51
|
Yu SY, Dong B, Fang ZF, Hu XQ, Tang L, Zhou SH. Knockdown of lncRNA AK139328 alleviates myocardial ischaemia/reperfusion injury in diabetic mice via modulating miR-204-3p and inhibiting autophagy. J Cell Mol Med 2018; 22:4886-4898. [PMID: 30047214 PMCID: PMC6156366 DOI: 10.1111/jcmm.13754] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/10/2018] [Indexed: 01/13/2023] Open
Abstract
This study was aimed at investigating the effects of lncRNA AK139328 on myocardial ischaemia/reperfusion injury (MIRI) in diabetic mice. Ischaemia/reperfusion (I/R) model was constructed in normal mice (NM) and diabetic mice (DM). Microarray analysis was utilized to identify lncRNA AK139328 overexpressed in DM after myocardial ischaemia/reperfusion (MI/R). RT‐qPCR assay was utilized to investigate the expressions of lncRNA AK139328 and miR‐204‐3p in cardiomyocyte and tissues. Left ventricular end diastolic diameter (LVEDD), left ventricular end systolic diameter (LVESD), left ventricular ejection fraction (LVEF) and fractioning shortening (FS) were obtained by transthoracic echocardiography. Haematoxylin‐eosin (HE) staining and Masson staining were utilized to detect the damage of myocardial tissues degradation of myocardial fibres and integrity of myocardial collagen fibres. Evans Blue/TTC staining was used to determine the myocardial infarct size. TUNEL staining was utilized to investigate cardiomyocyte apoptosis. The targeted relationship between lncRNA AK139328 and miR‐204‐3p was confirmed by dual‐luciferase reporter gene assay. MTT assay was used for analysis of cardiomyocyte proliferation. Western blot was utilized to investigate the expression of alpha smooth muscle actin (α‐SMA), Atg7, Atg5, LC3‐II/LC3‐I and p62 marking autophagy. Knockdown of lncRNA AK139328 relieved myocardial ischaemia/reperfusion injury in DM and inhibited cardiomyocyte autophagy as well as apoptosis of DM. LncRNA AK139328 modulated miR‐204‐3p directly. MiR‐204‐3p and knockdown of lncRNA AK139328 relieved hypoxia/reoxygenation injury via inhibiting cardiomyocyte autophagy. Silencing lncRNA AK139328 significantly increased miR‐204‐3p expression and inhibited cardiomyocyte autophagy, thereby attenuating MIRI in DM.
Collapse
Affiliation(s)
- Si-Yang Yu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Dong
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhen-Fei Fang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin-Qun Hu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liang Tang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sheng-Hua Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
52
|
Wu S, Chang G, Gao L, Jiang D, Wang L, Li G, Luo X, Qin S, Guo X, Zhang D. Trimetazidine protects against myocardial ischemia/reperfusion injury by inhibiting excessive autophagy. J Mol Med (Berl) 2018; 96:791-806. [PMID: 29955901 DOI: 10.1007/s00109-018-1664-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/16/2018] [Accepted: 06/21/2018] [Indexed: 12/25/2022]
Abstract
Trimetazidine (TMZ) has been demonstrated to have protective effects against myocardial ischemia/reperfusion (MI/R) injury. In the present study, we investigated the effects and the underlying mechanisms of TMZ on autophagy during MI/R in vivo and in vitro. In the in vivo study, an animal model of MI/R was induced by coronary occlusion. TMZ (20 mg/kg/day) protected the rat hearts from MI/R-induced heart failure by increasing ejection fraction and fractional shortening and decreasing end-systolic volume, end-diastolic volume, left ventricular (LV) internal diameter at systole, and LV internal diameter at diastole; it alleviated myocardial injury and oxidative stress by decreasing LDH, creatine kinase MB isoenzyme, ROS, and MDA levels and increasing SOD and glutathione peroxidase levels in plasma. TMZ also reduced myocardial infarct size and apoptosis. Moreover, TMZ markedly inhibited MI/R-induced autophagy by decreasing the protein and messenger RNA levels of LC3-II, Beclin1, ATG5, and ATG7 and the number of autophagosomes and by involving the AKT/mTOR pathway. Further, in the in vitro experiments, H9c2 cells were incubated with TMZ (40 μM) to explore the direct effects of TMZ following exposure to hypoxia and reoxygenation (H/R). TMZ increased cell viability and the concentration of intracellular SOD and inhibited H/R-induced cell apoptosis and ROS production. Moreover, TMZ decreased the number of autophagosomes and autophagy-related protein expression; it also upregulated p-AKT and p-mTOR expression. In addition, TMZ augmented Bcl-2 protein expression and diminished Bax protein expression, the Bax/Bcl-2 rate, and cleaved caspase-3 level. However, these effects on H9c2 cells were notably abolished by the PI3K inhibitor LY294002. In conclusion, our results showed that TMZ inhibited I/R-induced excessive autophagy and apoptosis, which was, at least partly, mediated by activating the AKT/mTOR pathway. KEY MESSAGES TMZ improved cardiac function, alleviated myocardial injury and oxidative stress, and reduced the myocardial infarct area and apoptosis. TMZ inhibited MI/R-induced myocardial autophagy, H/R-induced H9c2 cell apoptosis, and autophagy flux. The effect of TMZ on autophagy was repressed by LY294002. TMZ protected against MI/R injury by inhibiting excessive autophagy via activating the AKT/mTOR pathway.
Collapse
Affiliation(s)
- Shiyong Wu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Guanglei Chang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lei Gao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dan Jiang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liyou Wang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Guoxing Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xuexiu Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shu Qin
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xueli Guo
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Dongying Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
53
|
Wang R, Wang J, Song F, Li S, Yuan Y. Tanshinol ameliorates CCl 4-induced liver fibrosis in rats through the regulation of Nrf2/HO-1 and NF-κB/IκBα signaling pathway. Drug Des Devel Ther 2018; 12:1281-1292. [PMID: 29844659 PMCID: PMC5961642 DOI: 10.2147/dddt.s159546] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tanshinol, a water-soluble component isolated from Salvia miltiorrhiza Bunge, has a variety of biological activities involving anti-fibrotic effect. However, the exact role and the underlying mechanisms remain largely unclear. This study mainly focused on the anti-hepatic fibrotic activities and mechanisms of tanshinol on carbon tetrachloride (CCl4)-induced liver fibrosis in rats via anti-oxidative and anti-inflammation pathways. The rats were divided into 4 groups as follows: control, model, tanshinol 20 mg/kg, and tanshinol 40 mg/kg. Except for the control group, CCl4 was used to induce liver fibrosis processing for 8 weeks, meanwhile rats in tanshinol groups were intraperitoneally injected with additional tanshinol. Control group simultaneously received the same volumes of olive oil and saline. The potentially protective effect and mechanisms of tanshinol on liver fibrosis in rats were evaluated. The serum levels of alanine aminotransferase, aspartate aminotransferase, and total bilirubin were obviously lower in the tanshinol treatment groups related to model group. Compared with the model group, the levels of hyaluronic acid, type IV collagen, Laminin (LN), and procollagen III peptide (PIIIP) in serum were significantly decreased after tanshinol treatment. Furthermore, tanshinol could regulate Nrf2/HO-1 signaling pathway and increase the level of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and also decrease the level of malondialdehyde (MDA) to against damage induced by oxidative stress. Simultaneously tanshinol could regulate nuclear factor kappa B signaling pathway to inhibit expression of inflammation factors, including transforming growth factor-β, tumor necrosis factor-α, Cox-2, interleukin-1β, and interleukin-6. In summary, our research demonstrated that tanshinol has protective effect on CCl4-induced liver fibrosis via inhibiting oxidative stress and inflammation, which may be associated with the regulation of nuclear factor erythroid2-related factor 2/hemeoxygenase-a and nuclear factor kappa B/inhibitor of kappa B alpha signaling pathways.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pharmacy, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Department of Pharmacy, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuxing Song
- Department of Pharmacy, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengnan Li
- Department of Pharmacy, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
54
|
Yao C, Li G, Cai M, Qian Y, Wang L, Xiao L, Thaiss F, Shi B. Expression and genetic polymorphism of necroptosis related protein RIPK1 is correlated with severe hepatic ischemia-reperfusion injury and prognosis after hepatectomy in hepatocellular carcinoma patients. Cancer Biomark 2018; 20:23-29. [PMID: 28759952 DOI: 10.3233/cbm-170525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The goal of our study was to assess the prognostic impact of the necroptosis relative protein RIPK1 genetic polymorphism in ischemia-reperfusion injury and survival after hepatectomy in hepatocellular carcinoma (HCC) patients. METHODS In this study, expression of RIPK1 and its genetic polymorphism(rs2272990) were examined in plasma of 44 HCC patients. All these patients were undergoing partial hepatectomy. The prognostic values of RIPK1 genetic polymorphism for tumor development and survival, and ischemia-reperfusion injury after hepatectomy were further determined. RESULTS Plasma RIPK1 expressions were significantly increased in HCC patients, compared to the healthy control group. Totally 19 patients have the GA + AA genotype in the RIPK1 rs2272990 SNP site and 25 have GG genotype. There were no statistically significant intergroup differences observed in age, gender, AFP value, HBV positive, tumor size or cirrhosis. GG genotype had positive correlation with TNM classification (p= 0.033) and lymphatic metastasis (p= 0.027) and was significantly associated with severe hepatic ischemia-reperfusion injury and decreased survival rate after hepatectomy. CONCLUSION In conclusion, the RIPK1 polymorphism is an indicator of hepatic injury and a novel prognostic biomarker for tumor development and survival of HCC recipients after hepatectomy.
Collapse
Affiliation(s)
- Chen Yao
- Organ Transplant Institute, Beijing, China.,Organ Transplant Institute, Beijing, China
| | - Gang Li
- Organ Transplant Institute, Beijing, China.,Organ Transplant Institute, Beijing, China
| | - Ming Cai
- Organ Transplant Institute, Beijing, China
| | | | - Liqin Wang
- Organ Transplant Institute, Beijing, China
| | - Li Xiao
- Organ Transplant Institute, Beijing, China
| | - Friedrich Thaiss
- IIII Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Bingyi Shi
- Organ Transplant Institute, Beijing, China
| |
Collapse
|
55
|
Abad C, Castaño-Ruiz M, Clavo B, Urso S. Daño por isquemia-reperfusión miocárdico en cirugía cardiaca con circulación extracorpórea. Aspectos bioquímicos. CIRUGIA CARDIOVASCULAR 2018. [DOI: 10.1016/j.circv.2017.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
56
|
Autophagy involved in the activation of the Nrf2-antioxidant system in testes of heat-exposed mice. J Therm Biol 2018; 71:142-152. [DOI: 10.1016/j.jtherbio.2017.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 11/01/2017] [Accepted: 11/12/2017] [Indexed: 01/21/2023]
|
57
|
Abstract
The tolerance to adriamycin of cancer as a common and stubborn obstacle occurred during curing breast cancer patients needs to be overcome. In the present study, we explored whether inhibiting the glucose transporter 1 (GLUT1) could restore the activity of adriamycin in breast cancer cell line MCF-7 resistant to adriamycin and the possible underlying mechanisms. Adriamycin-resistant cell line MCF-7/ADR was selected stepwise from the parental MCF-7 cells and the level of GLUT1 was measured. Then, the MCF-7/ADR cells were incubated with adriamycin, WZB117 (a specific GLUT1 inhibitor), or both. The viability, proliferation and apoptosis of cells and the level of glucose and lactate were measured, respectively. Finally, the cytosolic and mitochondrial proteins were isolated and the activity of the adenosine monophosphate-activated protein kinase (AMPK)/phosphorylated AMPK, mammalian target of rapamycin (mTOR)/phosphorylated mTOR, and apoptotic-related protein BCL-2-associated X protein (BAX), Bcl-2 was assayed by western blot. We found that WZB117 resensitized MCF-7/ADR to adriamycin and increased BAX translocated to mitochondria, which through activation of AMPK and inhibition of mTOR in a high probability. Inhibition of the GLUT1 could partially restore the antineoplastic effects of adriamycin in the adriamycin-resistant MCF-7 cell line possibly through activating the AMPK, downregulating the mTOR pathway, and increasing the BAX translocation to mitochondria.
Collapse
|
58
|
Britto RMD, Silva-Neto JAD, Mesquita TRR, Vasconcelos CMLD, de Almeida GKM, Jesus ICGD, Santos PHD, Souza DS, Miguel-Dos-Santos R, de Sá LA, Dos Santos FSM, Pereira-Filho RN, Albuquerque-Júnior RLC, Quintans-Júnior LJ, Guatimosim S, Lauton-Santos S. Myrtenol protects against myocardial ischemia-reperfusion injury through antioxidant and anti-apoptotic dependent mechanisms. Food Chem Toxicol 2017; 111:557-566. [PMID: 29208507 DOI: 10.1016/j.fct.2017.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/16/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
Abstract
Myrtenol is a monoterpene with multiple pharmacological activities. However, although monoterpenes have been proposed to play beneficial roles in a variety of cardiac disorders, pharmacological actions of myrtenol in the heart are not yet reported. Hence, the aim of this study was to evaluate whether myrtenol promotes cardioprotection against myocardial ischemia-reperfusion (IR) injury, and the mechanisms involved in these effects. Male Wistar rats were orally treated for seven consecutive days with myrtenol (50 mg/kg) or N-acetyl cysteine (1.200 mg/kg, NAC). Afterward, hearts were subjected to myocardial IR injury. Here, we show that the severe impairment of contractile performance induced by IR was significantly prevented by myrtenol or NAC. Moreover, myrtenol abolished aberrant electrocardiographic waveform (ST-segment elevation), as well as reduced life-threatening arrhythmias and infarct size induced by IR injury. Importantly, myrtenol fully prevented the massive increase of cardiac reactive oxygen species generation and oxidative stress damage. Accordingly, myrtenol restored the impairment of endogenous antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase and reductase) activities and balance of pro- and anti-apoptotic pathways (Bax and Bcl-2), associated with decreased apoptotic cells. Taken together, our data show that myrtenol promotes cardioprotection against IR injury through attenuation of oxidative stress and inhibition of pro-apoptotic pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Diego Santos Souza
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Lucas Andrade de Sá
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | | | | | | - Silvia Guatimosim
- Departments of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
59
|
Cardioprotective Effect of Danshensu against Ischemic/Reperfusion Injury via c-Subunit of ATP Synthase Inhibition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7986184. [PMID: 29250127 PMCID: PMC5698818 DOI: 10.1155/2017/7986184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/02/2017] [Accepted: 10/18/2017] [Indexed: 11/17/2022]
Abstract
Mitochondrial permeability transition pore (MPTP) opening is the main culprit of ischemic/reperfusion (IR) injury. It is reported that c-subunit of ATP synthase is the core component of MPTP. Danshensu (DSS), a monomer isolated from the traditional Chinese herb Danshen, has showed cardioprotective effect against IR injury through unknown mechanism. In this study, rat hearts were suspended in Langendorff instrument and perfused with Krebs-Henseleit (KH) buffer containing DSS for 60 minutes, followed by 30 minutes of global ischemia. Parameters including heart rate, left ventricular developed pressure, and the rate of left ventricle diastolic pressure change were recorded to assess their cardiac function. All these indexes were improved in DSS group. The rate of cardiomyocytes apoptosis and MPTP opening were both inhibited in DSS group. In addition, DSS administration leads to downregulation of c-subunit of ATP synthase in both mRNA and protein levels. Consistently, when c-subunit of ATP synthase was overexpressed in H9C2 cells through pcDNA3/5G1 plasmid transfection, MPTP opening was enhanced when the cardioprotective effect of DSS also tapers. In conclusion, DSS could alleviate cardiac IR injury via inhibiting c-subunit of ATP synthase expression.
Collapse
|
60
|
Wang D, Yu W, Liu Y, Zhong G, Zhao Z, Yan X, Liu Q. Roles of Autophagy in Ischemic Heart Diseases and the Modulatory Effects of Chinese Herbal Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1401-1419. [PMID: 28946768 DOI: 10.1142/s0192415x17500768] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Autophagy is an evolutionarily conserved degradation process which eliminates dysfunctional proteins and cytoplasmic components to maintain homeostasis for cell survival. Increasing evidence has demonstrated the modulatory role of autophagy in ischemic heart diseases (IHDs). Traditionally, this process has been recognized as having protective functions, such as inhibiting atherosclerosis progression and reducing cell death during the ischemic phase. However, recent studies have suggested its dual roles in myocardial ischemia/reperfusion (MIR) injury. Excessive autophagy may play a deleterious role in cardiac function, due to overwhelming clearance of cellular constituents and proteins. Hence modulation of autophagy to increase cardiomyocyte survival and improve cardiac function is meaningful for the treatment of IHD. Chinese herbal medicine, including extractive compounds and patented drugs, has shown its potential role in treating IHD by addressing autophagy-related mechanisms. This review summarizes the updated knowledge on the molecular basis and modulatory role of autophagy in IHD and the recent progress of Chinese herbal medicine in its treatment.
Collapse
Affiliation(s)
- Dawei Wang
- * The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.,† Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China
| | - Weiqing Yu
- ‡ Department of Cardiology, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510095, China
| | - Yuntao Liu
- * The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.,† Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China
| | - Guofu Zhong
- * The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhen Zhao
- * The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xia Yan
- * The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.,† Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China
| | - Qing Liu
- * The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.,§ Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
61
|
Danshensu accelerates angiogenesis after myocardial infarction in rats and promotes the functions of endothelial progenitor cells through SDF-1α/CXCR4 axis. Eur J Pharmacol 2017; 814:274-282. [PMID: 28864209 DOI: 10.1016/j.ejphar.2017.08.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 01/16/2023]
Abstract
The present study was performed to investigate the potential role of Danshensu in therapeutic angiogenesis in ischemic myocardium and endothelial progenitor cells (EPCs) function. The rat model of myocardial infarction (MI) injury was induced by left anterior descending coronary artery ligation for 14 days. Danshensu significantly alleviated myocardial ischemia injury by ameliorating left ventricular function and reducing infarct size. Furthermore, Danshensu potentiated post-ischemia neovascularization as evidenced by increased microvessel density in infarction boundary zone, as well as the expression of marker proteins vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). Moreover, Danshensu notably promoted stromal cell-derived factor-1α (SDF-1α) level in plasma and C-X-C chemokine receptor type 4 (CXCR4) expression in peri-infarction myocardium, and AMD3100 (CXCR4 antagonist) could reverse the angiogenic and cardioprotective effects of Danshensu. For in vitro study, EPCs were isolated from bone marrow of rats. On the one hand, Danshensu provided significant cytoprotection against hypoxia insult by boosting EPCs viability and inhibiting apoptosis, and upregulated Akt phosphorylation. On the other hand, Danshensu enhanced proangiogenic functions of EPCs on cell migration and tube formation, and increased SDF-1α and CXCR4 expression. Likewise, the cytoprotection and proangiogenic functions of Danshensu on EPCs were partly negated by LY294002 (PI3K antagonist) and CXCR4 siRNA, respectively. Taken together, our results suggested that the cardioprotection of Danshensu in MI rats may be related to promoting myocardial neovascularization. The possible mechanisms may involve improving EPCs survival in hypoxia condition through Akt phosphorylation, and accelerating EPCs proangiogenic functions through SDF-1α/CXCR4 axis.
Collapse
|
62
|
Alikarami F, Safa M, Faranoush M, Hayat P, Kazemi A. Inhibition of DNA-PK enhances chemosensitivity of B-cell precursor acute lymphoblastic leukemia cells to doxorubicin. Biomed Pharmacother 2017; 94:1077-1093. [PMID: 28821159 DOI: 10.1016/j.biopha.2017.08.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/09/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022] Open
Abstract
DNA damage repair pathways greatly affect the response to genotoxic drugs in cancer cells, so inhibition of such pathways could be a potentially useful strategy to enhance chemosensitivity. DNA-dependent protein kinase (DNA-PK) plays a crucial role in the repair of DNA double-strand breaks (DSBs) that are probably one of the most detrimental types of DNA damage. It has been shown that DNA-PK is highly expressed in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells. Less well appreciated was the effect of DNA-PK inhibition on sensitivity of BCP-ALL cells to DNA-damaging agents. Here, we show that the DNA-PK inhibitor NU7441 increased doxorubicin-induced apoptosis in BCP-ALL cell lines (NALM-6, SUP-B15), correlating with a reduction in DSB repair measured by γ-H2AX foci. NU7441 affected the cell cycle distribution and the cell cycle regulatory molecules in combination with doxorubicin treatment. Doxorubicin-induced DNA-PK phosphorylation was decreased in the presence of NU7441. Apoptosis induction by the combined treatment was associated with marked reduction of Bcl-2 and survivin and a significant increase of Bax mRNA expression levels. In conclusion, our data indicate that inhibition of DNA-PK might be an effective approach to enhance the tumor-cell-killing effects of DNA-damaging agents such as doxorubicin in BCP-ALL and may deliver novel, targeted therapy into the clinic.
Collapse
Affiliation(s)
- Fatemeh Alikarami
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Faranoush
- Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Hayat
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Kazemi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
63
|
Yu J, Zhang W, Zhang Y, Wang Y, Zhang B, Fan G, Zhu Y. A critical courier role of volatile oils from Dalbergia odorifera for cardiac protection in vivo by QiShenYiQi. Sci Rep 2017; 7:7353. [PMID: 28779167 PMCID: PMC5544742 DOI: 10.1038/s41598-017-07659-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/30/2017] [Indexed: 11/25/2022] Open
Abstract
Component-based Chinese medicine (CCM) is derived from traditional Chinese medicine but produced with modern pharmaceutical standard and clearer clinical indications. However, it still faces challenges of defining individual component contribution in the complex formula. Using QiShenYiQi (QSYQ) as a model CCM, we investigated the role of Dalbergia odorifera (DO), an herbal component, in preventing myocardial damage. We showed that in vitro, QSYQ exerted considerable protective activities on cardiomyocytes from H2O2-induced mitochondrial dysfunction with or without DO. However, in isolated rat hearts, myocardial protection by QSYQ was significantly weakened without DO. In everted gut sac model, DO significantly enhanced absorption of the major QSYQ ingredients in different regions of rat intestine. Finally, in in vivo mouse model of doxorubicin (DOX)-induced myocardial damage, only QSYQ, but not QiShenYiQi without DO (QSYQ-DO), exerted a full protection. Taken together, our results showed that instead of directly contributing to the myocardial protection, Dalbergia odorifera facilitates the major active ingredients absorption and increases their efficacy, eventually enhancing the in vivo potency of QSYQ. These findings may shed new lights on our understanding of the prescription compatibility theory, as well as the impacts of “courier herbs” in component-based Chinese medicine.
Collapse
Affiliation(s)
- Jiahui Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of CM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Wen Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin Tasly Holding Group Co., Ltd., Tianjin, China
| | - Yiqian Zhang
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin Tasly Holding Group Co., Ltd., Tianjin, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yadong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Boli Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China. .,First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China. .,Research and Development Center of CM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.
| |
Collapse
|
64
|
Jiang J, Zhao X, Li X, Wu S, Yu S, Lou Y, Fan G. High-Throughput Determination of Sodium Danshensu in Beagle Dogs by the LCMS/MS Method, Employing Liquid-Liquid Extraction Based on 96-Well Format Plates. Molecules 2017; 22:molecules22050667. [PMID: 28441352 PMCID: PMC6154683 DOI: 10.3390/molecules22050667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 11/16/2022] Open
Abstract
Sodium Danshensu (sodium d-(+)-β-(3,4-dihydroxyphenyl) lactate), one of the water-soluble ingredients in Salvia miltiorrhiza, exhibits potent relaxation of the coronary artery and anticoagulation effection. A high-throughput, rapid, and sensitive method combining liquid chromatography with electrospray ionization tandem mass spectrometry to determine the sodium danshensu in beagle dog plasma was developed and validated, using gallic acid as an internal standard (IS). Acidified plasma samples were extracted using 96-well liquid-liquid extraction, and were eluted on a CNW Athena C18 column (3 μm, 2.1 × 100 mm) by using a gradient mobile phase system of methanol and water (containing 0.2% formic acid). The mass spectrometric detection was achieved using negative ion electrospray ionization mode and monitoring the precursor→production combinations of m/z 197→135 for sodium danshensu and 169→125 for IS, in multiple reaction monitoring modes. Good linearity was achieved, and the linear range was 10-1000 ng/mL (R² > 0.996) with a quantification limit of 10 ng/mL for sodium danshensu in beagle dog plasma. The intra- and inter-day precision (RSD) ranged from 2.1% to 9.0%. The accuracy (RE) was between -8.6% and 5.7% at all quality control levels. The validated method was successfully applied to the pharmacokinetics study of sodium danshensu in beagle dog plasma after intravenous injection and oral administration of sodium danshensu.
Collapse
Affiliation(s)
- Jingjing Jiang
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xin Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Xiuxiu Li
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Shengyuan Wu
- Laboratory of Drug Metabolism & Pharmacokinetics, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China.
| | - Shidan Yu
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yuefen Lou
- Department of Pharmacy, Branch of Shanghai First People's Hospital, Shanghai 200081, China.
| | - Guorong Fan
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
- Laboratory of Drug Metabolism & Pharmacokinetics, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China.
- Department of Clinical Pharmacy, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, No. 100 Haining Road, Shanghai 200080, China.
| |
Collapse
|
65
|
Wu J, Hu G, Dong Y, Ma R, Yu Z, Jiang S, Han Y, Yu K, Zhang S. Matrine induces Akt/mTOR signalling inhibition-mediated autophagy and apoptosis in acute myeloid leukaemia cells. J Cell Mol Med 2016; 21:1171-1181. [PMID: 28026112 PMCID: PMC5431164 DOI: 10.1111/jcmm.13049] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/30/2016] [Indexed: 12/23/2022] Open
Abstract
Pharmacological modulation of autophagy has been referred to as a promising therapeutic strategy for cancer. Matrine, a main alkaloid extracted from Sophora flavescens Ait, has antitumour activity against acute myelocytic leukaemia (AML). Whether autophagy is involved in antileukaemia activity of matrine remains unobvious. In this study, we demonstrated that matrine inhibited cell viability and colony formation via inducing apoptosis and autophagy in AML cell lines HL‐60, THP‐1 and C1498 as well as primary AML cells. Matrine promoted caspase‐3 and PARP cleavage dose‐dependently. Matrine up‐regulated the level of LC3‐II and down‐regulated the level of SQSTM1/p62 in a dose‐dependent way, indicating that autophagy should be implicated in anti‐AML effect of matrine. Furthermore, the autophagy inhibitor bafilomycin A1 relieved the cytotoxicity of matrine by blocking the autophagic flux, while the autophagy promoter rapamycin enhanced the cytotoxicity of matrine. Additionally, matrine inhibited the phosphorylation of Akt, mTOR and their downstream substrates p70S6K and 4EBP1, which led to the occurrence of autophagy. In vivo study demonstrated that autophagy was involved in antileukaemia effect of matrine in C57BL/6 mice bearing murine AML cell line C1498, and the survival curves showed that mice did benefit from treatment with matrine. Collectively, our findings indicate that matrine exerts antitumour effect through apoptosis and autophagy, and the latter one might be a potential therapeutic strategy for AML.
Collapse
Affiliation(s)
- Junqing Wu
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gang Hu
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuqing Dong
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruye Ma
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijie Yu
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Songfu Jiang
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yixiang Han
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kang Yu
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shenghui Zhang
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|