51
|
Mitema A, Okoth S, Rafudeen SM. The Development of a qPCR Assay to Measure Aspergillus flavus Biomass in Maize and the Use of a Biocontrol Strategy to Limit Aflatoxin Production. Toxins (Basel) 2019; 11:toxins11030179. [PMID: 30934573 PMCID: PMC6468655 DOI: 10.3390/toxins11030179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 01/10/2023] Open
Abstract
Aspergillus flavus colonisation of maize can produce mycotoxins that are detrimental to both human and animal health. Screening of maize lines, resistant to A. flavus infection, together with a biocontrol strategy, could help minimize subsequent aflatoxin contamination. We developed a qPCR assay to measure A. flavus biomass and showed that two African maize lines, GAF4 and KDV1, had different fungal loads for the aflatoxigenic isolate (KSM014), fourteen days after infection. The qPCR assay revealed no significant variation in A. flavus biomass between diseased and non-diseased maize tissues for GAF4, while KDV1 had a significantly higher A. flavus biomass (p < 0.05) in infected shoots and roots compared to the control. The biocontrol strategy using an atoxigenic isolate (KSM012) against the toxigenic isolate (KSM014), showed aflatoxin production inhibition at the co-infection ratio, 50:50 for both maize lines (KDV1 > 99.7% and GAF ≥ 69.4%), as confirmed by bioanalytical techniques. As far as we are aware, this is the first report in Kenya where the biomass of A. flavus from maize tissue was detected and quantified using a qPCR assay. Our results suggest that maize lines, which have adequate resistance to A. flavus, together with the appropriate biocontrol strategy, could limit outbreaks of aflatoxicoses.
Collapse
Affiliation(s)
- Alfred Mitema
- Plant Stress Laboratory 204/207, Department of Molecular and Cell Biology, MCB Building, Upper Campus, University of Cape Town, Private bag X3, Rondebosch, Cape Town 7701, South Africa.
- Department of Botany, School of Biological Sciences, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya.
| | - Sheila Okoth
- Department of Botany, School of Biological Sciences, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya.
| | - Suhail M Rafudeen
- Plant Stress Laboratory 204/207, Department of Molecular and Cell Biology, MCB Building, Upper Campus, University of Cape Town, Private bag X3, Rondebosch, Cape Town 7701, South Africa.
| |
Collapse
|
52
|
Santos-Ciscon BAD, van Diepeningen A, Machado JDC, Dias IE, Waalwijk C. Aspergillus species from Brazilian dry beans and their toxigenic potential. Int J Food Microbiol 2019; 292:91-100. [DOI: 10.1016/j.ijfoodmicro.2018.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 11/27/2018] [Accepted: 12/06/2018] [Indexed: 10/27/2022]
|
53
|
Ohkura M, Cotty PJ, Orbach MJ. Comparative Genomics of Aspergillus flavus S and L Morphotypes Yield Insights into Niche Adaptation. G3 (BETHESDA, MD.) 2018; 8:3915-3930. [PMID: 30361280 PMCID: PMC6288828 DOI: 10.1534/g3.118.200553] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/15/2018] [Indexed: 02/08/2023]
Abstract
Aspergillus flavus, the primary causal agent for aflatoxin contamination on crops, consists of isolates with two distinct morphologies: isolates of the S morphotype produce numerous small sclerotia and lower numbers of conidia while isolates of the L morphotype produce fewer large sclerotia and abundant conidia. The morphotypes also differ in aflatoxin production with S isolates consistently producing high concentrations of aflatoxin, whereas L isolates range from atoxigenic to highly toxigenic. The production of abundant sclerotia by the S morphotype suggests adaptation for long-term survival in the soil, whereas the production of abundant conidia by the L morphotype suggests adaptation for aerial dispersal to the phyllosphere. To identify genomic changes that support differential niche adaption, the sequences of three S and three L morphotype isolates were compared. Differences in genome structure and gene content were identified between the morphotypes. A >530 kb inversion between the morphotypes affect a secondary metabolite gene cluster and a cutinase gene. The morphotypes also differed in proteins predicted to be involved in carbon/nitrogen metabolism, iron acquisition, antimicrobial defense, and evasion of host immunity. The S morphotype genomes contained more intact secondary metabolite clusters indicating there is higher selection pressure to maintain secondary metabolism in the soil and that it is not limited to aflatoxin production. The L morphotype genomes were enriched in amino acid transporters, suggesting efficient nitrogen transport may be critical in the nutrient limited phyllosphere. These findings indicate the genomes of the two morphotypes differ beyond developmental genes and have diverged as they adapted to their respective niches.
Collapse
Affiliation(s)
- Mana Ohkura
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Peter J Cotty
- USDA-ARS, School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Marc J Orbach
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
54
|
Islam MS, Callicott KA, Mutegi C, Bandyopadhyay R, Cotty PJ. Aspergillus flavus resident in Kenya: High genetic diversity in an ancient population primarily shaped by clonal reproduction and mutation-driven evolution. FUNGAL ECOL 2018; 35:20-33. [PMID: 30283498 PMCID: PMC6131765 DOI: 10.1016/j.funeco.2018.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/30/2022]
Abstract
Aspergillus flavus has long been considered to be an asexual species. Although a sexual stage was recently reported for this species from in vitro studies, the amount of recombination ongoing in natural populations and the genetic distance across which meiosis occurs is largely unknown. In the current study, genetic diversity, reproduction and evolution of natural A. flavus populations endemic to Kenya were examined. A total of 2744 isolates recovered from 629 maize-field soils across southern Kenya in two consecutive seasons were characterized at 17 SSR loci, revealing high genetic diversity (9-72 alleles/locus and 2140 haplotypes). Clonal reproduction and persistence of clonal lineages predominated, with many identical haplotypes occurring in multiple soil samples and both seasons. Genetic analyses predicted three distinct lineages with linkage disequilibrium and evolutionary relationships among haplotypes within each lineage suggesting mutation-driven evolution followed by clonal reproduction. Low genetic differentiation among adjacent communities reflected frequent short distance dispersal.
Collapse
Affiliation(s)
- Md-Sajedul Islam
- Agricultural Research Service, United States Department of Agriculture, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Kenneth A. Callicott
- Agricultural Research Service, United States Department of Agriculture, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Charity Mutegi
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | | | - Peter J. Cotty
- Agricultural Research Service, United States Department of Agriculture, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
55
|
Kachapulula PW, Akello J, Bandyopadhyay R, Cotty PJ. Aflatoxin Contamination of Dried Insects and Fish in Zambia. J Food Prot 2018; 81:1508-1518. [PMID: 30118348 DOI: 10.4315/0362-028x.jfp-17-527] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dried insects and fish are important sources of income and dietary protein in Zambia. Some aflatoxin-producing fungi are entomopathogenic and also colonize insects and fish after harvest and processing. Aflatoxins are carcinogenic, immune-suppressing mycotoxins that are frequent food contaminants worldwide. Several species within Aspergillus section Flavi have been implicated as causal agents of aflatoxin contamination of crops in Africa. However, aflatoxin producers associated with dried fish and edible insects in Zambia remain unknown, and aflatoxin concentrations in these foods have been inadequately evaluated. The current study sought to address these data gaps to assess potential human vulnerability through the dried fish and edible insect routes of aflatoxin exposure. Caterpillars ( n = 97), termites ( n = 4), and dried fish ( n = 66) sampled in 2016 and 2017 were assayed for aflatoxin by using lateral flow immunochromatography. Average aflatoxin concentrations exceeded regulatory limits for Zambia (10 μg/kg) in the moth Gynanisa maja (11 μg/kg), the moth Gonimbrasia zambesina (Walker) (12 μg/kg), and the termite Macrotermes falciger (Gerstacker) (24 μg/kg). When samples were subjected to simulated poor storage, aflatoxins increased ( P < 0.001) to unsafe levels in caterpillars (mean, 4,800 μg/kg) and fish ( Oreochromis) (mean, 23 μg/kg). The L strain morphotype of A. flavus was the most common aflatoxin producer on dried fish (88% of Aspergillus section Flavi), termites (68%), and caterpillars (61%), with the exception of Gynanisa maja, for which A. parasiticus was the most common (44%). Dried fish and insects supported growth (mean, 1.3 × 109 CFU/g) and aflatoxin production (mean, 63,620 μg/kg) by previously characterized toxigenic Aspergillus section Flavi species, although the extent of growth and aflatoxigenicity depended on specific fungus-host combinations. The current study shows the need for proper storage and testing of dried insects and fish before consumption as measures to mitigate human exposure to aflatoxins through consumption in Zambia.
Collapse
Affiliation(s)
- Paul W Kachapulula
- 1 School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA.,2 School of Agricultural Sciences, University of Zambia, P.O. Box 32379, Lusaka, Zambia
| | - Juliet Akello
- 3 International Institute of Tropical Agriculture (IITA), Lusaka, Zambia
| | | | - Peter J Cotty
- 1 School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA.,5 U.S. Department of Agriculture, Agricultural Research Service, 416 West Congress Street, Tucson, Arizona 85701, USA
| |
Collapse
|
56
|
Ojiambo PS, Battilani P, Cary JW, Blum BH, Carbone I. Cultural and Genetic Approaches to Manage Aflatoxin Contamination: Recent Insights Provide Opportunities for Improved Control. PHYTOPATHOLOGY 2018; 108:1024-1037. [PMID: 29869954 DOI: 10.1094/phyto-04-18-0134-rvw] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aspergillus flavus is a morphologically complex species that can produce the group of polyketide derived carcinogenic and mutagenic secondary metabolites, aflatoxins, as well as other secondary metabolites such as cyclopiazonic acid and aflatrem. Aflatoxin causes aflatoxicosis when aflatoxins are ingested through contaminated food and feed. In addition, aflatoxin contamination is a major problem, from both an economic and health aspect, in developing countries, especially Asia and Africa, where cereals and peanuts are important food crops. Earlier measures for control of A. flavus infection and consequent aflatoxin contamination centered on creating unfavorable environments for the pathogen and destroying contaminated products. While development of atoxigenic (nonaflatoxin producing) strains of A. flavus as viable commercial biocontrol agents has marked a unique advance for control of aflatoxin contamination, particularly in Africa, new insights into the biology and sexuality of A. flavus are now providing opportunities to design improved atoxigenic strains for sustainable biological control of aflatoxin. Further, progress in the use of molecular technologies such as incorporation of antifungal genes in the host and host-induced gene silencing, is providing knowledge that could be harnessed to develop germplasm that is resistant to infection by A. flavus and aflatoxin contamination. This review summarizes the substantial progress that has been made to understand the biology of A. flavus and mitigate aflatoxin contamination with emphasis on maize. Concepts developed to date can provide a basis for future research efforts on the sustainable management of aflatoxin contamination.
Collapse
Affiliation(s)
- Peter S Ojiambo
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Paola Battilani
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Jeffrey W Cary
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Burt H Blum
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Ignazio Carbone
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| |
Collapse
|
57
|
Camiletti BX, Moral J, Asensio CM, Torrico AK, Lucini EI, Giménez-Pecci MDLP, Michailides TJ. Characterization of Argentinian Endemic Aspergillus flavus Isolates and Their Potential Use as Biocontrol Agents for Mycotoxins in Maize. PHYTOPATHOLOGY 2018; 108:818-828. [PMID: 29384448 DOI: 10.1094/phyto-07-17-0255-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Maize (Zea mays L.) is a highly valuable crop in Argentina, frequently contaminated with the mycotoxins produced by Aspergillus flavus. Biocontrol products formulated with atoxigenic (nontoxic) strains of this fungal species are well known as an effective method to reduce this contamination. In the present study, 83 A. flavus isolates from two maize regions of Argentina were characterized and evaluated for their ability to produce or lack of producing mycotoxins in order to select atoxigenic strains to be used as potential biocontrol agents (BCA). All of the isolates were tested for aflatoxin and cyclopiazonic acid (CPA) production in maize kernels and a liquid culture medium. Genetic diversity of the nonaflatoxigenic isolates was evaluated by analysis of vegetative compatibility groups (VCG) and confirmation of deletions in the aflatoxin biosynthesis cluster. Eight atoxigenic isolates were compared for their ability to reduce aflatoxin and CPA contamination in maize kernels in coinoculation tests. The A. flavus population was composed of 32% aflatoxin and CPA producers and 52% CPA producers, and 16% was determined as atoxigenic. All of the aflatoxin producer isolates also produced CPA. Aflatoxin and CPA production was significantly higher in maize kernels than in liquid medium. The 57 nonaflatoxigenic strains formed six VCG, with AM1 and AM5 being the dominant groups, with a frequency of 58 and 35%, respectively. In coinoculation experiments, all of the atoxigenic strains reduced aflatoxin from 54 to 83% and CPA from 60 to 97%. Members of group AM1 showed a greater aflatoxin reduction than members of AM5 (72 versus 66%) but no differences were detected in CPA production. Here, we described for the first time atoxigenic isolates of A. flavus that show promise to be used as BCA in maize crops in Argentina. This innovating biological control approach should be considered, developed further, and used by the maize industry to preserve the quality properties and food safety of maize kernels in Argentina.
Collapse
Affiliation(s)
- Boris X Camiletti
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Juan Moral
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Claudia M Asensio
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Ada Karina Torrico
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Enrique I Lucini
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - María de la Paz Giménez-Pecci
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Themis J Michailides
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| |
Collapse
|
58
|
Agbetiameh D, Ortega-Beltran A, Awuah RT, Atehnkeng J, Cotty PJ, Bandyopadhyay R. Prevalence of Aflatoxin Contamination in Maize and Groundnut in Ghana: Population Structure, Distribution, and Toxigenicity of the Causal Agents. PLANT DISEASE 2018; 102:764-772. [PMID: 30673407 PMCID: PMC7779968 DOI: 10.1094/pdis-05-17-0749-re] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Aflatoxin contamination in maize and groundnut is perennial in Ghana with substantial health and economic burden on the population. The present study examined for the first time the prevalence of aflatoxin contamination in maize and groundnut in major producing regions across three agroecological zones (AEZs) in Ghana. Furthermore, the distribution and aflatoxin-producing potential of Aspergillus species associated with both crops were studied. Out of 509 samples (326 of maize and 183 of groundnut), 35% had detectable levels of aflatoxins. Over 15% of maize and 11% of groundnut samples exceeded the aflatoxin threshold limits set by the Ghana Standards Authority of 15 and 20 ppb, respectively. Mycoflora analyses revealed various species and morphotypes within the Aspergillus section Flavi. A total of 5,083 isolates were recovered from both crops. The L morphotype of Aspergillus flavus dominated communities with 93.3% of the population, followed by Aspergillus spp. with S morphotype (6%), A. tamarii (0.4%), and A. parasiticus (0.3%). Within the L morphotype, the proportion of toxigenic members was significantly (P < 0.05) higher than that of atoxigenic members across AEZs. Observed and potential aflatoxin concentrations indicate that on-field aflatoxin management strategies need to be implemented throughout Ghana. The recovered atoxigenic L morphotype fungi are genetic resources that can be employed as biocontrol agents to limit aflatoxin contamination of maize and groundnut in Ghana. Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .
Collapse
Affiliation(s)
- D Agbetiameh
- International Institute of Tropical Agriculture (IITA), PMB 5320, Ibadan, Nigeria, and Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | | | - R T Awuah
- Department of Crop and Soil Sciences, KNUST, Kumasi, Ghana
| | - J Atehnkeng
- IITA, Chitedze Research Station, P.O. Box 30258, Lilongwe 3, Malawi
| | - P J Cotty
- United States Department of Agriculture, Agricultural Research Service, School of Plant Sciences, University of Arizona, Tucson, AZ 85721
| | | |
Collapse
|
59
|
Ortega-Beltran A, Cotty PJ. Frequent Shifts in Aspergillus flavus Populations Associated with Maize Production in Sonora, Mexico. PHYTOPATHOLOGY 2018; 108:412-420. [PMID: 29027887 DOI: 10.1094/phyto-08-17-0281-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Aspergillus flavus frequently contaminates maize, a critical staple for billions of people, with aflatoxins. Diversity among A. flavus L morphotype populations associated with maize in Sonora, Mexico was assessed and, in total, 869 isolates from 83 fields were placed into 136 vegetative compatibility groups (VCGs) using nitrate-nonutilizing mutants. VCG diversity indices did not differ in four agroecosystems (AES) but diversity significantly differed among years. Frequencies of certain VCGs changed manyfold over single years in both multiple fields and multiple AES. Certain VCGs were highly frequent (>1%) in 2006 but frequencies declined repeatedly in each of the two subsequent years. Other VCGs that had low frequencies in 2006 increased in 2007 and subsequently declined. None of the VCGs were consistently associated with any AES. Fourteen VCGs were considered dominant in at least a single year. However, frequencies often varied significantly among years. Only 9% of VCGs were detected all 3 years whereas 66% were detected in only 1 year. Results suggest that the most realistic measurements of both genetic diversity and the frequency of A. flavus VCGs are obtained by sampling multiple locations in multiple years. Single-season sampling in many locations should not be substituted for sampling over multiple years.
Collapse
Affiliation(s)
- A Ortega-Beltran
- First and second authors: School of Plant Sciences, and second author: United States Department of Agriculture-Agricultural Research Service, School of Plant Sciences, The University of Arizona, Tucson
| | - P J Cotty
- First and second authors: School of Plant Sciences, and second author: United States Department of Agriculture-Agricultural Research Service, School of Plant Sciences, The University of Arizona, Tucson
| |
Collapse
|
60
|
Kachapulula PW, Akello J, Bandyopadhyay R, Cotty PJ. Aspergillus section Flavi community structure in Zambia influences aflatoxin contamination of maize and groundnut. Int J Food Microbiol 2017; 261:49-56. [PMID: 28915412 PMCID: PMC5644832 DOI: 10.1016/j.ijfoodmicro.2017.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/14/2017] [Accepted: 08/18/2017] [Indexed: 02/08/2023]
Abstract
Aflatoxins are cancer-causing, immuno-suppressive mycotoxins that frequently contaminate important staples in Zambia including maize and groundnut. Several species within Aspergillus section Flavi have been implicated as causal agents of aflatoxin contamination in Africa. However, Aspergillus populations associated with aflatoxin contamination in Zambia have not been adequately detailed. Most of Zambia's arable land is non-cultivated and Aspergillus communities in crops may originate in non-cultivated soil. However, relationships between Aspergillus populations on crops and those resident in non-cultivated soils have not been explored. Because characterization of similar fungal populations outside of Zambia have resulted in strategies to prevent aflatoxins, the current study sought to improve understanding of fungal communities in cultivated and non-cultivated soils and in crops. Crops (n=412) and soils from cultivated (n=160) and non-cultivated land (n=60) were assayed for Aspergillus section Flavi from 2012 to 2016. The L-strain morphotype of Aspergillus flavus and A. parasiticus were dominant on maize and groundnut (60% and 42% of Aspergillus section Flavi, respectively). Incidences of A. flavus L-morphotype were negatively correlated with aflatoxin in groundnut (log y=2.4990935-0.09966x, R2=0.79, P=0.001) but not in maize. Incidences of A. parasiticus partially explained groundnut aflatoxin concentrations in all agroecologies and maize aflatoxin in agroecology III (log y=0.1956034+0.510379x, R2=0.57, P<0.001) supporting A. parasiticus as the dominant etiologic agent of aflatoxin contamination in Zambia. Communities in both non-cultivated and cultivated soils were dominated by A. parasiticus (69% and 58%, respectively). Aspergillus parasiticus from cultivated and non-cultivated land produced statistically similar concentrations of aflatoxins. Aflatoxin-producers causing contamination of crops in Zambia may be native and, originate from non-cultivated areas, and not be introduced with non-native crops such as maize and groundnut. Non-cultivated land may be an important reservoir from which aflatoxin-producers are repeatedly introduced to cultivated areas. The potential of atoxigenic members of the A. flavus-L morphotype for management of aflatoxin in Zambia is also suggested. Characterization of the causal agents of aflatoxin contamination in agroecologies across Zambia gives support for modifying fungal community structure to reduce the aflatoxin-producing potential.
Collapse
Affiliation(s)
- Paul W Kachapulula
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA; School of Agricultural Sciences, University of Zambia, P.O Box 32379, Lusaka, Zambia
| | - Juliet Akello
- International Institute of Tropical Agriculture (IITA), Lusaka, Zambia
| | | | - Peter J Cotty
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA; USDA-ARS, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
61
|
Distribution and incidence of atoxigenic Aspergillus flavus VCG in tree crop orchards in California: A strategy for identifying potential antagonists, the example of almonds. Int J Food Microbiol 2017; 265:55-64. [PMID: 29127811 DOI: 10.1016/j.ijfoodmicro.2017.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/15/2017] [Accepted: 10/20/2017] [Indexed: 11/21/2022]
Abstract
To identify predominant isolates for potential use as biocontrol agents, Aspergillus flavus isolates collected from soils of almond, pistachio and fig orchard in the Central Valley of California were tested for their membership to 16 atoxigenic vegetative compatibility groups (VCGs), including YV36, the VCG to which AF36, an atoxigenic isolate commercialized in the United States as biopesticide, belongs. A surprisingly large proportion of isolates belonged to YV36 (13.3%, 7.2% and 6.6% of the total almond, pistachio and fig populations, respectively), while the percentage of isolates belonging to the other 15 VCGs ranged from 0% to 2.3%. In order to gain a better insight into the structure and diversity of atoxigenic A. flavus populations and to further identify predominant isolates, seventeen SSR markers were then used to genetically characterize AF36, the 15 type-isolates of the VCGs and 342 atoxigenic isolates of the almond population. There was considerable genetic diversity among isolates with a lack of differentiation among micro-geographical regions or years. Since isolates sharing identical SSR profiles from distinct orchards were rare, we separated them into groups of at least 3 closely-related isolates from distinct orchards that shared identical alleles for at least 15 out of the 17 loci. This led to the identification of 15 groups comprising up to 24 closely-related isolates. The group which contained the largest number of isolates were members of YV36 while five groups were also found to be members of our studied atoxigenic VCGs. These results suggest that these 15 groups, and AF36 in particular, are well adapted to various environmental conditions in California and to tree crops and, as such, are good candidates for use as biocontrol agents.
Collapse
|
62
|
Singh P, Cotty PJ. Aflatoxin contamination of dried red chilies: Contrasts between the United States and Nigeria, two markets differing in regulation enforcement. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
63
|
Chalivendra SC, DeRobertis C, Chang PK, Damann KE. Cyclopiazonic Acid Is a Pathogenicity Factor for Aspergillus flavus and a Promising Target for Screening Germplasm for Ear Rot Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:361-373. [PMID: 28447887 DOI: 10.1094/mpmi-02-17-0026-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Aspergillus flavus, an opportunistic pathogen, contaminates maize and other key crops with carcinogenic aflatoxins (AFs). Besides AFs, A. flavus makes many more secondary metabolites (SMs) whose toxicity in insects or vertebrates has been studied. However, the role of SMs in the invasion of plant hosts by A. flavus remains to be investigated. Cyclopiazonic acid (CPA), a neurotoxic SM made by A. flavus, is a nanomolar inhibitor of endoplasmic reticulum calcium ATPases (ECAs) and a potent inducer of cell death in plants. We hypothesized that CPA, by virtue of its cytotoxicity, may serve as a key pathogenicity factor that kills plant cells and supports the saprophytic life style of the fungus while compromising the host defense response. This proposal was tested by two complementary approaches. A comparison of CPA levels among A. flavus isolates indicated that CPA may be a determinant of niche adaptation, i.e., isolates that colonize maize make more CPA than those restricted only to the soil. Further, mutants in the CPA biosynthetic pathway are less virulent in causing ear rot than their wild-type parent in field inoculation assays. Additionally, genes encoding ECAs are expressed in developing maize seeds and are induced by A. flavus infection. Building on these results, we developed a seedling assay in which maize roots were exposed to CPA, and cell death was measured as Evans Blue uptake. Among >40 maize inbreds screened for CPA tolerance, inbreds with proven susceptibility to ear rot were also highly CPA sensitive. The publicly available data on resistance to silk colonization or AF contamination for many of the lines was also broadly correlated with their CPA sensitivity. In summary, our studies show that i) CPA serves as a key pathogenicity factor that enables the saprophytic life style of A. flavus and ii) maize inbreds are diverse in their tolerance to CPA. Taking advantage of this natural variation, we are currently pursuing both genome-wide and candidate gene approaches to identify novel components of maize resistance to Aspergillus ear rot.
Collapse
Affiliation(s)
| | | | - Perng-Kuang Chang
- 2 USDA-Southern Region Research Center, New Orleans, LA 70124, U.S.A
| | - Kenneth E Damann
- 1 Louisiana State University Ag Center, Baton Rouge, LA 70803, U.S.A.; and
| |
Collapse
|
64
|
Bandyopadhyay R, Ortega-Beltran A, Akande A, Mutegi C, Atehnkeng J, Kaptoge L, Senghor A, Adhikari B, Cotty P. Biological control of aflatoxins in Africa: current status and potential challenges in the face of climate change. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2016.2130] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aflatoxin contamination of crops is frequent in warm regions across the globe, including large areas in sub-Saharan Africa. Crop contamination with these dangerous toxins transcends health, food security, and trade sectors. It cuts across the value chain, affecting farmers, traders, markets, and finally consumers. Diverse fungi within Aspergillus section Flavi contaminate crops with aflatoxins. Within these Aspergillus communities, several genotypes are not capable of producing aflatoxins (atoxigenic). Carefully selected atoxigenic genotypes in biological control (biocontrol) formulations efficiently reduce aflatoxin contamination of crops when applied prior to flowering in the field. This safe and environmentally friendly, effective technology was pioneered in the US, where well over a million acres of susceptible crops are treated annually. The technology has been improved for use in sub-Saharan Africa, where efforts are under way to develop biocontrol products, under the trade name Aflasafe, for 11 African nations. The number of participating nations is expected to increase. In parallel, state of the art technology has been developed for large-scale inexpensive manufacture of Aflasafe products under the conditions present in many African nations. Results to date indicate that all Aflasafe products, registered and under experimental use, reduce aflatoxin concentrations in treated crops by >80% in comparison to untreated crops in both field and storage conditions. Benefits of aflatoxin biocontrol technologies are discussed along with potential challenges, including climate change, likely to be faced during the scaling-up of Aflasafe products. Lastly, we respond to several apprehensions expressed in the literature about the use of atoxigenic genotypes in biocontrol formulations. These responses relate to the following apprehensions: sorghum as carrier, distribution costs, aflatoxin-conscious markets, efficacy during drought, post-harvest benefits, risk of allergies and/or aspergillosis, influence of Aflasafe on other mycotoxins and on soil microenvironment, dynamics of Aspergillus genotypes, and recombination between atoxigenic and toxigenic genotypes in natural conditions.
Collapse
Affiliation(s)
- R. Bandyopadhyay
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, 200001 Ibadan, Nigeria
| | - A. Ortega-Beltran
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, 200001 Ibadan, Nigeria
| | - A. Akande
- IITA, PMB 82, Garki GPO, Kubwa, Abuja, Nigeria
| | - C. Mutegi
- IITA, ILRI campus, P.O. Box 30772-00100, Nairobi, Kenya
| | - J. Atehnkeng
- IITA, Chitedze Research Station, Off Mchinji Road, P.O. Box 30258, Lilongwe 3, Malawi
| | - L. Kaptoge
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, 200001 Ibadan, Nigeria
| | - A.L. Senghor
- La Direction de la Protection des Végétaux (DPV), Km 15, Route de Rufisque, en face Forail, BP 20054, Thiaroye-Dakar, Senegal
| | - B.N. Adhikari
- USDA-ARS, School of Plant Sciences, University of Arizona, P.O. Box 210036, Tucson, AZ 85721-0036, USA
| | - P.J. Cotty
- USDA-ARS, School of Plant Sciences, University of Arizona, P.O. Box 210036, Tucson, AZ 85721-0036, USA
| |
Collapse
|
65
|
Degeneration of aflatoxin gene clusters in Aspergillus flavus from Africa and North America. AMB Express 2016; 6:62. [PMID: 27576895 PMCID: PMC5005231 DOI: 10.1186/s13568-016-0228-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/12/2016] [Indexed: 01/07/2023] Open
Abstract
Aspergillus flavus is the most common causal agent of aflatoxin contamination of food and feed. However, aflatoxin-producing potential varies widely among A. flavus genotypes with many producing no aflatoxins. Some non-aflatoxigenic genotypes are used as biocontrol agents to prevent contamination. Aflatoxin biosynthesis genes are tightly clustered in a highly conserved order. Gene deletions and presence of single nucleotide polymorphisms (SNPs) in aflatoxin biosynthesis genes are often associated with A. flavus inability to produce aflatoxins. In order to identify mechanisms of non-aflatoxigenicity in non-aflatoxigenic genotypes of value in aflatoxin biocontrol, complete cluster sequences of 35 A. flavus genotypes from Africa and North America were analyzed. Inability of some genotypes to produce aflatoxin resulted from deletion of biosynthesis genes. In other genotypes, non-aflatoxigenicity originated from SNP formation. The process of degeneration differed across the gene cluster; genes involved in early biosynthesis stages were more likely to be deleted while genes involved in later stages displayed high frequencies of SNPs. Comparative analyses of aflatoxin gene clusters provides insight into the diversity of mechanisms of non-aflatoxigenicity in A. flavus genotypes used as biological control agents. The sequences provide resources for both diagnosis of non-aflatoxigenicity and monitoring of biocontrol genotypes during biopesticide manufacture and in the environment.
Collapse
|
66
|
Battilani P, Toscano P, Van der Fels-Klerx HJ, Moretti A, Camardo Leggieri M, Brera C, Rortais A, Goumperis T, Robinson T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci Rep 2016; 6:24328. [PMID: 27066906 PMCID: PMC4828719 DOI: 10.1038/srep24328] [Citation(s) in RCA: 319] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/24/2016] [Indexed: 11/28/2022] Open
Abstract
Climate change has been reported as a driver for emerging food and feed safety issues worldwide and its expected impact on the presence of mycotoxins in food and feed is of great concern. Aflatoxins have the highest acute and chronic toxicity of all mycotoxins; hence, the maximal concentration in agricultural food and feed products and their commodities is regulated worldwide. The possible change in patterns of aflatoxin occurrence in crops due to climate change is a matter of concern that may require anticipatory actions. The aim of this study was to predict aflatoxin contamination in maize and wheat crops, within the next 100 years, under a +2 °C and +5 °C climate change scenario, applying a modelling approach. Europe was virtually covered by a net, 50 × 50 km grids, identifying 2254 meshes with a central point each. Climate data were generated for each point, linked to predictive models and predictions were run consequently. Aflatoxin B1 is predicted to become a food safety issue in maize in Europe, especially in the +2 °C scenario, the most probable scenario of climate change expected for the next years. These results represent a supporting tool to reinforce aflatoxin management and to prevent human and animal exposure.
Collapse
Affiliation(s)
- P Battilani
- Università Cattolica del S. Cuore di Piacenza Faculty of Agricultural, Food and Environmental Sciences, Department of Sustainable Crop Production, via Emilia Parmense 84, 29100 Piacenza, Italy
| | - P Toscano
- National Research Council - Institute of Biometeorology (CNR-IBIMET), Via Caproni 8, 50145 Florence, Italy
| | - H J Van der Fels-Klerx
- RIKILT Wageningen UR, Department of Toxicology, Bio-assays &Novel Foods, Akkermaalsbos 2, NL-6708 WB, Wageningen, The Netherlands
| | - A Moretti
- Institute of Sciences of Food Productions, CNR, Via Amendola 122/O, 70126, Bari, Italy
| | - M Camardo Leggieri
- Università Cattolica del S. Cuore di Piacenza Faculty of Agricultural, Food and Environmental Sciences, Department of Sustainable Crop Production, via Emilia Parmense 84, 29100 Piacenza, Italy
| | - C Brera
- Istituto Superiore di Sanità, Veterinary Public Health and Food Safety Department, Viale Regina Elena 299, 00161 Rome, Italy
| | - A Rortais
- European Food Safety Authority, Scientific Committee and Emerging Risks Unit, Via Carlo Magno 1A, 43126 Parma, Italy
| | - T Goumperis
- European Food Safety Authority, Scientific Committee and Emerging Risks Unit, Via Carlo Magno 1A, 43126 Parma, Italy
| | - T Robinson
- European Food Safety Authority, Scientific Committee and Emerging Risks Unit, Via Carlo Magno 1A, 43126 Parma, Italy
| |
Collapse
|
67
|
Ortega‐Beltran A, Grubisha L, Callicott K, Cotty P. The vegetative compatibility group to which the
US
biocontrol agent
Aspergillus flavus
AF
36 belongs is also endemic to Mexico. J Appl Microbiol 2016; 120:986-98. [DOI: 10.1111/jam.13047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/16/2015] [Accepted: 01/03/2016] [Indexed: 10/22/2022]
Affiliation(s)
| | - L.C. Grubisha
- Department of Natural and Applied Sciences University of Wisconsin‐Green Bay Green Bay WI USA
| | - K.A. Callicott
- USDA‐ARS School of Plant Sciences University of Arizona Tucson AZ USA
| | - P.J. Cotty
- USDA‐ARS School of Plant Sciences University of Arizona Tucson AZ USA
| |
Collapse
|
68
|
Atehnkeng J, Donner M, Ojiambo PS, Ikotun B, Augusto J, Cotty PJ, Bandyopadhyay R. Environmental distribution and genetic diversity of vegetative compatibility groups determine biocontrol strategies to mitigate aflatoxin contamination of maize by Aspergillus flavus. Microb Biotechnol 2016; 9:75-88. [PMID: 26503309 PMCID: PMC4720411 DOI: 10.1111/1751-7915.12324] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/28/2015] [Accepted: 08/30/2015] [Indexed: 02/01/2023] Open
Abstract
Maize infected by aflatoxin-producing Aspergillus flavus may become contaminated with aflatoxins, and as a result, threaten human health, food security and farmers' income in developing countries where maize is a staple. Environmental distribution and genetic diversity of A. flavus can influence the effectiveness of atoxigenic isolates in mitigating aflatoxin contamination. However, such information has not been used to facilitate selection and deployment of atoxigenic isolates. A total of 35 isolates of A. flavus isolated from maize samples collected from three agro-ecological zones of Nigeria were used in this study. Ecophysiological characteristics, distribution and genetic diversity of the isolates were determined to identify vegetative compatibility groups (VCGs). The generated data were used to inform selection and deployment of native atoxigenic isolates to mitigate aflatoxin contamination in maize. In co-inoculation with toxigenic isolates, atoxigenic isolates reduced aflatoxin contamination in grain by > 96%. A total of 25 VCGs were inferred from the collected isolates based on complementation tests involving nitrate non-utilizing (nit(-)) mutants. To determine genetic diversity and distribution of VCGs across agro-ecological zones, 832 nit(-) mutants from 52 locations in 11 administrative districts were paired with one self-complementary nitrate auxotroph tester-pair for each VCG. Atoxigenic VCGs accounted for 81.1% of the 153 positive complementations recorded. Genetic diversity of VCGs was highest in the derived savannah agro-ecological zone (H = 2.61) compared with the southern Guinea savannah (H = 1.90) and northern Guinea savannah (H = 0.94) zones. Genetic richness (H = 2.60) and evenness (E5 = 0.96) of VCGs were high across all agro-ecological zones. Ten VCGs (40%) had members restricted to the original location of isolation, whereas 15 VCGs (60%) had members located between the original source of isolation and a distance > 400 km away. The present study identified widely distributed VCGs in Nigeria such as AV0222, AV3279, AV3304 and AV16127, whose atoxigenic members can be deployed for a region-wide biocontrol of toxigenic isolates to reduce aflatoxin contamination in maize.
Collapse
Affiliation(s)
- Joseph Atehnkeng
- Plant Pathology Unit, International Institute of Tropical Agriculture, PMB 5320, Ibadan, Nigeria
| | - Matthias Donner
- Institute for Plant Diseases, Phytopathology and Nematology in Soil Ecosystems, University of Bonn, Bonn, Germany
| | - Peter S Ojiambo
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Babatunde Ikotun
- Department of Crop Protection and Environmental Biology, University of Ibadan, Ibadan, Nigeria
| | - Joao Augusto
- Plant Pathology Unit, International Institute of Tropical Agriculture, PMB 5320, Ibadan, Nigeria
| | - Peter J Cotty
- USDA-ARS, Division of Plant Pathology and Microbiology, Department of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Ranajit Bandyopadhyay
- Plant Pathology Unit, International Institute of Tropical Agriculture, PMB 5320, Ibadan, Nigeria
| |
Collapse
|
69
|
Grubisha LC, Cotty PJ. Genetic Analysis of the Aspergillus flavus Vegetative Compatibility Group to Which a Biological Control Agent That Limits Aflatoxin Contamination in U.S. Crops Belongs. Appl Environ Microbiol 2015; 81:5889-99. [PMID: 26092465 PMCID: PMC4551228 DOI: 10.1128/aem.00738-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/16/2015] [Indexed: 12/27/2022] Open
Abstract
Some filamentous fungi in Aspergillus section Flavi produce carcinogenic secondary compounds called aflatoxins. Aflatoxin contamination is routinely managed in commercial agriculture with strains of Aspergillus flavus that do not produce aflatoxins. These non-aflatoxin-producing strains competitively exclude aflatoxin producers and reshape fungal communities so that strains with the aflatoxin-producing phenotype are less frequent. This study evaluated the genetic variation within naturally occurring atoxigenic A. flavus strains from the endemic vegetative compatibility group (VCG) YV36. AF36 is a strain of VCG YV36 and was the first fungus used in agriculture for aflatoxin management. Genetic analyses based on mating-type loci, 21 microsatellite loci, and a single nucleotide polymorphism (SNP) in the aflC gene were applied to a set of 237 YV36 isolates collected from 1990 through 2005 from desert legumes and untreated fields and from fields previously treated with AF36 across the southern United States. One haplotype dominated across time and space. No recombination with strains belonging to VCGs other than YV36 was detected. All YV36 isolates carried the SNP in aflC that prevents aflatoxin biosynthesis and the mat1-2 idiomorph at the mating-type locus. These results suggest that VCG YV36 has a clonal population structure maintained across both time and space. These results demonstrate the genetic stability of atoxigenic strains belonging to a broadly distributed endemic VCG in both untreated populations and populations where the short-term frequency of VCG YV36 has increased due to applications of a strain used to competitively exclude aflatoxin producers. This work supports the hypothesis that strains of this VCG are not involved in routine genetic exchange with aflatoxin-producing strains.
Collapse
Affiliation(s)
- Lisa C Grubisha
- U.S. Department of Agriculture, Agricultural Research Service, Tucson, Arizona, USA
| | - Peter J Cotty
- U.S. Department of Agriculture, Agricultural Research Service, Tucson, Arizona, USA School of Plant Sciences, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
70
|
Aflatoxin-producing fungi in maize field soils from sea level to over 2000 masl: a three year study in Sonora, Mexico. Fungal Biol 2014; 119:191-200. [PMID: 25813508 DOI: 10.1016/j.funbio.2014.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 11/21/2022]
Abstract
Aflatoxins, highly toxic carcinogens produced by several members of Aspergillus section Flavi, contaminate crops in temperate zones. In the state of Sonora, Mexico, maize is cultivated from 0 to 2100 masl with diverse cultivation practices. This is typical of the nation. In order to design better sampling strategies across Mexico, aflatoxin-producing fungal communities associated with maize production during 2006, 2007, and 2008 in Sonora were investigated in four agro-ecological zones (AEZ) at varying elevation. Fungal communities were dominated by the Aspergillus flavus L strain morphotype (46%), but variation occurred between years and among AEZ. Several atoxigenic isolates with potential to be used as biocontrol agents for aflatoxin mitigation were detected in all AEZ. The characteristics of each AEZ had minimal influences on fungal community structure and should not be a major consideration for future sampling designs for Mexico. Insights into the dynamics and stability of aflatoxin-producing fungal communities across AEZ are discussed.
Collapse
|
71
|
Callicott KA, Cotty PJ. Method for monitoring deletions in the aflatoxin biosynthesis gene cluster of Aspergillus flavus with multiplex PCR. Lett Appl Microbiol 2014; 60:60-5. [PMID: 25274127 DOI: 10.1111/lam.12337] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 11/28/2022]
Abstract
UNLABELLED The report presents a rapid, inexpensive and simple method for monitoring indels with influence on aflatoxin biosynthesis within Aspergillus flavus populations. PCR primers were developed for 32 markers spaced approximately every 5 kb from 20 kb proximal to the aflatoxin biosynthesis gene cluster to the telomere repeat. This region includes gene clusters required for biosynthesis of aflatoxins and cyclopiazonic acid; the resulting data were named cluster amplification patterns (CAPs). CAP markers are amplified in four multiplex PCRs, greatly reducing the cost and time to monitor indels within this region across populations. The method also provides a practical tool for characterizing intraspecific variability in A. flavus not captured with other methods. SIGNIFICANCE AND IMPACT OF THE STUDY Aflatoxins, potent naturally-occurring carcinogens, cause significant agricultural problems. The most effective method for preventing contamination of crops with aflatoxins is through use of atoxigenic strains of Aspergillus flavus to alter the population structure of this species and reduce incidences of aflatoxin producers. Cluster amplification pattern (CAP) is a rapid multiplex PCR method for identifying and monitoring indels associated with atoxigenicity in A. flavus. Compared to previous techniques, the reported method allows for increased resolution, reduced cost, and greater speed in monitoring the stability of atoxigenic strains, incidences of indel mediated atoxigenicity and the structure of A. flavus populations.
Collapse
Affiliation(s)
- K A Callicott
- Food and Feed Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Tucson, AZ, USA
| | | |
Collapse
|
72
|
Role of oxidative stress in Sclerotial differentiation and aflatoxin B1 biosynthesis in Aspergillus flavus. Appl Environ Microbiol 2014; 80:5561-71. [PMID: 25002424 DOI: 10.1128/aem.01282-14] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We show here that oxidative stress is involved in both sclerotial differentiation (SD) and aflatoxin B1 biosynthesis in Aspergillus flavus. Specifically, we observed that (i) oxidative stress regulates SD, as implied by its inhibition by antioxidant modulators of reactive oxygen species and thiol redox state, and that (ii) aflatoxin B1 biosynthesis and SD are comodulated by oxidative stress. However, aflatoxin B1 biosynthesis is inhibited by lower stress levels compared to SD, as shown by comparison to undifferentiated A. flavus. These same oxidative stress levels also characterize a mutant A. flavus strain, lacking the global regulatory gene veA. This mutant is unable to produce sclerotia and aflatoxin B1. (iii) Further, we show that hydrogen peroxide is the main modulator of A. flavus SD, as shown by its inhibition by both an irreversible inhibitor of catalase activity and a mimetic of superoxide dismutase activity. On the other hand, aflatoxin B1 biosynthesis is controlled by a wider array of oxidative stress factors, such as lipid hydroperoxide, superoxide, and hydroxyl and thiyl radicals.
Collapse
|
73
|
|
74
|
Malysheva SV, Arroyo-Manzanares N, Cary JW, Ehrlich KC, Vanden Bussche J, Vanhaecke L, Bhatnagar D, Di Mavungu JD, De Saeger S. Identification of novel metabolites from Aspergillus flavus by high resolution and multiple stage mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:111-20. [PMID: 24405210 DOI: 10.1080/19440049.2013.859743] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The filamentous fungus Aspergillus flavus is one of the most important species in the Aspergillus genus and is distributed worldwide as a prevalent aflatoxin-producing food and feed contaminant. A. flavus contains more than 55 gene clusters that are predicted to encode proteins involved in secondary metabolite production. One of these, cluster 27, contains a polyketide synthase (pks27) gene that encodes a protein that is highly homologous to the aflatoxin cluster PKS. Comparative metabolomics, using ultra-high performance liquid chromatography (UHPLC) coupled to high resolution Orbitrap mass spectrometry (MS) was used to detect metabolites differentially expressed in the A. flavus wild-type and ∆pks27 mutant strains. Metabolite profiling was aided by a statistical differential analysis of MS data using SIEVE software. This differential analysis combined with accurate mass data from the Orbitrap and ion trap multiple stage MS allowed four metabolites to be identified that were produced only by the wild-type culture. These included asparasone A (358 Da), an anthraquinone pigment, and related anthraquinones with masses of 316, 340 and 374 Da. These latter three compounds had similar fragmentation patterns to that of asparasone A. The 316 Da anthraquinone is particularly interesting because it is most likely formed by incorporation of seven malonyl-CoA units rather than the eight units required for the formation of asparasone A. The 340 and 374 Da metabolites are the dehydration and an oxy-derivative of asparasone A, respectively. Asparasone A was also identified in extracts from several other Aspergillus species.
Collapse
Affiliation(s)
- Svetlana V Malysheva
- a Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences , Ghent University , Ghent , Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Review of Microalgae Harvesting via Co-Pelletization with Filamentous Fungus. ENERGIES 2013. [DOI: 10.3390/en6115921] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|