51
|
Sun X, Zheng M, Zhang M, Qian M, Zheng Y, Li M, Cretoiu D, Chen C, Chen L, Popescu LM, Wang X. Differences in the expression of chromosome 1 genes between lung telocytes and other cells: mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells and lymphocytes. J Cell Mol Med 2015; 18:801-10. [PMID: 24826900 PMCID: PMC4119386 DOI: 10.1111/jcmm.12302] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/21/2014] [Indexed: 01/18/2023] Open
Abstract
Telocytes (TCs) are a unique type of interstitial cells with specific, extremely long prolongations named telopodes (Tps). Our previous study showed that TCs are distinct from fibroblasts (Fbs) and mesenchymal stem cells (MSCs) as concerns gene expression and proteomics. The present study explores patterns of mouse TC-specific gene profiles on chromosome 1. We investigated the network of main genes and the potential functional correlations. We compared gene expression profiles of mouse pulmonary TCs, MSCs, Fbs, alveolar type II cells (ATII), airway basal cells (ABCs), proximal airway cells (PACs), CD8+ T cells from bronchial lymph nodes (T-BL) and CD8+ T cells from lungs (T-LL). The functional and feature networks were identified and compared by bioinformatics tools. Our data showed that on TC chromosome 1, there are about 25% up-regulated and 70% down-regulated genes (more than onefold) as compared with the other cells respectively. Capn2, Fhl2 and Qsox1 were over-expressed in TCs compared to the other cells, indicating that biological functions of TCs are mainly associated with morphogenesis and local tissue homoeostasis. TCs seem to have important roles in the prevention of tissue inflammation and fibrogenesis development in lung inflammatory diseases and as modulators of immune cell response. In conclusion, TCs are distinct from the other cell types.
Collapse
Affiliation(s)
- Xiaoru Sun
- Department of Pulmonary Medicine, Fudan University, Zhongshan Hospital, Shanghai Respiratory Research Institute, Shanghai, China; Department of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Yang J, Chi C, Liu Z, Yang G, Shen ZJ, Yang XJ. Ultrastructure damage of oviduct telocytes in rat model of acute salpingitis. J Cell Mol Med 2015; 19:1720-8. [PMID: 25753567 PMCID: PMC4511368 DOI: 10.1111/jcmm.12548] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/08/2015] [Indexed: 12/22/2022] Open
Abstract
Acute salpingitis (AS) is an inflammatory disease which causes severe damage to a subset of classically described cells lining in oviduct wall and contributes to interstitial fibrosis and fertility problems. Telocytes (TCs), a newly discovered peculiar type of stromal cells, have been identified in many organs, including oviduct, with proposed multiple potential bio-functions. However, with recent increasing reports regarding TCs alterations in disease-affected tissues, there is still lack of evidence about TCs involvement in AS-affected oviduct tissues and potential pathophysiological roles. We presently identified normal TCs by their characteristic ultrastructural features and immunophenotype. However, in AS-affected oviduct tissues, TCs displayed multiple ultrastructural damage both in cellular body and prolongations, with obvious loss of TCs and development of tissue fibrosis. Furthermore, TCs lose their interstitial 3-D network connected by homocellular or heterocellular junctions between TCs and adjacent cells. And especially, TCs connected to the activated immunocytes (mononuclear cells, eosinophils) and affected local immune state (repression or activation). Meanwhile, massive neutrophils infiltration and overproduced Inducible Nitric Oxide Synthase (iNOS), COX-2, suggested mechanism of inflammatory-induced TCs damage. Consequently, TCs damage might contribute to AS-induced structural and reproductive functional abnormalities of oviduct, probably via: (i) substances, energy and functional insufficiency, presumably, e.g. TC-specific genetic material profiles, ion channels, cytoskeletal elements, Tps dynamics, etc., (ii) impaired TCs-mediated multicellular signalling, such as homeostasis/angiogenesis, tissue repair/regeneration, neurotransmission, (iii) derangement of 3-D network and impaired mechanical support for TCs-mediated multicellular signals within the stromal compartment, consequently induced interstitial fibrosis, (iv) involvement in local inflammatory process/ immunoregulation and possibly immune-mediated early pregnancy failure.
Collapse
Affiliation(s)
- Jian Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chi Chi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhen Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Yang
- Lab Center, Medical College of Soochow University, Suzhou, China
| | - Zong-Ji Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Jun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
53
|
Roatesi I, Radu BM, Cretoiu D, Cretoiu SM. Uterine Telocytes: A Review of Current Knowledge. Biol Reprod 2015; 93:10. [PMID: 25695721 DOI: 10.1095/biolreprod.114.125906] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 02/10/2015] [Indexed: 01/05/2023] Open
Abstract
Telocytes (TCs), a novel cell type, are briefly defined as interstitial cells with telopodes (Tps). However, a specific immunocytochemical marker has not yet been found; therefore, electron microscopy is currently the only accurate method for identifying TCs. TCs are considered to have a mesenchymal origin. Recently proteomic analysis, microarray-based gene expression analysis, and the micro-RNA signature clearly showed that TCs are different from fibroblasts, mesenchymal stem cells, and endothelial cells. The dynamics of Tps were also revealed, and some electrophysiological properties of TCs were described (such as membrane capacitance, input resistance, membrane resting potential, and absence of action potentials correlated with different ionic currents characteristics), which can be used to distinguish uterine TCs from smooth muscle cells (SMCs). Here, we briefly present the most recent findings on the characteristics of TCs and their functions in human pregnant and nonpregnant uteri.
Collapse
Affiliation(s)
- Iurie Roatesi
- Victor Babeş National Institute of Pathology, Bucharest, Romania Division of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Beatrice Mihaela Radu
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Dragos Cretoiu
- Victor Babeş National Institute of Pathology, Bucharest, Romania Division of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Sanda Maria Cretoiu
- Victor Babeş National Institute of Pathology, Bucharest, Romania Division of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
54
|
Chen Y, Kong J, Wu S. Cholesterol gallstone disease: focusing on the role of gallbladder. J Transl Med 2015; 95:124-31. [PMID: 25502177 DOI: 10.1038/labinvest.2014.140] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/11/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
Gallstone disease (GSD) is one of the most common biliary tract diseases worldwide in which both genetic and environmental factors have roles in its pathogenesis. Biliary cholesterol supersaturation from metabolic defects in the liver is traditionally seen as the main pathogenic factor. Recently, there have been renewed investigative interests in the downstream events that occur in gallbladder lithogenesis. This article focuses on the role of the gallbladder in the pathogenesis of cholesterol GSD (CGD). Various conditions affecting the crystallization process are discussed, such as gallbladder motility, concentrating function, lipid transport, and an imbalance between pro-nucleating and nucleation inhibiting proteins.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Kong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuodong Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
55
|
Tan YY, Ji ZL, Zhao G, Jiang JR, Wang D, Wang JM. Decreased SCF/c-kit signaling pathway contributes to loss of interstitial cells of Cajal in gallstone disease. Int J Clin Exp Med 2014; 7:4099-4106. [PMID: 25550919 PMCID: PMC4276177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/23/2014] [Indexed: 06/04/2023]
Abstract
Cholecystolithiasis is a common disease, and gallbladder dysmotility is considered as a pivotal pathogenesis. Interstitial cells of Cajal (ICCs) serve as pacemakers and mediators of neuromuscular transmission for gastrointestinal motility. Reduction of ICCs has been reported in gallstone diseases. However, there are no reasonable mechanisms for the cholecystolithiasis-associated loss of ICCs in humans. Stem cell factor (SCF) and its ligand c-kit are essential for normal development and survival of ICCs. To date, little is known about the SCF/c-kit signaling pathway in gallstone diseases. The purpose of this study was to investigate the role of the SCF/c-kit signaling pathway in the loss of ICCs in cholecystolithiasis. Data from 18 patients with gallstones and 14 individuals without gallstones were compared. The gallbladder contractility was assessed by measuring the gallbladder ejection fraction (GEF) ultrasonographically. Tissues samples were obtained during surgery, changes of ICC quantities were analyzed by immunohistochemistry, and the mRNA and protein expression of SCF and c-kit were detected by Real-Time PCR and Western-blot analysis. Compared with the controls, the GEF was significantly reduced in the gallstone group, and decreased number of ICCs was present obviously in the gallstone group. Furthermore, the mRNA and protein expression of SCF and c-kit were significantly attenuated in the gallstone group. These data indicate that gallbladder motility may be affected by reduction of ICCs in gallstone disease. Additionally, the decreased of SCF/c-kit signaling pathway play an important role in the loss of ICCs.
Collapse
Affiliation(s)
- Yu-Yan Tan
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital, College of Medicine & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast UniversityNanjing 210009, Jiangsu, China
| | - Zhen-Ling Ji
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital, College of Medicine & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast UniversityNanjing 210009, Jiangsu, China
| | - Gang Zhao
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital, College of Medicine & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast UniversityNanjing 210009, Jiangsu, China
| | - Jia-Rui Jiang
- Department of General Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan 410000, China
| | - Dong Wang
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital, College of Medicine & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast UniversityNanjing 210009, Jiangsu, China
| | - Jing-Min Wang
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital, College of Medicine & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast UniversityNanjing 210009, Jiangsu, China
| |
Collapse
|
56
|
Zheng M, Sun X, Zhang M, Qian M, Zheng Y, Li M, Cretoiu SM, Chen C, Chen L, Cretoiu D, Popescu LM, Fang H, Wang X. Variations of chromosomes 2 and 3 gene expression profiles among pulmonary telocytes, pneumocytes, airway cells, mesenchymal stem cells and lymphocytes. J Cell Mol Med 2014; 18:2044-60. [PMID: 25278030 PMCID: PMC4244019 DOI: 10.1111/jcmm.12429] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/18/2014] [Indexed: 01/11/2023] Open
Abstract
Telocytes (TCs) were identified as a distinct cellular type of the interstitial tissue and defined as cells with extremely long telopodes (Tps). Our previous data demonstrated patterns of mouse TC-specific gene profiles on chromosome 1. The present study focuses on the identification of characters and patterns of TC-specific or TC-dominated gene expression profiles in chromosome 2 and 3, the network of principle genes and potential functional association. We compared gene expression profiles of pulmonary TCs, mesenchymal stem cells, fibroblasts, alveolar type II cells, airway basal cells, proximal airway cells, CD8+T cells from bronchial lymph nodes (T-BL), and CD8+ T cells from lungs (T-LL). We identified that 26 or 80 genes of TCs in chromosome 2 and 13 or 59 genes of TCs up-or down-regulated in chromosome 3, as compared with other cells respectively. Obvious overexpression of Myl9 in chromosome 2 of TCs different from other cells, indicates that biological functions of TCs are mainly associated with tissue/organ injury and ageing, while down-expression of Pltp implies that TCs may be associated with inhibition or reduction of inflammation in the lung. Dominant overexpression of Sh3glb1, Tm4sf1 or Csf1 in chromosome 3 of TCs is mainly associated with tumour promotion in lung cancer, while most down-expression of Pde5 may be involved in the development of pulmonary fibrosis and other acute and chronic interstitial lung disease.
Collapse
Affiliation(s)
- Minghuan Zheng
- Biomedical Research Center, Minhang Hospital & Zhongshan Hospital, Fudan University Center for Clinical Bioinformatics, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Qiao T, Ma RH, Luo ZL, Yang LQ, Luo XB, Zheng PM. Clonorcis sinensis eggs are associated with calcium carbonate gallbladder stones. Acta Trop 2014; 138:28-37. [PMID: 24945791 DOI: 10.1016/j.actatropica.2014.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 06/03/2014] [Accepted: 06/09/2014] [Indexed: 12/21/2022]
Abstract
Calcium carbonate gallbladder stones were easily neglected because they were previously reported as a rare stone type in adults. The aim of this study was to investigate the relationship between calcium carbonate stones and Clonorchis sinensis infection. A total of 598 gallbladder stones were studied. The stone types were identified by FTIR spectroscopy. The C. sinensis eggs and DNA were detected by microscopic examination and real-time fluorescent PCR respectively. And then, some egg-positive stones were randomly selected for further SEM examination. Corresponding clinical characteristics of patients with different types of stones were also statistically analyzed. The detection rate of C. sinensis eggs in calcium carbonate stone, pigment stone, mixed stone and cholesterol stone types, as well as other stone types was 60%, 44%, 36%, 6% and 30%, respectively, which was highest in calcium carbonate stone yet lowest in cholesterol stone. A total of 182 stones were egg-positive, 67 (37%) of which were calcium carbonate stones. The C. sinensis eggs were found adherent to calcium carbonate crystals by both light microscopy and scanning electron microscopy. Patients with calcium carbonate stones were mainly male between the ages of 30 and 60, the CO2 combining power of patients with calcium carbonate stones were higher than those with cholesterol stones. Calcium carbonate gallbladder stones are not rare, the formation of which may be associated with C. sinensis infection.
Collapse
Affiliation(s)
- Tie Qiao
- The Second People's Hospital of Panyu, Panyu, Guangzhou 511430, Guangdong Province, PR China; Institute of Gallbladder Disease of Panyu, Guangzhou 511430, Guangdong Province, PR China.
| | - Rui-hong Ma
- The Sixth People's Hospital of Nansha, Nansha, Guangzhou 511470, Guangdong Province, PR China
| | - Zhen-liang Luo
- The Sixth People's Hospital of Nansha, Nansha, Guangzhou 511470, Guangdong Province, PR China
| | - Liu-qing Yang
- Institute of Gallbladder Disease of Panyu, Guangzhou 511430, Guangdong Province, PR China; The Sixth People's Hospital of Nansha, Nansha, Guangzhou 511470, Guangdong Province, PR China
| | - Xiao-bing Luo
- The Sixth People's Hospital of Nansha, Nansha, Guangzhou 511470, Guangdong Province, PR China
| | - Pei-ming Zheng
- The Sixth People's Hospital of Nansha, Nansha, Guangzhou 511470, Guangdong Province, PR China
| |
Collapse
|
58
|
Cretoiu SM, Popescu LM. Telocytes revisited. Biomol Concepts 2014; 5:353-69. [DOI: 10.1515/bmc-2014-0029] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022] Open
Abstract
AbstractTelocytes (TCs) are a novel interstitial (stromal) cell type described in many tissues and organs (www.telocytes.com). A TC is characterized by a small cell body (9–15 μm) and a variable number (one to five) of extremely long and thin telopodes (Tps), with alternating regions of podomers (∼80 nm) and podoms (250–300 nm). Tps are interconnected by homo- and heterocellular junctions and form three-dimensional networks. Moreover, Tps release three types of extracellular vesicles: exosomes, ectosomes, and multivesicular cargos, which are involved in paracrine signaling. Different techniques have been used to characterize TCs, from classical methods (light microscopy, electron microscopy) to modern ‘omics’. It is considered that electron microscopy is essential for their identification, and CD34/PDGFRα double immunohistochemistry can orientate the diagnosis. Functional evidence is accumulating that TCs may be intimately involved in the maintenance of tissue homeostasis and renewal by short- and long-distance intercellular communication. This review focuses on the most recent findings regarding TC features and locations and the principal hypotheses about their functions in normal and diseased organs. TC involvement in regenerative medicine is also considered.
Collapse
|
59
|
Cretoiu SM, Radu BM, Banciu A, Banciu DD, Cretoiu D, Ceafalan LC, Popescu LM. Isolated human uterine telocytes: immunocytochemistry and electrophysiology of T-type calcium channels. Histochem Cell Biol 2014; 143:83-94. [PMID: 25212658 PMCID: PMC4286651 DOI: 10.1007/s00418-014-1268-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2014] [Indexed: 12/23/2022]
Abstract
Recently, telocytes (TCs) were described as a new cell type in the interstitial space of many organs, including myometrium. TCs are cells with very long, distinctive extensions named telopodes (Tps). It is suggested that TCs play a major role in intercellular signaling, as well as in morphogenesis, especially in morphogenetic bioelectrical signaling. However, TC plasma membrane is yet unexplored regarding the presence and activity of ion channels and pumps. Here, we used a combination of in vitro immunofluorescence and patch-clamp technique to characterize T-type calcium channels in TCs. Myometrial TCs were identified in cell culture (non-pregnant and pregnant myometrium) as cells having very long Tps and which were positive for CD34 and platelet-derived growth factor receptor-α. Immunofluorescence analysis of the subfamily of T-type (transient) calcium channels CaV3.1 and CaV3.2 presence revealed the expression of these ion channels on the cell body and Tps of non-pregnant and pregnant myometrium TCs. The expression in TCs from the non-pregnant myometrium is less intense, being confined to the cell body for CaV3.2, while CaV3.1 was expressed both on the cell body and in Tps. Moreover, the presence of T-type calcium channels in TCs from non-pregnant myometrium is also confirmed by applying brief ramp depolarization protocols. In conclusion, our results show that T-type calcium channels are present in TCs from human myometrium and could participate in the generation of endogenous bioelectric signals responsible for the regulation of the surrounding cell behavior, during pregnancy and labor.
Collapse
Affiliation(s)
- Sanda Maria Cretoiu
- Division of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474, Bucharest, Romania,
| | | | | | | | | | | | | |
Collapse
|
60
|
Zheng Y, Cretoiu D, Yan G, Cretoiu SM, Popescu LM, Wang X. Comparative proteomic analysis of human lung telocytes with fibroblasts. J Cell Mol Med 2014; 18:568-89. [PMID: 24674459 PMCID: PMC4000110 DOI: 10.1111/jcmm.12290] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/24/2014] [Indexed: 12/22/2022] Open
Abstract
Telocytes (TCs) were recently described as interstitial cells with very long prolongations named telopodes (Tps; http://www.telocytes.com). Establishing the TC proteome is a priority to show that TCs are a distinct type of cells. Therefore, we examined the molecular aspects of lung TCs by comparison with fibroblasts (FBs). Proteins extracted from primary cultures of these cells were analysed by automated 2-dimensional nano-electrospray ionization liquid chromatography tandem mass spectrometry (2D Nano-ESI LC-MS/MS). Differentially expressed proteins were screened by two-sample t-test (P < 0.05) and fold change (>2), based on the bioinformatics analysis. We identified hundreds of proteins up- or down-regulated, respectively, in TCs as compared with FBs. TC proteins with known identities are localized in the cytoskeleton (87%) and plasma membrane (13%), while FB up-regulated proteins are in the cytoskeleton (75%) and destined to extracellular matrix (25%). These identified proteins were classified into different categories based on their molecular functions and biological processes. While the proteins identified in TCs are mainly involved in catalytic activity (43%) and as structural molecular activity (25%), the proteins in FBs are involved in catalytic activity (24%) and in structural molecular activity, particularly synthesis of collagen and other extracellular matrix components (25%). Anyway, our data show that TCs are completely different from FBs. In conclusion, we report here the first extensive identification of proteins from TCs using a quantitative proteomics approach. Protein expression profile shows many up-regulated proteins e.g. myosin-14, periplakin, suggesting that TCs might play specific roles in mechanical sensing and mechanochemical conversion task, tissue homoeostasis and remodelling/renewal. Furthermore, up-regulated proteins matching those found in extracellular vesicles emphasize TCs roles in intercellular signalling and stem cell niche modulation. The novel proteins identified in TCs will be an important resource for further proteomic research and it will possibly allow biomarker identification for TCs. It also creates the premises for understanding the pathogenesis of some lung diseases involving TCs.
Collapse
Affiliation(s)
- Yonghua Zheng
- Department of Respirology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
61
|
Yang Y, Sun W, Wu SM, Xiao J, Kong X. Telocytes in human heart valves. J Cell Mol Med 2014; 18:759-65. [PMID: 24674389 PMCID: PMC4119382 DOI: 10.1111/jcmm.12285] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/17/2014] [Indexed: 12/14/2022] Open
Abstract
Valve interstitial cells (VICs) are responsible for maintaining the structural integrity and dynamic behaviour of the valve. Telocytes (TCs), a peculiar type of interstitial cells, have been recently identified by Popescu's group in epicardium, myocardium and endocardium (visit www.telocytes.com). The presence of TCs has been identified in atria, ventricles and many other tissues and organ, but not yet in heart valves. We used transmission electron microscopy and immunofluorescence methods (double labelling for CD34 and c-kit, or vimentin, or PDGF Receptor-β) to provide evidence for the existence of TCs in human heart valves, including mitral valve, tricuspid valve and aortic valve. TCs are found in both apex and base of heart valves, with a similar density of 27-28 cells/mm(2) in mitral valve, tricuspid valve and aortic valve. Since TCs are known for the participation in regeneration or repair biological processes, it remains to be determined how TCs contributes to the valve attempts to re-establish normal structure and function following injury, especially a complex junction was found between TCs and a putative stem (progenitor) cell.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | |
Collapse
|
62
|
Milia AF, Ruffo M, Manetti M, Rosa I, Conte D, Fazi M, Messerini L, Ibba-Manneschi L. Telocytes in Crohn's disease. J Cell Mol Med 2013; 17:1525-36. [PMID: 24251911 PMCID: PMC3914651 DOI: 10.1111/jcmm.12177] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/02/2013] [Indexed: 12/19/2022] Open
Abstract
Crohn’s disease (CD) is a relapsing chronic inflammatory disorder that may involve all the gastrointestinal tract with a prevalence of terminal ileum. Intestinal lesions have a characteristic discontinuous and segmental distribution and may affect all layers of the gut wall. Telocytes (TC), a peculiar type of stromal cells, have been recently identified in a variety of tissues and organs, including gastrointestinal tract of humans and mammals. Several roles have been proposed for TC, including mechanical support, spatial relationships with different cell types, intercellular signalling and modulation of intestinal motility. The aim of our study was to investigate the presence and distribution of TC in disease-affected and -unaffected ileal specimens from CD patients compared with controls. TC were identified by CD34/PDGFRα immunohistochemistry. In affected CD specimens TC disappeared, particularly where fibrosis and architectural derangement of the intestinal wall were observed. In the thickened muscularis mucosae and submucosa, few TC entrapped in the fibrotic extracellular matrix were found. A discontinuous network of TC was present around smooth muscle bundles, ganglia and enteric strands in the altered muscularis propria. At the myenteric plexus, the loss of TC network was paralleled by the loss of interstitial cells of Cajal network. In the unaffected CD specimens, TC were preserved in their distribution. Our results suggest that in CD the loss of TC might have important pathophysiological implications contributing to the architectural derangement of the intestinal wall and gut dysmotility. Further functional studies are necessary to better clarify the role of TC loss in CD pathophysiology.
Collapse
Affiliation(s)
- Anna Franca Milia
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Chen X, Zheng Y, Manole CG, Wang X, Wang Q. Telocytes in human oesophagus. J Cell Mol Med 2013; 17:1506-12. [PMID: 24188731 PMCID: PMC4117563 DOI: 10.1111/jcmm.12149] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/24/2013] [Indexed: 12/17/2022] Open
Abstract
Telocytes (TCs), a new type of interstitial cells, were identified in many different organs and tissues of mammalians and humans. In this study, we show the presence, in human oesophagus, of cells having the typical features of TCs in lamina propria of the mucosa, as well as in muscular layers. We used transmission electron microscopy (TEM), immunohistochemistry (IHC) and primary cell culture. Human oesophageal TCs present a small cell body with 2–3 very long Telopodes (Tps). Tps consist of an alternation of thin segments (podomers) and thick segments (podoms) and have a labyrinthine spatial arrangement. Tps establish close contacts (‘stromal synapses’) with other neighbouring cells (e.g. lymphocytes, macrophages). The ELISA testing of the supernatant of primary culture of TCs indicated that the concentrations of VEGF and EGF increased progressively. In conclusion, our study shows the existence of typical TCs at the level of oesophagus (mucosa, submucosa and muscular layer) and suggests their possible role in tissue repair.
Collapse
Affiliation(s)
- Xiaoke Chen
- Department of thoracic surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|