive abilities. In particular, polyphenols have been reported to exert their neuroprotective actions through the potential to protect neurons against injury induced by neurotoxins, an ability to suppress neuroinflammation, and the potential to promote memory, learning, and cognitive function. Dietary factors can affect multiple brain processes by regulating neurotransmitter pathways, synaptic transmission, membrane fluidity, and signal-transduction pathways. Flavonols are part of the flavonoid family that is found in various fruits, cocoa, wine, tea and beans. Although the antioxidant effects of flavonols are well established in vitro, there is general agreement that flavonols have more complex actions in vivo. Several cross-sectional and longitudinal studies have shown that a higher intake of flavonoids from food may be associated with a better cognitive evolution. Whether this reflects a causal association remains to be elucidated. Several studies have tried to 'manipulate' the brain in order to postpone central fatigue. Most studies have clearly shown that in normal environmental circumstances these interventions are not easy to perform. There is accumulating evidence that rinsing the mouth with a carbohydrate solution will improve endurance performance. There is a need for additional well controlled studies to explore the possible impact of diet and nutrition on brain functioning.
Collapse
|
73
|
Burke LM, Maughan RJ. The Governor has a sweet tooth - mouth sensing of nutrients to enhance sports performance. Eur J Sport Sci 2014; 15:29-40. [PMID: 25345670 DOI: 10.1080/17461391.2014.971880] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The oral-pharyngeal cavity and the gastrointestinal tract are richly endowed with receptors that respond to taste, temperature and to a wide range of specific nutrient and non-nutritive food components. Ingestion of carbohydrate-containing drinks has been shown to enhance endurance exercise performance, and these responses have been attributed to post-absorptive effects. It is increasingly recognised, though, that the response to ingested carbohydrate begins in the mouth via specific carbohydrate receptors and continues in the gut via the release of a range of hormones that influence substrate metabolism. Cold drinks can also enhance performance, especially in conditions of thermal stress, and part of the mechanism underlying this effect may be the response to cold fluids in the mouth. There is also some, albeit not entirely consistent, evidence for effects of caffeine, quinine, menthol and acetic acid on performance or other relevant effects. This review summarises current knowledge of responses to mouth sensing of temperature, carbohydrate and other food components, with the goal of assisting athletes to implement practical strategies that make best use of its effects. It also examines the evidence that oral intake of other nutrients or characteristics associated with food/fluid intake during exercise can enhance performance via communication between the mouth/gut and the brain.
Collapse
Affiliation(s)
- Louise M Burke
- a Sports Nutrition , Australian Institute of Sport , Belconnen , ACT 2616 , Australia
| | | |
Collapse
|
74
|
Gam S, Tan M, Guelfi KJ, Fournier PA. Mouth rinsing with a bitter solution without ingestion does not improve sprint cycling performance. Eur J Appl Physiol 2014; 115:129-38. [PMID: 25236837 DOI: 10.1007/s00421-014-2987-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/20/2014] [Indexed: 11/29/2022]
Abstract
PURPOSE Recently, we have shown that combining mouth rinsing with the ingestion of a 2 mM quinine solution immediately before a 30-s cycling sprint significantly improves performance. However, the strong bitterness of such a solution produces an unpleasant taste and evokes nausea at higher concentrations. Given the possibility that mouth rinsing with quinine without ingesting it may not produce nausea, a mouth rinse only protocol may be a more practical approach to administer quinine for improving exercise performance. The purpose of the present study was to determine whether mouth rinsing with quinine without ingesting it improves 30-s sprint cycling performance. METHODS Twelve competitive male cyclists performed a 30-s maximal cycling sprint immediately after rinsing their mouth for 10 s with either a 10 mM bitter quinine solution (QUI), plain water (WAT), a 7.1 % w/v sweet glucose solution (GLU), or no solution at all (control; CON). Sprint performance was assessed, and heart rate, ratings of perceived exertion and blood variables were measured pre- and post-exercise. RESULTS Mean power output during the 30-s sprint (QUI 888 ± 38; CON 873 ± 39; WAT 885 ± 37; GLU 873 ± 42 W; p = 0.431) as well as peak power (QUI 1230 ± 61; CON 1,208 ± 65; WAT 1,220 ± 70; GLU 1,202 ± 59 W; p = 0.690) were similar between the four conditions. There were no significant differences in any other performance measures, heart rate, subjective ratings or blood variables between conditions. CONCLUSIONS Mouth rinsing with a bitter tasting quinine solution without ingestion does not improve 30-s sprint cycling performance.
Collapse
Affiliation(s)
- Sharon Gam
- School of Sport Science, Exercise and Health, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia,
| | | | | | | |
Collapse
|
75
|
Watson P, Nichols D, Cordery P. Mouth rinsing with a carbohydrate solution does not influence cycle time trial performance in the heat. Appl Physiol Nutr Metab 2014; 39:1064-9. [DOI: 10.1139/apnm-2013-0413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ten endurance-trained males were recruited to examine the possible role of carbohydrate (CHO) receptors in the mouth influencing exercise performance in the heat. Volunteers completed an incremental test to exhaustion to determine peak oxygen uptake, a familiarisation trial, followed by 2 experimental trials. Trials consisted of a 1-h time trial undertaken in a climatic chamber maintained at 30 °C, 60% relative humidity. Immediately before, and at regular intervals throughout exercise, subjects ingested a bolus of water and then were provided with either a placebo (PLA) or a 6.4% glucose (CHO) solution to rinse in the mouth for 10 s before being expectorated. There was no difference in total work done between the PLA and CHO trials (758.8 ± 149.0 kJ; 762.6 ± 141.1 kJ; P = 0.951). Pacing was also similar, with no differences in power output apparent during the experimental trials (P = 0.546). Core temperature (P = 0.615), heart rate (P = 0.505), ratings of perceived exertion (P = 0.181), and perceived thermal stress (P = 0.416) were not influenced by the nature of the intervention. Blood glucose concentrations were similar during the CHO and PLA trials (P = 0.117). In contrast to the findings of several studies undertaken in temperate conditions, the present investigation failed to support role of oral sensing of CHO in influencing performance during prolonged exercise in warm conditions.
Collapse
Affiliation(s)
- Phillip Watson
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
- Department of Human Physiology and Sports Medicine, Vrije Universiteit Brussel, Brussels B-1050, Belgium
| | - David Nichols
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Philip Cordery
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| |
Collapse
|
76
|
Turner CE, Byblow WD, Stinear CM, Gant N. Carbohydrate in the mouth enhances activation of brain circuitry involved in motor performance and sensory perception. Appetite 2014; 80:212-9. [DOI: 10.1016/j.appet.2014.05.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/29/2014] [Accepted: 05/17/2014] [Indexed: 10/25/2022]
|
77
|
GAM SHARON, GUELFI KYMJ, FOURNIER PAULA. Mouth Rinsing and Ingesting a Bitter Solution Improves Sprint Cycling Performance. Med Sci Sports Exerc 2014; 46:1648-57. [DOI: 10.1249/mss.0000000000000271] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
78
|
Sweet delusion. Glucose drinks fail to counteract ego depletion. Appetite 2014; 75:54-63. [DOI: 10.1016/j.appet.2013.12.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 11/18/2022]
|
79
|
Stellingwerff T, Cox GR. Systematic review: Carbohydrate supplementation on exercise performance or capacity of varying durations. Appl Physiol Nutr Metab 2014; 39:998-1011. [PMID: 24951297 DOI: 10.1139/apnm-2014-0027] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This systematic review examines the efficacy of carbohydrate (CHO) supplementation on exercise performance of varying durations. Included studies utilized an all-out or endurance-based exercise protocol (no team-based performance studies) and featured randomized interventions and placebo (water-only) trial for comparison against exclusively CHO trials (no other ingredients). Of the 61 included published performance studies (n = 679 subjects), 82% showed statistically significant performance benefits (n = 50 studies), with 18% showing no change compared with placebo. There was a significant (p = 0.0036) correlative relationship between increasing total exercise time and the subsequent percent increase in performance with CHO intake versus placebo. While not mutually exclusive, the primary mechanism(s) for performance enhancement likely differs depending on the duration of the exercise. In short duration exercise situations (∼1 h), oral receptor exposure to CHO, via either mouthwash or oral consumption (with enough oral contact time), which then stimulates the pleasure and reward centers of the brain, provide a central nervous system-based mechanism for enhanced performance. Thus, the type and (or) amount of CHO and its ability to be absorbed and oxidized appear completely irrelevant to enhancing performance in short duration exercise situations. For longer duration exercise (>2 h), where muscle glycogen stores are stressed, the primary mechanism by which carbohydrate supplementation enhances performance is via high rates of CHO delivery (>90 g/h), resulting in high rates of CHO oxidation. Use of multiple transportable carbohydrates (glucose:fructose) are beneficial in prolonged exercise, although individual recommendations for athletes should be tailored according to each athlete's individual tolerance.
Collapse
Affiliation(s)
- Trent Stellingwerff
- a Canadian Sport Institute - Pacific, 4371 Interurban Road, Victoria, BC V9E 2C5, Canada
| | | |
Collapse
|
80
|
Correia-Oliveira CR, Bertuzzi R, Dal'Molin Kiss MAP, Lima-Silva AE. Strategies of dietary carbohydrate manipulation and their effects on performance in cycling time trials. Sports Med 2014; 43:707-19. [PMID: 23657935 DOI: 10.1007/s40279-013-0054-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The relationship between carbohydrate (CHO) availability and exercise performance has been thoroughly discussed. CHO improves performance in both prolonged, low-intensity and short, high-intensity exercises. Most studies have focused on the effects of CHO supplementation on the performance of constant-load, time-to-exhaustion exercises. Nevertheless, in the last 20 years, there has been a consistent increase in research on the effects of different forms of CHO supplementation (e.g., diet manipulation, CHO supplementation before or during exercise) on performance during closed-loop exercises, such as cycling time trials (TTs). A TT is a highly reproducible exercise and reflects a more realistic scenario of competition compared with the time-to-exhaustion test. CHO manipulation has been performed in various time periods, such as days before, minutes before, during a TT or in a matched manner (e.g. before and during a TT). The purpose of this review is to address the possible effects of these different forms of CHO manipulation on the performance during a cycling TT. Previous data suggest that when a high-CHO diet (~70% of CHO) is consumed before a TT (24-72 h before), the mean power output increases and reduces the TT time. When participants are supplemented with CHO (from 45 to 400 g) prior to a TT (from 2 min to 6 h before the TT), mean power output and time seem to improve due to an increase in CHO oxidation. Similarly, this performance also seems to increase when participants ingest CHO during a TT because such consumption maintains plasma glucose levels. A CHO mouth rinse also improves performance by activating several brain areas related to reward and motor control through CHO receptors in the oral cavity. However, some studies reported controversial results concerning the benefits of CHO on TT performance. Methodological issues such as time of supplementation, quantity, concentration and type of CHO ingested, as well as the TT duration and intensity, should be considered in future studies because small variations in any of these factors may have beneficial or adverse effects on TT performance.
Collapse
Affiliation(s)
- Carlos Rafaell Correia-Oliveira
- Sports Science Research Group, Faculty of Nutrition, Federal University of Alagoas, Lorival Melo Mota Avenue, S/N, Tabuleiro do Martins, Maceio, AL 57072970, Brazil
| | | | | | | |
Collapse
|
81
|
Bottoms L, Hurst H, Scriven A, Lynch F, Bolton J, Vercoe L, Shone Z, Barry G, Sinclair J. The effect of caffeine mouth rinse on self-paced cycling performance. COMPARATIVE EXERCISE PHYSIOLOGY 2014. [DOI: 10.3920/cep140015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of the study was to determine whether caffeine mouth rinse would improve 30 min self-paced cycling trial. Twelve healthy active males (age 20.5±0.7 years, mass 87.4±18.3 kg) volunteered for the study. They attended the laboratory on 3 separate occasions performing a 30 min self-paced cycling trial. On one occasion water was given as a mouth rinse for 5 s (PLA), on another occasion a 6.4% maltodextrin (CHO) solution was given for 5 s and finally a caffeine solution (containing 32 mg of caffeine dissolved in 125 ml water; CAF) was given for 5 s. Distance cycled, heart rate, ratings of perceived exertion, cadence, speed and power output were recorded throughout all trials. Distance cycled during the CAF mouth rinse trial (16.2±2.8 km) was significantly greater compared to PLA trial (14.9±2.6 km). There was no difference between CHO and CAF trials (P=0.89). Cadence, power and velocity were significantly greater during the CAF trial compared to both PLA and CHO (P<0.05). There were no differences between trials for heart rate and perceived exertion (P>0.05). Caffeine mouth rinse improves 30 min cycling performance by allowing the participant to increase cadence, power and velocity without a concurrent increase in perceived exertion and heart rate.
Collapse
Affiliation(s)
- L. Bottoms
- School of Health, Sport and Bioscience, University of East London, Water Lane, Stratford E15 4LZ, United Kingdom
| | - H. Hurst
- Division of Sport Exercise and Nutritional Sciences, University of Central Lancashire, Fylde Road, Preston PR1 2HE, United Kingdom
| | - A. Scriven
- Division of Sport Exercise and Nutritional Sciences, University of Central Lancashire, Fylde Road, Preston PR1 2HE, United Kingdom
| | - F. Lynch
- Division of Sport Exercise and Nutritional Sciences, University of Central Lancashire, Fylde Road, Preston PR1 2HE, United Kingdom
| | - J. Bolton
- Division of Sport Exercise and Nutritional Sciences, University of Central Lancashire, Fylde Road, Preston PR1 2HE, United Kingdom
| | - L. Vercoe
- Division of Sport Exercise and Nutritional Sciences, University of Central Lancashire, Fylde Road, Preston PR1 2HE, United Kingdom
| | - Z. Shone
- Division of Sport Exercise and Nutritional Sciences, University of Central Lancashire, Fylde Road, Preston PR1 2HE, United Kingdom
| | - G. Barry
- Division of Sport Exercise and Nutritional Sciences, University of Central Lancashire, Fylde Road, Preston PR1 2HE, United Kingdom
| | - J. Sinclair
- Division of Sport Exercise and Nutritional Sciences, University of Central Lancashire, Fylde Road, Preston PR1 2HE, United Kingdom
| |
Collapse
|
82
|
Can carbohydrate mouth rinse improve performance during exercise? A systematic review. Nutrients 2013; 6:1-10. [PMID: 24451304 PMCID: PMC3916844 DOI: 10.3390/nu6010001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/05/2013] [Accepted: 12/10/2013] [Indexed: 12/15/2022] Open
Abstract
The purpose of this review was to identify studies that have investigated the effect of carbohydrate (CHO) mouth rinse on exercise performance, and to quantify the overall mean difference of this type of manipulation across the studies. The main mechanisms involving the potential benefit of CHO mouth rinse on performance was also explored. A systematic review was conducted in the following electronic databases: PubMed, SciELO, Science Direct, MEDLINE, and the Cochrane Library (Cochrane Central Register of Controlled Trials), without limit of searches. Eleven studies were classified as appropriate and their results were summarized and compared. In nine of them, CHO mouth rinse increased the performance (range from 1.50% to 11.59%) during moderate- to high-intensity exercise (~75% Wmax or 65% VO2max, ~1 h duration). A statistical analysis to quantify the individual and overall mean differences was performed in seven of the 11 eligible studies that reported power output (watts, W) as the main performance outcome. The overall mean difference was calculated using a random-effect model that accounts for true variation in effects occurring in each study, as well as random error within a single study. The overall effect of CHO mouth rinse on performance was significant (mean difference = 5.05 W, 95% CI 0.90 to 9.2 W, z = 2.39, p = 0.02) but there was a large heterogeneity between the studies (I2 = 52%). An activation of the oral receptors and consequently brain areas involved with reward (insula/operculum frontal, orbitofrontal cortex, and striatum) is suggested as a possible physiological mechanism responsible for the improved performance with CHO mouth rinse. However, this positive effect seems to be accentuated when muscle and liver glycogen stores are reduced, possibly due to a greater sensitivity of the oral receptors, and require further investigation. Differences in duration of fasting before the trial, duration of mouth rinse, type of activity, exercise protocols, and sample size may account for the large variability between the studies.
Collapse
|
83
|
Che Muhamed AM, Mohamed NG, Ismail N, Aziz AR, Singh R. Mouth rinsing improves cycling endurance performance during Ramadan fasting in a hot humid environment. Appl Physiol Nutr Metab 2013; 39:458-64. [PMID: 24669987 DOI: 10.1139/apnm-2013-0276] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the effect of mouth rinsing during endurance cycling in a hot humid environment (32 °C and 75% relative humidity) on athletes in the Ramadan fasted state. Nine trained adolescent male cyclists completed 3 trials that consisted of a carbohydrate mouth-rinse (CMR), a placebo mouth-rinse (PMR), and a no-rinse (NOR) trial during the last 2 weeks of Ramadan. Each trial consisted of a preloading cycle at 65% peak rate of oxygen consumption for 30 min followed by a 10-km time trial (TT10 km) under hot humid condition. During the CMR and PMR trials, each cyclist rinsed his mouth with 25 mL of the solution for 5 s before expectorating the solution pre-exercise, after 5, 15, and 25 min of the preloading cycle, and 15 s prior to the start of TT10 km. Time to complete the TT10 km was significantly faster in the CMR and PMR trials compared with the NOR trial (12.9 ± 1.7 and 12.6 ± 1.7 vs. 16.8 ± 1.6 min, respectively; p < 0.017). Ratings of perceived exertion taken at the end of the TT10 km was lower in both CMR and PMR trials compared with the NOR trial, although the difference was significant only between CMR and NOR (p < 0.05). In conclusion, mouth rinsing with either carbohydrate or placebo solution provided ergogenic benefits compared with a no-rinse condition on TT10 km performance in acute Ramadan fasted subjects during endurance cycling in a heat stress environment.
Collapse
Affiliation(s)
- Ahmad Munir Che Muhamed
- a Lifestyle Science Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas Penang, Malaysia
| | | | | | | | | |
Collapse
|
84
|
Lane SC, Hawley JA, Desbrow B, Jones AM, Blackwell JR, Ross ML, Zemski AJ, Burke LM. Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance. Appl Physiol Nutr Metab 2013; 39:1050-7. [PMID: 25154895 DOI: 10.1139/apnm-2013-0336] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both caffeine and beetroot juice have ergogenic effects on endurance cycling performance. We investigated whether there is an additive effect of these supplements on the performance of a cycling time trial (TT) simulating the 2012 London Olympic Games course. Twelve male and 12 female competitive cyclists each completed 4 experimental trials in a double-blind Latin square design. Trials were undertaken with a caffeinated gum (CAFF) (3 mg·kg(-1) body mass (BM), 40 min prior to the TT), concentrated beetroot juice supplementation (BJ) (8.4 mmol of nitrate (NO3(-)), 2 h prior to the TT), caffeine plus beetroot juice (CAFF+BJ), or a control (CONT). Subjects completed the TT (females: 29.35 km; males: 43.83 km) on a laboratory cycle ergometer under conditions of best practice nutrition: following a carbohydrate-rich pre-event meal, with the ingestion of a carbohydrate-electrolyte drink and regular oral carbohydrate contact during the TT. Compared with CONT, power output was significantly enhanced after CAFF+BJ and CAFF (3.0% and 3.9%, respectively, p < 0.01). There was no effect of BJ supplementation when used alone (-0.4%, p = 0.6 compared with CONT) or when combined with caffeine (-0.9%, p = 0.4 compared with CAFF). We conclude that caffeine (3 mg·kg(-1) BM) administered in the form of a caffeinated gum increased cycling TT performance lasting ∼50-60 min by ∼3%-4% in both males and females. Beetroot juice supplementation was not ergogenic under the conditions of this study.
Collapse
Affiliation(s)
- Stephen C Lane
- a Exercise and Nutrition Research Group, School of Medical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Cermak NM, van Loon LJC. The Use of Carbohydrates During Exercise as an Ergogenic Aid. Sports Med 2013; 43:1139-55. [DOI: 10.1007/s40279-013-0079-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
86
|
Beaven CM, Maulder P, Pooley A, Kilduff L, Cook C. Effects of caffeine and carbohydrate mouth rinses on repeated sprint performance. Appl Physiol Nutr Metab 2013; 38:633-7. [DOI: 10.1139/apnm-2012-0333] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our purpose was to examine the effectiveness of carbohydrate and caffeine mouth rinses in enhancing repeated sprint ability. Previously, studies have shown that a carbohydrate mouth rinse (without ingestion) has beneficial effects on endurance performance that are related to changes in brain activity. Caffeine ingestion has also demonstrated positive effects on sprint performance. However, the effects of carbohydrate or caffeine mouth rinses on intermittent sprints have not been examined previously. Twelve males performed 5 × 6-s sprints interspersed with 24 s of active recovery on a cycle ergometer. Twenty-five milliliters of either a noncaloric placebo, a 6% glucose, or a 1.2% caffeine solution was rinsed in the mouth for 5 s prior to each sprint in a double-blinded and balanced cross-over design. Postexercise maximal heart rate and perceived exertion were recorded, along with power measures. A second experiment compared a combined caffeine-carbohydrate rinse with carbohydrate only. Compared with the placebo mouth rinse, carbohydrate substantially increased peak power in sprint 1 (22.1 ± 19.5 W; Cohen's effect size (ES), 0.81), and both caffeine (26.9 ± 26.9 W; ES, 0.71) and carbohydrate (39.1 ± 25.8 W; ES, 1.08) improved mean power in sprint 1. Experiment 2 demonstrated that a combination of caffeine and carbohydrate improved sprint 1 power production compared with carbohydrate alone (36.0 ± 37.3 W; ES, 0.81). We conclude that carbohydrate and (or) caffeine mouth rinses may rapidly enhance power production, which could have benefits for specific short sprint exercise performance. The ability of a mouth-rinse intervention to rapidly improve maximal exercise performance in the absence of fatigue suggests a central mechanism.
Collapse
Affiliation(s)
- C. Martyn Beaven
- United Kingdom Sports Council, London, WC1N 1ST UK
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, 831 25 Östersund, Sweden
| | - Peter Maulder
- School of Sport and Exercise Science, Waikato Institute of Technology, Hamilton, 3200 NZ
| | - Adrian Pooley
- School of Sport and Exercise Science, Waikato Institute of Technology, Hamilton, 3200 NZ
| | - Liam Kilduff
- Health and Sport Portfolio, College of Engineering, Swansea University, Swansea, SA2 8PP Wales
| | - Christian Cook
- United Kingdom Sports Council, London, WC1N 1ST UK
- Hamlyn Centre, Institute of Global Health Innovation, Imperial College, London, SW7 2AZ UK
- Sport, Health and Exercise Science, University of Bath, Bath, BA2 7AY UK
| |
Collapse
|
87
|
Sinclair J, Bottoms L, Flynn C, Bradley E, Alexander G, McCullagh S, Finn T, Hurst HT. The effect of different durations of carbohydrate mouth rinse on cycling performance. Eur J Sport Sci 2013; 14:259-64. [DOI: 10.1080/17461391.2013.785599] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
88
|
Lane SC, Bird SR, Burke LM, Hawley JA. Effect of a carbohydrate mouth rinse on simulated cycling time-trial performance commenced in a fed or fasted state. Appl Physiol Nutr Metab 2013; 38:134-9. [DOI: 10.1139/apnm-2012-0300] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is presently unclear whether the reported ergogenic effect of a carbohydrate (CHO) mouth rinse on cycling time-trial performance is affected by the acute nutritional status of an individual. Hence, the aim of this study was to investigate the effect of a CHO mouth rinse on a 60-min simulated cycling time-trial performance commenced in a fed or fasted state. Twelve competitive male cyclists each completed 4 experimental trials using a double-blinded Latin square design. Two trials were commenced 2 h after a meal that contained 2.5 g·kg−1 body mass of CHO (FED) and 2 after an overnight fast (FST). Prior to and after every 12.5% of total time during a performance ride, either a 10% maltodextrin (CHO) or a taste-matched placebo (PLB) solution was mouth rinsed for 10 s then immediately expectorated. There were significant main effects for both pre-ride nutritional status (FED vs. FST; p < 0.01) and CHO mouth rinse (CHO vs. PLB; p < 0.01) on power output with an interaction evident between the interventions (p < 0.05). The CHO mouth rinse improved mean power to a greater extent after an overnight fast (282 vs. 273 W, 3.4%; p < 0.01) compared with a fed state (286 vs. 281 W, 1.8%; p < 0.05). We concluded that a CHO mouth rinse improved performance to a greater extent in a fasted compared with a fed state; however, optimal performance was achieved in a fed state with the addition of a CHO mouth rinse.
Collapse
Affiliation(s)
- Stephen C. Lane
- Exercise and Nutrition Research Group, School of Medical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Stephen R. Bird
- Exercise and Nutrition Research Group, School of Medical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Louise M. Burke
- Sports Nutrition, Australian Institute of Sport, Belconnen, ACT 2626, Australia
| | - John A. Hawley
- Exercise and Nutrition Research Group, School of Medical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
89
|
O’Neal EK, Poulos SP, Wingo JE, Richardson MT, Bishop PA. Post-prandial carbohydrate ingestion during 1-h of moderate-intensity, intermittent cycling does not improve mood, perceived exertion, or subsequent power output in recreationally-active exercisers. J Int Soc Sports Nutr 2013; 10:4. [PMID: 23347391 PMCID: PMC3562170 DOI: 10.1186/1550-2783-10-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 01/19/2013] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED BACKGROUND This study compared the effects of ingesting water (W), a flavored carbohydrate-electrolyte (CE) or a flavored non-caloric electrolyte (NCE) beverage on mood, ratings of perceived exertion (RPE), and sprint power during cycling in recreational exercisers. METHODS Men (n = 23) and women (n = 13) consumed a 24-h standardized diet and reported 2-4 h post-prandial for all test sessions. After a familiarization session, participants completed 50 min of stationary cycling in a warm environment (wet bulb globe temperature = 25.0°C) at ~ 60-65% of heart rate reserve (146 ± 4 bpm) interspersed with 5 rest periods of 2 min each. During exercise, participants consumed W, CE, or NCE, served in a counterbalanced cross-over design. Beverage volume was served in 3 aliquots equaling each individual's sweat losses (mean 847 ± 368 mL) during the familiarization session. Profiles of Mood States questionnaires (POMS) were administered and blood glucose levels were determined pre- and post- sub-maximal cycling. Following sub-maximal exercise, participants completed 3 30-s Wingate anaerobic tests (WAnT) with 2.5 min rest between tests to assess performance. RESULTS Blood glucose was higher (p < 0.05) after 50 min of submaximal cycling just prior to the WAnT for CE (6.1 ± 1.7 mmol/L) compared to W (4.9 ± 1.5 mmol/L) and NCE (4.6 ± 1.2 mmol/L). Nonetheless, there were no differences among treatments in peak (642 ± 153, 635 ± 143, 650 ± 141 watts for W, NCE, and CE, respectively; p = 0.44) or mean (455 ± 100, 458 ± 95, 454 ± 95 watts for W, NCE, and CE, respectively; p = 0.62) power for the first WAnT or mean (414 ± 92, 425 ± 85, 423 ± 82 watts, respectively; p = 0.13) power output averaged across all 3 WAnT. Likewise, RPE during submaximal exercise, session RPE, and fatigue and vigor assessed by POMS did not differ among beverage treatments (p > 0.05). CONCLUSIONS Carbohydrate ingestion consumed by recreational exercisers during a 1-h, moderate-intensity aerobic workout did not alter mood or perceived exertion, nor did it affect subsequent anaerobic performance under the conditions of this study. Drinking caloric sport beverages does not benefit recreational exercisers in a non-fasted state.
Collapse
Affiliation(s)
- Eric K O’Neal
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL, USA
- Current address: Department of Health, Physical Education, and Recreation, University of North Alabama, Florence, AL, 35632, USA
| | - Sylvia P Poulos
- Global Research, The Coca-Cola Company, Atlanta, GA, 30313, USA
| | - Jonathan E Wingo
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL, USA
| | - Mark T Richardson
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL, USA
| | - Phillip A Bishop
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
90
|
Molden DC, Hui CM, Scholer AA, Meier BP, Noreen EE, D'Agostino PR, Martin V. Motivational versus metabolic effects of carbohydrates on self-control. Psychol Sci 2012; 23:1137-44. [PMID: 22972907 DOI: 10.1177/0956797612439069] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Self-control is critical for achievement and well-being. However, people's capacity for self-control is limited and becomes depleted through use. One prominent explanation for this depletion posits that self-control consumes energy through carbohydrate metabolization, which further suggests that ingesting carbohydrates improves self-control. Some evidence has supported this energy model, but because of its broad implications for efforts to improve self-control, we reevaluated the role of carbohydrates in self-control processes. In four experiments, we found that (a) exerting self-control did not increase carbohydrate metabolization, as assessed with highly precise measurements of blood glucose levels under carefully standardized conditions; (b) rinsing one's mouth with, but not ingesting, carbohydrate solutions immediately bolstered self-control; and (c) carbohydrate rinsing did not increase blood glucose. These findings challenge metabolic explanations for the role of carbohydrates in self-control depletion; we therefore propose an alternative motivational model for these and other previously observed effects of carbohydrates on self-control.
Collapse
|
91
|
Siegel R, Laursen PB. Keeping your cool: possible mechanisms for enhanced exercise performance in the heat with internal cooling methods. Sports Med 2012; 42:89-98. [PMID: 22175533 DOI: 10.2165/11596870-000000000-00000] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Exercising in hot environments results in a rise in core body temperature; an effect associated with impaired performance over a variety of exercise modes and durations. Precooling has become a popular strategy to combat this impairment, as evidence has shown it to be an effective method for lowering pre-exercise core temperature, increasing heat storage capacity and improving exercise performance in the heat. To date, the majority of precooling manoeuvres have been achieved via external means, such as cold water immersion and the application of cooling garments. However, these methods have been criticized for their lack of practicality for use in major sporting competitions. Recent evidence has shown that internal or endogenous cooling methods, such as drinking cold fluids or ice slurries, are able to lower core temperature and enhance endurance performance in the heat. These methods may be more advantageous than current forms of precooling, as ingesting cold fluids or ice slurries can be easily implemented in the field and provide the additional benefit of hydrating athletes. While the precise mechanisms responsible for these performance enhancements are yet to be fully explained, the effect of ice ingestion on brain temperature, internal thermoreception and sensory responses may be involved. This article addresses the evidence supporting the use of endogenous cooling methods for improving endurance performance in the heat, as well as discussing the potential mechanisms behind the improvements observed and providing practical recommendations to optimize their success.
Collapse
Affiliation(s)
- Rodney Siegel
- School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| | | |
Collapse
|
92
|
ARNAOUTIS GIANNIS, KAVOURAS STAVROSA, CHRISTAKI IRINI, SIDOSSIS LABROSS. Water Ingestion Improves Performance Compared with Mouth Rinse in Dehydrated Subjects. Med Sci Sports Exerc 2012; 44:175-9. [DOI: 10.1249/mss.0b013e3182285776] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
93
|
Phillips SM, Sproule J, Turner AP. Carbohydrate ingestion during team games exercise: current knowledge and areas for future investigation. Sports Med 2011; 41:559-85. [PMID: 21688869 DOI: 10.2165/11589150-000000000-00000] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
There is a growing body of research on the influence of ingesting carbohydrate-electrolyte solutions immediately prior to and during prolonged intermittent, high-intensity exercise (team games exercise) designed to replicate field-based team games. This review presents the current body of knowledge in this area, and identifies avenues of further research. Almost all early work supported the ingestion of carbohydrate-electrolyte solutions during prolonged intermittent exercise, but was subject to methodological limitations. A key concern was the use of exercise protocols characterized by prolonged periods at the same exercise intensity, the lack of maximal- or high-intensity work components and long periods of seated recovery, which failed to replicate the activity pattern or physiological demand of team games exercise. The advent of protocols specifically designed to replicate the demands of field-based team games enabled a more externally valid assessment of the influence of carbohydrate ingestion during this form of exercise. Once again, the research overwhelmingly supports carbohydrate ingestion immediately prior to and during team games exercise for improving time to exhaustion during intermittent running. While the external validity of exhaustive exercise at fixed prescribed intensities as an assessment of exercise capacity during team games may appear questionable, these assessments should perhaps not be viewed as exhaustive exercise tests per se, but as indicators of the ability to maintain high-intensity exercise, which is a recognized marker of performance and fatigue during field-based team games. Possible mechanisms of exercise capacity enhancement include sparing of muscle glycogen, glycogen resynthesis during low-intensity exercise periods and attenuated effort perception during exercise. Most research fails to show improvements in sprint performance during team games exercise with carbohydrate ingestion, perhaps due to the lack of influence of carbohydrate on sprint performance when endogenous muscle glycogen concentration remains above a critical threshold of ∼200 mmol/kg dry weight. Despite the increasing number of publications in this area, few studies have attempted to drive the research base forward by investigating potential modulators of carbohydrate efficacy during team games exercise, preventing the formulation of optimal carbohydrate intake guidelines. Potential modulators may be different from those during prolonged steady-state exercise due to the constantly changing exercise intensity and frequency, duration and intensity of rest intervals, potential for team games exercise to slow the rate of gastric emptying and the restricted access to carbohydrate-electrolyte solutions during many team games. This review highlights fluid volume, carbohydrate concentration, carbohydrate composition and solution osmolality; the glycaemic index of pre-exercise meals; fluid and carbohydrate ingestion patterns; fluid temperature; carbohydrate mouthwashes; carbohydrate supplementation in different ambient temperatures; and investigation of all of these areas in different subject populations as important avenues for future research to enable a more comprehensive understanding of carbohydrate ingestion during team games exercise.
Collapse
Affiliation(s)
- Shaun M Phillips
- Institute of Sport, Physical Education and Health Studies, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
94
|
Abstract
Ingesting carbohydrate-electrolyte solutions during exercise has been reported to benefit self-paced time-trial performance. The mechanism responsible for this ergogenic effect is unclear. For example, during short duration (≤1 hour), intense (>70% maximal oxygen consumption) exercise, euglycaemia is rarely challenged and adequate muscle glycogen remains at the cessation of exercise. The absence of a clear metabolic explanation has led authors to speculate that ingesting carbohydrate solutions during exercise may have a 'non-metabolic' or 'central effect' on endurance performance. This hypothesis has been explored by studies investigating the performance responses of subjects when carbohydrate solutions are mouth rinsed during exercise. The solution is expectorated before ingestion, thus removing the provision of carbohydrate to the peripheral circulation. Studies using this method have reported that simply having carbohydrate in the mouth is associated with improvements in endurance performance. However, the performance response appears to be dependent upon the pre-exercise nutritional status of the subject. Furthermore, the ability to identify a central effect of a carbohydrate mouth rinse maybe affected by the protocol used to assess its impact on performance. Studies using functional MRI and transcranial stimulation have provided evidence that carbohydrate in the mouth stimulates reward centres in the brain and increases corticomotor excitability, respectively. However, further research is needed to determine whether the central effects of mouth-rinsing carbohydrates, which have been seen at rest and during fatiguing exercise, are responsible for improved endurance performance.
Collapse
Affiliation(s)
- Ian Rollo
- School of Sport and Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| | | |
Collapse
|
95
|
Carbohydrate mouth rinse effects on exercise capacity in pre- and postprandial States. J Nutr Metab 2011; 2011:385962. [PMID: 22013515 PMCID: PMC3179882 DOI: 10.1155/2011/385962] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 07/20/2011] [Indexed: 11/17/2022] Open
Abstract
Background. Oropharyngeal receptors signal presence of carbohydrate to the brain. Mouth rinses with a carbohydrate solution facilitate corticomotor output and improve time-trial performance in well-trained subjects in a fasted state. We tested for this effect in nonathletic subjects in fasted and nonfasted state.
Methods. 13 healthy non-athletic males performed 5 tests on a cycle ergometer. After measuring maximum power output (Wmax), the subjects cycled four times at 60% Wmax until exhaustion while rinsing their mouth every 5 minutes with either a 6.4% maltodextrin solution or water, one time after an overnight fast and another after a carbohydrate rich breakfast.
Results. Mouth rinsing with maltodextrin improved time-to-exhaustion in pre- and postprandial states. This was accompanied by reductions in the average and maximal rates of perceived exertion but no change in average or maximal heart rate was observed.
Conclusions. Carbohydrate mouth rinsing improves endurance capacity in both fed and fasted states in non-athletic subjects.
Collapse
|
96
|
Temesi J, Johnson NA, Raymond J, Burdon CA, O'Connor HT. Carbohydrate ingestion during endurance exercise improves performance in adults. J Nutr 2011; 141:890-7. [PMID: 21411610 DOI: 10.3945/jn.110.137075] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study was a systematic review with meta-analysis examining the efficacy of carbohydrate (CHO) ingestion compared with placebo (PLA) on endurance exercise performance in adults. Relevant databases were searched to January 2011. Included studies were PLA-controlled, randomized, crossover designs in which CHO ingestion not exceeding 8% and between 30 and 80 g/h during exercise of ≥1 h was evaluated via time trial (TT) or exercise time to exhaustion (TTE). The between-trial standardized mean differences [effect size (ES)] and pooled estimates of the effect of CHO ingestion were calculated. Of the 41,175 studies from the initial search, 50 were included. The ES for submaximal exercise followed by TT was significant (ES = 0.53; 95% CI = 0.37-0.69; P < 0.001) as was the ES for TT (ES = 0.30; 95% CI = 0.07-0.53; P = 0.011). The weighted mean improvement in exercise performance favored CHO ingestion (7.5 and 2.0%, respectively). TTE (ES = 0.47; 95% CI = 0.32-0.62; P < 0.001) and submaximal exercise followed by TTE (ES = 0.44; 95% CI = 0.08-0.80; P = 0.017) also showed significant effects, with weighted mean improvements of 15.1 and 54.2%, respectively, with CHO ingestion. Similar trends were evident for subanalyses of studies using only male or trained participants, for exercise of 1-3 h duration, and where CHO and PLA beverages were matched for electrolyte content. The data support that ingestion of CHO between 30 and 80 g/h enhances endurance exercise performance in adults.
Collapse
Affiliation(s)
- John Temesi
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney, Sydney 1825, Australia
| | | | | | | | | |
Collapse
|
97
|
Siegel R, Maté J, Watson G, Nosaka K, Laursen PB. The influence of ice slurry ingestion on maximal voluntary contraction following exercise-induced hyperthermia. Eur J Appl Physiol 2011; 111:2517-24. [PMID: 21360201 DOI: 10.1007/s00421-011-1876-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 02/14/2011] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to determine whether ingestion of a small bolus of ice slurry (1.25 g kg(-1)) could attenuate the reduction in maximal voluntary isometric contraction (MVC) torque output during a 2-min sustained task following exercise-induced hyperthermia. On two separate occasions, 10 males (age: 24 ± 3 years, .VO(2peak): 49.8 ± 4.7 ml kg(-1) min(-1)) ran to exhaustion at their first ventilatory threshold in a hot environment (34.1 ± 0.1°C, 49.5 ± 3.6% RH). Prior to and after exercise, subjects performed a 2-min sustained MVC of the right elbow flexors in a thermoneutral environment (24.6 ± 0.8°C, 37.2 ± 4.5% RH). The post exercise MVC was performed immediately following the ingestion of either 1.25 g kg(-1) of ice slurry (-1°C; ICE) or warm fluid (40°C; CON), in a counterbalanced and randomised order. Run time to exhaustion (42.4 ± 9.5 vs. 41.7 ± 8.7 min; p = 0.530), and rectal (39.08 ± 0.30 vs. 39.08 ± 0.30°C; p = 0.934) and skin temperatures (35.26 ± 0.65 vs. 35.28 ± 0.67°C; p = 0.922) and heart rate (189 ± 5 vs. 189 ± 6 beats min(-1); p = 0.830) at the end of the run were similar between trials. Torque output during the post-exercise 2-min sustained MVC was significantly higher (p = 0.001) following ICE (30.75 ± 16.40 Nm) compared with CON (28.69 ± 14.88 Nm). These results suggest that ice slurry ingestion attenuated the effects of exercise-induced hyperthermia on MVC, possibly via internal thermoreceptive and/or temperature-related sensory mechanisms.
Collapse
Affiliation(s)
- Rodney Siegel
- School of Exercise, Biomedical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia.
| | | | | | | | | |
Collapse
|
98
|
ROLLO IAN, WILLIAMS CLYDE, NEVILL MARY. Influence of Ingesting versus Mouth Rinsing a Carbohydrate Solution during a 1-h Run. Med Sci Sports Exerc 2011; 43:468-75. [DOI: 10.1249/mss.0b013e3181f1cda3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
99
|
The effect of carbohydrate mouth rinse on maximal strength and strength endurance. Eur J Appl Physiol 2011; 111:2381-6. [DOI: 10.1007/s00421-011-1865-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 02/03/2011] [Indexed: 11/29/2022]
|
100
|
Karelis AD, Smith JW, Passe DH, Péronnet F. Carbohydrate administration and exercise performance: what are the potential mechanisms involved? Sports Med 2010; 40:747-63. [PMID: 20726621 DOI: 10.2165/11533080-000000000-00000] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It is well established that carbohydrate (CHO) administration increases performance during prolonged exercise in humans and animals. The mechanism(s), which could mediate the improvement in exercise performance associated with CHO administration, however, remain(s) unclear. This review focuses on possible underlying mechanisms that could explain the increase in exercise performance observed with the administration of CHO during prolonged muscle contractions in humans and animals. The beneficial effect of CHO ingestion on performance during prolonged exercise could be due to several factors including (i) an attenuation in central fatigue; (ii) a better maintenance of CHO oxidation rates; (iii) muscle glycogen sparing; (iv) changes in muscle metabolite levels; (v) reduced exercise-induced strain; and (vi) a better maintenance of excitation-contraction coupling. In general, the literature indicates that CHO ingestion during exercise does not reduce the utilization of muscle glycogen. In addition, data from a meta-analysis suggest that a dose-dependent relationship was not shown between CHO ingestion during exercise and an increase in performance. This could support the idea that providing enough CHO to maintain CHO oxidation during exercise may not always be associated with an increase in performance. Emerging evidence from the literature shows that increasing neural drive and attenuating central fatigue may play an important role in increasing performance during exercise with CHO supplementation. In addition, CHO administration during exercise appears to provide protection from disrupted cell homeostasis/integrity, which could translate into better muscle function and an increase in performance. Finally, it appears that during prolonged exercise when the ability of metabolism to match energy demand is exceeded, adjustments seem to be made in the activity of the Na+/K+ pump. Therefore, muscle fatigue could be acting as a protective mechanism during prolonged contractions. This could be alleviated when CHO is administered resulting in the better maintenance of the electrical properties of the muscle fibre membrane. The mechanism(s) by which CHO administration increases performance during prolonged exercise is(are) complex, likely involving multiple factors acting at numerous cellular sites. In addition, due to the large variation in types of exercise, durations, intensities, feeding schedules and CHO types it is difficult to assess if the mechanism(s) that could explain the increase in performance with CHO administration during exercise is(are) similar in different situations. Experiments concerning the identification of potential mechanism(s) by which performance is increased with CHO administration during exercise will add to our understanding of the mechanism(s) of muscle/central fatigue. This knowledge could have significant implications for improving exercise performance.
Collapse
Affiliation(s)
- Antony D Karelis
- Department of Kinesiology, Université du Québec à Montréal, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|