51
|
Schneider R, Bellenberg B, Gisevius B, Hirschberg S, Sankowski R, Prinz M, Gold R, Lukas C, Haghikia A. Chitinase 3-like 1 and neurofilament light chain in CSF and CNS atrophy in MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 8:8/1/e906. [PMID: 33172960 PMCID: PMC7713721 DOI: 10.1212/nxi.0000000000000906] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
Objective To investigate cross-sectional associations of CSF levels of neurofilament light chain (NfL) and of the newly emerging marker chitinase 3–like protein 1 (CHI3L1) with brain and spinal cord atrophy, which are established MRI markers of disease activity in MS, to study CHI3L1 and NfL in relapsing (RMS) and progressive MS (PMS), and to assess the expression of CHI3L1 in different cell types. Methods In a single-center study, 131 patients with MS (42 RMS and 89 PMS) were assessed for NfL and CHI3L1 concentrations in CSF, MRI-based spinal cord and brain volumetry, MS subtype, age, disease duration, and disability. We included 42 matched healthy controls receiving MRI. CHI3L1 expression of human brain cell types was examined in 2 published single-cell RNA sequencing data sets. Results CHI3L1 was associated with spinal cord volume (B = −1.07, 95% CI −2.04 to −0.11, p = 0.029) but not with brain volumes. NfL was associated with brain gray matter (B = −7.3, 95% CI −12.0 to −2.7, p = 0.003) but not with spinal cord volume. CHI3L1 was suitable to differentiate between progressive or relapsing MS (p = 0.015, OR 1.0103, CI for OR 1.002–1.0187), and its gene expression was found in MS-associated microglia and macrophages and in astrocytes of MS brains. Conclusions NfL and CHI3L1 in CSF were differentially related to brain and spinal cord atrophy. CSF CHI3L1 was associated with spinal cord volume loss and was less affected than NfL by disease duration and age, whereas CSF NfL was associated with brain gray matter atrophy. CSF NfL and CHI3L1 measurement provides complementary information regarding brain and spinal cord volumes. Classification of evidence This study provides Class II evidence that CSF CHI3L1 is associated with spinal cord volume loss and that CSF NfL is associated with gray matter atrophy.
Collapse
Affiliation(s)
- Ruth Schneider
- From the Department of Neurology (R. Schneider, B.G., S.H., R.G., A.H.), Institute of Neuroradiology (R. Schneider, B.B., C.L.), and Department of Radiology and Nuclear Medicine (C.L.), St. Josef Hospital, Ruhr University Bochum; Institute of Neuropathology (R. Sankowski, M.P.), Medical Faculty, Signalling Research Centers BIOSS and CIBSS (M.P.), and Center for Basics in NeuroModulation (NeuroModulBasics) (M.P.), Faculty of Medicine, University of Freiburg, Germany.
| | - Barbara Bellenberg
- From the Department of Neurology (R. Schneider, B.G., S.H., R.G., A.H.), Institute of Neuroradiology (R. Schneider, B.B., C.L.), and Department of Radiology and Nuclear Medicine (C.L.), St. Josef Hospital, Ruhr University Bochum; Institute of Neuropathology (R. Sankowski, M.P.), Medical Faculty, Signalling Research Centers BIOSS and CIBSS (M.P.), and Center for Basics in NeuroModulation (NeuroModulBasics) (M.P.), Faculty of Medicine, University of Freiburg, Germany
| | - Barbara Gisevius
- From the Department of Neurology (R. Schneider, B.G., S.H., R.G., A.H.), Institute of Neuroradiology (R. Schneider, B.B., C.L.), and Department of Radiology and Nuclear Medicine (C.L.), St. Josef Hospital, Ruhr University Bochum; Institute of Neuropathology (R. Sankowski, M.P.), Medical Faculty, Signalling Research Centers BIOSS and CIBSS (M.P.), and Center for Basics in NeuroModulation (NeuroModulBasics) (M.P.), Faculty of Medicine, University of Freiburg, Germany
| | - Sarah Hirschberg
- From the Department of Neurology (R. Schneider, B.G., S.H., R.G., A.H.), Institute of Neuroradiology (R. Schneider, B.B., C.L.), and Department of Radiology and Nuclear Medicine (C.L.), St. Josef Hospital, Ruhr University Bochum; Institute of Neuropathology (R. Sankowski, M.P.), Medical Faculty, Signalling Research Centers BIOSS and CIBSS (M.P.), and Center for Basics in NeuroModulation (NeuroModulBasics) (M.P.), Faculty of Medicine, University of Freiburg, Germany
| | - Roman Sankowski
- From the Department of Neurology (R. Schneider, B.G., S.H., R.G., A.H.), Institute of Neuroradiology (R. Schneider, B.B., C.L.), and Department of Radiology and Nuclear Medicine (C.L.), St. Josef Hospital, Ruhr University Bochum; Institute of Neuropathology (R. Sankowski, M.P.), Medical Faculty, Signalling Research Centers BIOSS and CIBSS (M.P.), and Center for Basics in NeuroModulation (NeuroModulBasics) (M.P.), Faculty of Medicine, University of Freiburg, Germany
| | - Marco Prinz
- From the Department of Neurology (R. Schneider, B.G., S.H., R.G., A.H.), Institute of Neuroradiology (R. Schneider, B.B., C.L.), and Department of Radiology and Nuclear Medicine (C.L.), St. Josef Hospital, Ruhr University Bochum; Institute of Neuropathology (R. Sankowski, M.P.), Medical Faculty, Signalling Research Centers BIOSS and CIBSS (M.P.), and Center for Basics in NeuroModulation (NeuroModulBasics) (M.P.), Faculty of Medicine, University of Freiburg, Germany
| | - Ralf Gold
- From the Department of Neurology (R. Schneider, B.G., S.H., R.G., A.H.), Institute of Neuroradiology (R. Schneider, B.B., C.L.), and Department of Radiology and Nuclear Medicine (C.L.), St. Josef Hospital, Ruhr University Bochum; Institute of Neuropathology (R. Sankowski, M.P.), Medical Faculty, Signalling Research Centers BIOSS and CIBSS (M.P.), and Center for Basics in NeuroModulation (NeuroModulBasics) (M.P.), Faculty of Medicine, University of Freiburg, Germany
| | - Carsten Lukas
- From the Department of Neurology (R. Schneider, B.G., S.H., R.G., A.H.), Institute of Neuroradiology (R. Schneider, B.B., C.L.), and Department of Radiology and Nuclear Medicine (C.L.), St. Josef Hospital, Ruhr University Bochum; Institute of Neuropathology (R. Sankowski, M.P.), Medical Faculty, Signalling Research Centers BIOSS and CIBSS (M.P.), and Center for Basics in NeuroModulation (NeuroModulBasics) (M.P.), Faculty of Medicine, University of Freiburg, Germany
| | - Aiden Haghikia
- From the Department of Neurology (R. Schneider, B.G., S.H., R.G., A.H.), Institute of Neuroradiology (R. Schneider, B.B., C.L.), and Department of Radiology and Nuclear Medicine (C.L.), St. Josef Hospital, Ruhr University Bochum; Institute of Neuropathology (R. Sankowski, M.P.), Medical Faculty, Signalling Research Centers BIOSS and CIBSS (M.P.), and Center for Basics in NeuroModulation (NeuroModulBasics) (M.P.), Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
52
|
Leguy S, Combès B, Bannier E, Kerbrat A. Prognostic value of spinal cord MRI in multiple sclerosis patients. Rev Neurol (Paris) 2020; 177:571-581. [PMID: 33069379 DOI: 10.1016/j.neurol.2020.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis [MS] is a common inflammatory, demyelinating and neurodegenerative disease of the central nervous system that affects both the brain and the spinal cord. In clinical practice, spinal cord MRI is performed far less frequently than brain MRI, mainly owing to technical limitations and time constraints. However, improvements of acquisition techniques, combined with a strong diagnosis and prognostic value, suggest an increasing use of spinal cord MRI in the near future. This review summarizes the current data from the literature on the prognostic value of spinal cord MRI in MS patients in the early and later stages of their disease. Both conventional and quantitative MRI techniques are discussed. The prognostic value of spinal cord lesions is clearly established at the onset of disease, underlining the interest of spinal cord conventional MRI at this stage. However, studies are currently lacking to affirm the prognostic role of spinal cord lesions later in the disease, and therefore the added value of regular follow-up with spinal cord MRI in addition to brain MRI. Besides, spinal cord atrophy, as measured by the loss of cervical spinal cord area, is also associated with disability progression, independently of other clinical and MRI factors including spinal cord lesions. Although potentially interesting, this measurement is not currently performed as a routine clinical procedure. Finally, other measures extracted from quantitative MRI have been established as valuable for a better understanding of the physiopathology of MS, but still remain a field of research.
Collapse
Affiliation(s)
- S Leguy
- CHU de Rennes, Neurology department, 2, Rue Henri-le-Guilloux, 35000 Rennes, France; University Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn U1228, Rennes, France
| | - B Combès
- University Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn U1228, Rennes, France
| | - E Bannier
- University Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn U1228, Rennes, France; CHU de Rennes, Radiology department, Rennes, France
| | - A Kerbrat
- CHU de Rennes, Neurology department, 2, Rue Henri-le-Guilloux, 35000 Rennes, France; University Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn U1228, Rennes, France.
| |
Collapse
|
53
|
Spinal cord atrophy in a primary progressive multiple sclerosis trial: Improved sample size using GBSI. NEUROIMAGE-CLINICAL 2020; 28:102418. [PMID: 32961403 PMCID: PMC7509079 DOI: 10.1016/j.nicl.2020.102418] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 01/18/2023]
Abstract
The GBSI provided clinically meaningful measurements of spinal cord atrophy, with low sample size. Deriving spinal cord atrophy from brain MRI using the GBSI is easier than spinal cord MRI. Spinal cord atrophy on GBSI could be used as a secondary outcome measure.
Background We aimed to evaluate the implications for clinical trial design of the generalised boundary-shift integral (GBSI) for spinal cord atrophy measurement. Methods We included 220 primary-progressive multiple sclerosis patients from a phase 2 clinical trial, with baseline and week-48 3DT1-weighted MRI of the brain and spinal cord (1 × 1 × 1 mm3), acquired separately. We obtained segmentation-based cross-sectional spinal cord area (CSA) at C1-2 (from both brain and spinal cord MRI) and C2-5 levels (from spinal cord MRI) using DeepSeg, and, then, we computed corresponding GBSI. Results Depending on the spinal cord segment, we included 67.4–98.1% patients for CSA measurements, and 66.9–84.2% for GBSI. Spinal cord atrophy measurements obtained with GBSI had lower measurement variability, than corresponding CSA. Looking at the image noise floor, the lowest median standard deviation of the MRI signal within the cerebrospinal fluid surrounding the spinal cord was found on brain MRI at the C1-2 level. Spinal cord atrophy derived from brain MRI was related to the corresponding measures from dedicated spinal cord MRI, more strongly for GBSI than CSA. Spinal cord atrophy measurements using GBSI, but not CSA, were associated with upper and lower limb motor progression. Discussion Notwithstanding the reduced measurement variability, the clinical correlates, and the possibility of using brain acquisitions, spinal cord atrophy using GBSI should remain a secondary outcome measure in MS studies, until further advancements increase the quality of acquisition and reliability of processing.
Collapse
|
54
|
Vidal‐Jordana A, Pareto D, Cabello S, Alberich M, Rio J, Tintore M, Auger C, Montalban X, Rovira A, Sastre‐Garriga J. Optical coherence tomography measures correlate with brain and spinal cord atrophy and multiple sclerosis disease‐related disability. Eur J Neurol 2020; 27:2225-2232. [DOI: 10.1111/ene.14421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/18/2020] [Indexed: 12/28/2022]
Affiliation(s)
- A. Vidal‐Jordana
- Servicio de Neurologia‐Neuroinmunologia Centro de Esclerosis Múltiple de Cataluña (Cemcat) Hospital Universitario Vall d'Hebron Barcelona
| | - D. Pareto
- Servicio de Radiologia Hospital Universitario Vall d'Hebron Unidad de Resonancia Magnética Barcelona Spain
| | - S. Cabello
- Servicio de Neurologia‐Neuroinmunologia Centro de Esclerosis Múltiple de Cataluña (Cemcat) Hospital Universitario Vall d'Hebron Barcelona
| | - M. Alberich
- Servicio de Radiologia Hospital Universitario Vall d'Hebron Unidad de Resonancia Magnética Barcelona Spain
| | - J. Rio
- Servicio de Neurologia‐Neuroinmunologia Centro de Esclerosis Múltiple de Cataluña (Cemcat) Hospital Universitario Vall d'Hebron Barcelona
| | - M. Tintore
- Servicio de Neurologia‐Neuroinmunologia Centro de Esclerosis Múltiple de Cataluña (Cemcat) Hospital Universitario Vall d'Hebron Barcelona
| | - C. Auger
- Servicio de Radiologia Hospital Universitario Vall d'Hebron Unidad de Resonancia Magnética Barcelona Spain
| | - X. Montalban
- Servicio de Neurologia‐Neuroinmunologia Centro de Esclerosis Múltiple de Cataluña (Cemcat) Hospital Universitario Vall d'Hebron Barcelona
- Division of Neurology University of TorontoSt Michael´s Hospital Toronto ON Canada
| | - A. Rovira
- Servicio de Radiologia Hospital Universitario Vall d'Hebron Unidad de Resonancia Magnética Barcelona Spain
| | - J. Sastre‐Garriga
- Servicio de Neurologia‐Neuroinmunologia Centro de Esclerosis Múltiple de Cataluña (Cemcat) Hospital Universitario Vall d'Hebron Barcelona
| |
Collapse
|
55
|
Filippi M, Preziosa P, Langdon D, Lassmann H, Paul F, Rovira À, Schoonheim MM, Solari A, Stankoff B, Rocca MA. Identifying Progression in Multiple Sclerosis: New Perspectives. Ann Neurol 2020; 88:438-452. [PMID: 32506714 DOI: 10.1002/ana.25808] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 01/10/2023]
Abstract
The identification of progression in multiple sclerosis is typically retrospective. Given the profound burden of progressive multiple sclerosis, and the recent development of effective treatments for these patients, there is a need to establish measures capable of identifying progressive multiple sclerosis early in the disease course. Starting from recent pathological findings, this review assesses the state of the art of potential measures able to predict progressive multiple sclerosis. Future promising biomarkers that might shed light on mechanisms of progression are also discussed. Finally, expansion of the concept of progressive multiple sclerosis, by including an assessment of cognition, patient-reported outcomes, and comorbidities, is considered. ANN NEUROL 2020;88:438-452.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dawn Langdon
- Royal Holloway, University of London, London, United Kingdom
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Friedemann Paul
- NeuroCure Clinical Research Center and Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Àlex Rovira
- Neuroradiology Section, Department of Radiology, Vall d'Hebron University Hospital and Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, Multiple Sclerosis Center Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Alessandra Solari
- Unit of Neuroepidemiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Bruno Stankoff
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute - ICM, Inserm, CNRS, APHP, Paris, France
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
56
|
van de Stadt SIW, van Ballegoij WJC, Labounek R, Huffnagel IC, Kemp S, Nestrasil I, Engelen M. Spinal cord atrophy as a measure of severity of myelopathy in adrenoleukodystrophy. J Inherit Metab Dis 2020; 43:852-860. [PMID: 32077106 PMCID: PMC7383492 DOI: 10.1002/jimd.12226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
Abstract
All men and most women with X-linked adrenoleukodystrophy (ALD) develop myelopathy in adulthood. As clinical trials with new potential disease-modifying therapies are emerging, sensitive outcome measures for quantifying myelopathy are needed. This prospective cohort study evaluated spinal cord size (cross-sectional area - CSA) and shape (eccentricity) as potential new quantitative outcome measures for myelopathy in ALD. Seventy-four baseline magnetic resonance imaging (MRI) scans, acquired in 42 male ALD patients and 32 age-matched healthy controls, and 26 follow-up scans of ALD patients were included in the study. We used routine T1 -weighted MRI sequences to measure mean CSA, eccentricity, right-left and anteroposterior diameters in the cervical spinal cord. We compared MRI measurements between groups and correlated CSA with clinical outcome measures of disease severity. Longitudinally, we compared MRI measurements between baseline and 1-year follow-up. CSA was significantly smaller in patients compared to controls on all measured spinal cord levels (P < .001). The difference was completely explained by the effect of the symptomatic subgroup. Furthermore, the spinal cord showed flattening (higher eccentricity and smaller anteroposterior diameters) in patients. CSA correlated strongly with all clinical measures of severity of myelopathy. There was no detectable change in CSA after 1-year follow-up. The cervical spinal cord in symptomatic ALD patients is smaller and flattened compared to controls, possibly due to atrophy of the dorsal columns. CSA is a reliable marker of disease severity and can be a valuable outcome measure in long-term follow-up studies in ALD. SYNOPSIS: A prospective cohort study in 42 adrenoleukodystrophy (ALD) patients and 32 controls demonstrated that the spinal cord cross-sectional area of patients is smaller compared to healthy controls and correlates with severity of myelopathy in patients, hence it could be valuable as a much needed surrogate outcome measure.
Collapse
Affiliation(s)
- Stephanie I. W. van de Stadt
- Department of Pediatric NeurologyEmma Children's Hospital, Amsterdam University Medical CentersAmsterdamThe Netherlands
| | - Wouter J. C. van Ballegoij
- Department of Pediatric NeurologyEmma Children's Hospital, Amsterdam University Medical CentersAmsterdamThe Netherlands
| | - René Labounek
- Division of Clinical Behavioral Neuroscience, Department of PediatricsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Irene C. Huffnagel
- Department of Pediatric NeurologyEmma Children's Hospital, Amsterdam University Medical CentersAmsterdamThe Netherlands
| | - Stephan Kemp
- Laboratory Genetic Metabolic DiseasesAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Igor Nestrasil
- Division of Clinical Behavioral Neuroscience, Department of PediatricsUniversity of MinnesotaMinneapolisMinnesotaUSA
- Center for Magnetic Resonance Research, Department of RadiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Marc Engelen
- Department of Pediatric NeurologyEmma Children's Hospital, Amsterdam University Medical CentersAmsterdamThe Netherlands
| |
Collapse
|
57
|
Bonacchi R, Pagani E, Meani A, Cacciaguerra L, Preziosa P, De Meo E, Filippi M, Rocca MA. Clinical Relevance of Multiparametric MRI Assessment of Cervical Cord Damage in Multiple Sclerosis. Radiology 2020; 296:605-615. [PMID: 32573387 DOI: 10.1148/radiol.2020200430] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background In multiple sclerosis (MS), knowledge about how spinal cord abnormalities translate into clinical manifestations is incomplete. Comprehensive, multiparametric MRI studies are useful in this perspective, but studies for the spinal cord are lacking. Purpose To identify MRI features of cervical spinal cord damage that could help predict disability and disease course in MS by using a comprehensive, multiparametric MRI approach. Materials and Methods In this retrospective hypothesis-driven analysis of longitudinally acquired data between June 2017 and April 2019, 120 patients with MS (58 with relapsing-remitting MS [RRMS] and 62 with progressive MS [PMS]) and 30 age- and sex-matched healthy control participants underwent 3.0-T MRI of the brain and cervical spinal cord. Cervical spinal cord MRI was performed with three-dimensional (3D) T1-weighted, T2-weighted, and diffusion-weighted imaging; sagittal two-dimensional (2D) short inversion time inversion-recovery imaging; and axial 2D phase-sensitive inversion-recovery imaging at the C2-C3 level. Brain MRI was performed with 3D T1-weighted, fluid-attenuated inversion-recovery and T2-weighted sequences. Associations between MRI variables and disability were explored with age-, sex- and phenotype-adjusted linear models. Results In patients with MS, multivariable analysis identified phenotype, cervical spinal cord gray matter (GM) cross-sectional area (CSA), lateral funiculi fractional anisotropy (FA), and brain GM volume as independent predictors of Expanded Disability Status Scale (EDSS) score (R2 = 0.86). The independent predictors of EDSS score in RRMS were lateral funiculi FA, normalized brain volume, and cervical spinal cord GM T2 lesion volume (R2 = 0.51). The independent predictors of EDSS score in PMS were cervical spinal cord GM CSA and brain GM volume (R2 = 0.44). Logistic regression analysis identified cervical spinal cord GM CSA and T2 lesion volume as independent predictors of phenotype (area under the receiver operating characteristic curve = 0.95). An optimal cervical spinal cord GM CSA cut-off value of 11.1 mm2 was found to enable accurate differentiation of patients with PMS, having values below the threshold, from those with RRMS (sensitivity = 90% [56 of 62], specificity = 91% [53 of 58]). Conclusion Cervical spinal cord MRI involvement has a central role in explaining disability in multiple sclerosis (MS): Lesion-induced damage in the lateral funiculi and gray matter (GM) in relapsing-remitting MS and GM atrophy in patients with progressive MS are the most relevant variables. Cervical spinal cord GM atrophy is an accurate predictor of progressive phenotype. Cervical spinal cord GM lesions may subsequently cause GM atrophy, which may contribute to evolution to PMS. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Zivadinov and Bergsland in this issue.
Collapse
Affiliation(s)
- Raffaello Bonacchi
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience (R.B., E.P., A.M., L.C., P.P., E.D.M., M.F., M.A.R.), Neurology Unit (R.B., L.C., P.P., E.D.M., M.F., M.A.R.), and Neurophysiology Unit (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy; and Vita-Salute San Raffaele University, Milan, Italy (R.B., L.C., E.D.M., M.F.)
| | - Elisabetta Pagani
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience (R.B., E.P., A.M., L.C., P.P., E.D.M., M.F., M.A.R.), Neurology Unit (R.B., L.C., P.P., E.D.M., M.F., M.A.R.), and Neurophysiology Unit (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy; and Vita-Salute San Raffaele University, Milan, Italy (R.B., L.C., E.D.M., M.F.)
| | - Alessandro Meani
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience (R.B., E.P., A.M., L.C., P.P., E.D.M., M.F., M.A.R.), Neurology Unit (R.B., L.C., P.P., E.D.M., M.F., M.A.R.), and Neurophysiology Unit (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy; and Vita-Salute San Raffaele University, Milan, Italy (R.B., L.C., E.D.M., M.F.)
| | - Laura Cacciaguerra
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience (R.B., E.P., A.M., L.C., P.P., E.D.M., M.F., M.A.R.), Neurology Unit (R.B., L.C., P.P., E.D.M., M.F., M.A.R.), and Neurophysiology Unit (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy; and Vita-Salute San Raffaele University, Milan, Italy (R.B., L.C., E.D.M., M.F.)
| | - Paolo Preziosa
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience (R.B., E.P., A.M., L.C., P.P., E.D.M., M.F., M.A.R.), Neurology Unit (R.B., L.C., P.P., E.D.M., M.F., M.A.R.), and Neurophysiology Unit (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy; and Vita-Salute San Raffaele University, Milan, Italy (R.B., L.C., E.D.M., M.F.)
| | - Ermelinda De Meo
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience (R.B., E.P., A.M., L.C., P.P., E.D.M., M.F., M.A.R.), Neurology Unit (R.B., L.C., P.P., E.D.M., M.F., M.A.R.), and Neurophysiology Unit (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy; and Vita-Salute San Raffaele University, Milan, Italy (R.B., L.C., E.D.M., M.F.)
| | - Massimo Filippi
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience (R.B., E.P., A.M., L.C., P.P., E.D.M., M.F., M.A.R.), Neurology Unit (R.B., L.C., P.P., E.D.M., M.F., M.A.R.), and Neurophysiology Unit (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy; and Vita-Salute San Raffaele University, Milan, Italy (R.B., L.C., E.D.M., M.F.)
| | - Maria A Rocca
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience (R.B., E.P., A.M., L.C., P.P., E.D.M., M.F., M.A.R.), Neurology Unit (R.B., L.C., P.P., E.D.M., M.F., M.A.R.), and Neurophysiology Unit (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy; and Vita-Salute San Raffaele University, Milan, Italy (R.B., L.C., E.D.M., M.F.)
| |
Collapse
|
58
|
Iacobaeus E, Arrambide G, Amato MP, Derfuss T, Vukusic S, Hemmer B, Tintore M, Brundin L. Aggressive multiple sclerosis (1): Towards a definition of the phenotype. Mult Scler 2020; 26:1352458520925369. [PMID: 32530385 PMCID: PMC7412876 DOI: 10.1177/1352458520925369] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
While the major phenotypes of multiple sclerosis (MS) and relapsing-remitting, primary and secondary progressive MS have been well characterized, a subgroup of patients with an active, aggressive disease course and rapid disability accumulation remains difficult to define and there is no consensus about their management and treatment. The current lack of an accepted definition and treatment guidelines for aggressive MS triggered a 2018 focused workshop of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) on aggressive MS. The aim of the workshop was to discuss approaches on how to describe and define the disease phenotype and its treatments. Unfortunately, it was not possible to come to consensus on a definition because of unavailable data correlating severe disease with imaging and molecular biomarkers. However, the workshop highlighted the need for future research needed to define this disease subtype while also focusing on its treatment and management. Here, we review previous attempts to define aggressive MS and present characteristics that might, with additional research, eventually help characterize it. A companion paper summarizes data regarding treatment and management.
Collapse
Affiliation(s)
- Ellen Iacobaeus
- Department of Clinical Neuroscience, Division of Neurology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Georgina Arrambide
- Servei de Neurologia-Neuroimmunologia. Centre d’Esclerosi Múltiple de Catalunya, (Cemcat), Vall d’Hebron Institut de Recerca, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Pia Amato
- Department NeuroFarBa, University of Florence, Florence, Italy/IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Tobias Derfuss
- Departments of Neurology and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sandra Vukusic
- Service de neurologie, Sclérose en plaques, Pathologies de la myéline et neuro-inflammation, and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon/Bron, France; Centre des Neurosciences de Lyon, Observatoire Français de la Sclérose en Plaques, INSERM 1028 et CNRS UMR5292, Lyon, France; Université Claude Bernard Lyon 1, Faculté de médecine Lyon Est, Lyon, France
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mar Tintore
- Servei de Neurologia-Neuroimmunologia. Centre d’Esclerosi Múltiple de Catalunya, (Cemcat), Vall d’Hebron Institut de Recerca, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lou Brundin
- Department of Clinical Neuroscience, Division of Neurology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
59
|
Marrodan M, Gaitán MI, Correale J. Spinal Cord Involvement in MS and Other Demyelinating Diseases. Biomedicines 2020; 8:E130. [PMID: 32455910 PMCID: PMC7277673 DOI: 10.3390/biomedicines8050130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Diagnostic accuracy is poor in demyelinating myelopathies, and therefore a challenge for neurologists in daily practice, mainly because of the multiple underlying pathophysiologic mechanisms involved in each subtype. A systematic diagnostic approach combining data from the clinical setting and presentation with magnetic resonance imaging (MRI) lesion patterns, cerebrospinal fluid (CSF) findings, and autoantibody markers can help to better distinguish between subtypes. In this review, we describe spinal cord involvement, and summarize clinical findings, MRI and diagnostic characteristics, as well as treatment options and prognostic implications in different demyelinating disorders including: multiple sclerosis (MS), neuromyelitis optica spectrum disorder, acute disseminated encephalomyelitis, anti-myelin oligodendrocyte glycoprotein antibody-associated disease, and glial fibrillary acidic protein IgG-associated disease. Thorough understanding of individual case etiology is crucial, not only to provide valuable prognostic information on whether the disorder is likely to relapse, but also to make therapeutic decision-making easier and reduce treatment failures which may lead to new relapses and long-term disability. Identifying patients with monophasic disease who may only require acute management, symptomatic treatment, and subsequent rehabilitation, rather than immunosuppression, is also important.
Collapse
Affiliation(s)
| | | | - Jorge Correale
- Neurology Department, Fleni, C1428AQK Buenos Aires, Argentina; (M.M.); (M.I.G.)
| |
Collapse
|
60
|
Tavazzi E, Zivadinov R, Dwyer MG, Jakimovski D, Singhal T, Weinstock-Guttman B, Bergsland N. MRI biomarkers of disease progression and conversion to secondary-progressive multiple sclerosis. Expert Rev Neurother 2020; 20:821-834. [PMID: 32306772 DOI: 10.1080/14737175.2020.1757435] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Conventional imaging measures remain a key clinical tool for the diagnosis multiple sclerosis (MS) and monitoring of patients. However, most measures used in the clinic show unsatisfactory performance in predicting disease progression and conversion to secondary progressive MS. AREAS COVERED Sophisticated imaging techniques have facilitated the identification of imaging biomarkers associated with disease progression, such as global and regional brain volume measures, and with conversion to secondary progressive MS, such as leptomeningeal contrast enhancement and chronic inflammation. The relevance of emerging imaging approaches partially overcoming intrinsic limitations of traditional techniques is also discussed. EXPERT OPINION Imaging biomarkers capable of detecting tissue damage early on in the disease, with the potential to be applied in multicenter trials and at an individual level in clinical settings, are strongly needed. Several measures have been proposed, which exploit advanced imaging acquisitions and/or incorporate sophisticated post-processing, can quantify irreversible tissue damage. The progressively wider use of high-strength field MRI and the development of more advanced imaging techniques will help capture the missing pieces of the MS puzzle. The ability to more reliably identify those at risk for disability progression will allow for earlier intervention with the aim to favorably alter the disease course.
Collapse
Affiliation(s)
- Eleonora Tavazzi
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA.,Translational Imaging Center, Clinical and Translational Science Institute, University at Buffalo, The State University of New York , Buffalo, NY, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Tarun Singhal
- PET Imaging Program in Neurologic Diseases and Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School , Boston, MA, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA.,IRCCS, Fondazione Don Carlo Gnocchi , Milan, Italy
| |
Collapse
|
61
|
Macaron G, Baldassari LE, Nakamura K, Rao SM, McGinley MP, Moss BP, Li H, Miller DM, Jones SE, Bermel RA, Cohen JA, Ontaneda D, Conway DS. Cognitive processing speed in multiple sclerosis clinical practice: association with patient-reported outcomes, employment and magnetic resonance imaging metrics. Eur J Neurol 2020; 27:1238-1249. [PMID: 32222019 DOI: 10.1111/ene.14239] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/19/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND PURPOSE To analyze the relationship between cognitive processing speed, patient-reported outcome measures (PROMs), employment and magnetic resonance imaging (MRI) metrics in a large multiple sclerosis cohort. METHODS Cross-sectional clinical data, PROMs, employment and MRI studies within 90 days of completion of the Processing Speed Test (PST), a technology-enabled adaptation of the Symbol Digit Modalities Test, were collected. MRI was analyzed using semi-automated methods. Correlations of PST score with PROMs and MRI metrics were examined using Spearman's rho. Wilcoxon rank sum testing compared MRI metrics across PST score quartiles and linear regression models identified predictors of PST performance. Effects of employment and depression were also investigated. RESULTS In 721 patients (mean age 47.6 ± 11.4 years), PST scores were significantly correlated with all MRI metrics, including cord atrophy and deep gray matter volumes. Linear regression demonstrated self-reported physical disability, cognitive function, fatigue and social domains (adjusted R2 = 0.44, P < 0.001) as the strongest clinical predictors of PST score, whereas that of MRI variables included T2 lesion volume, whole-brain fraction and cord atrophy (adjusted R2 = 0.42, P < 0.001). An inclusive model identified T2 lesion volume, whole-brain fraction, self-reported upper extremity function, cognition and social participation as the strongest predictors of PST score (adjusted R2 = 0.51, P < 0.001). There was significant effect modification by depression on the relationship between self-reported cognition and PST performance. Employment status was associated with PST scores independent of age and physical disability. CONCLUSION The PST score correlates with PROMs, MRI measures of focal and diffuse brain injury, and employment. The PST score is a feasible and meaningful measure for routine multiple sclerosis care.
Collapse
Affiliation(s)
- G Macaron
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.,Faculty of Medicine, Université Saint Joseph de Beyrouth, Beirut, Lebanon
| | - L E Baldassari
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - K Nakamura
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - S M Rao
- Schey Center for Cognitive Neuroimaging, Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - M P McGinley
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - B P Moss
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - H Li
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - D M Miller
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - S E Jones
- Neuroradiology Department, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - R A Bermel
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - J A Cohen
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - D Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - D S Conway
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
62
|
Treatment Optimization in Multiple Sclerosis: Canadian MS Working Group Recommendations. Can J Neurol Sci 2020; 47:437-455. [DOI: 10.1017/cjn.2020.66] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract:The Canadian Multiple Sclerosis Working Group has updated its treatment optimization recommendations (TORs) on the optimal use of disease-modifying therapies for patients with all forms of multiple sclerosis (MS). Recommendations provide guidance on initiating effective treatment early in the course of disease, monitoring response to therapy, and modifying or switching therapies to optimize disease control. The current TORs also address the treatment of pediatric MS, progressive MS and the identification and treatment of aggressive forms of the disease. Newer therapies offer improved efficacy, but also have potential safety concerns that must be adequately balanced, notably when treatment sequencing is considered. There are added discussions regarding the management of pregnancy, the future potential of biomarkers and consideration as to when it may be prudent to stop therapy. These TORs are meant to be used and interpreted by all neurologists with a special interest in the management of MS.
Collapse
|
63
|
Rocca MA, Preziosa P, Filippi M. What role should spinal cord MRI take in the future of multiple sclerosis surveillance? Expert Rev Neurother 2020; 20:783-797. [PMID: 32133874 DOI: 10.1080/14737175.2020.1739524] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In multiple sclerosis (MS), inflammatory, demyelinating, and neurodegenerative phenomena affect the spinal cord, with detrimental effects on patients' clinical disability. Although spinal cord imaging may be challenging, improvements in MRI technologies have contributed to better evaluate spinal cord involvement in MS. AREAS COVERED This review summarizes the current state-of-art of the application of conventional and advanced MRI techniques to evaluate spinal cord damage in MS. Typical features of spinal cord lesions, their role in the diagnostic work-up of suspected MS, their predictive role for subsequent disease course and clinical worsening, and their utility to define treatment response are discussed. The role of spinal cord atrophy and of other advanced MRI techniques to better evaluate the associations between spinal cord abnormalities and the accumulation of clinical disability are also evaluated. Finally, how spinal cord assessment could evolve in the future to improve monitoring of disease progression and treatment effects is examined. EXPERT OPINION Spinal cord MRI provides relevant additional information to brain MRI in understanding MS pathophysiology, in allowing an earlier and more accurate diagnosis of MS, and in identifying MS patients at higher risk to develop more severe disability. A future role in monitoring the effects of treatments is also foreseen.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute , Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute , Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute , Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute , Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute , Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute , Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute , Milan, Italy.,Vita-Salute San Raffaele University , Milan, Italy
| |
Collapse
|
64
|
Chien C, Juenger V, Scheel M, Brandt AU, Paul F. Considerations for Mean Upper Cervical Cord Area Implementation in a Longitudinal MRI Setting: Methods, Interrater Reliability, and MRI Quality Control. AJNR Am J Neuroradiol 2020; 41:343-350. [PMID: 31974079 DOI: 10.3174/ajnr.a6394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Spinal cord atrophy is commonly measured from cerebral MRIs, including the upper cervical cord. However, rescan intraparticipant measures have not been investigated in healthy cohorts. This study investigated technical and rescan variability in the mean upper cervical cord area calculated from T1-weighted cerebral MRIs. MATERIALS AND METHODS In this retrospective study, 8 healthy participants were scanned and rescanned with non-distortion- and distortion-corrected MPRAGE sequences (11-50 sessions in 6-8 months), and 50 participants were scanned once with distortion-corrected MPRAGE sequences in the Day2day daily variability study. From another real-world observational cohort, we collected non-distortion-corrected MPRAGE scans from 27 healthy participants (annually for 2-4 years) and cross-sectionally from 77 participants. Statistical analyses included coefficient of variation, smallest real difference, intraclass correlation coefficient, Bland-Altman limits of agreement, and paired t tests. RESULTS Distortion- versus non-distortion-corrected MPRAGE-derived mean upper cervical cord areas were similar; however, a paired t test showed incomparability (t = 11.0, P = <.001). Higher variability was found in the mean upper cervical cord areas calculated from an automatic segmentation method. Interrater analysis yielded incomparable measures in the same participant scans (t = 4.5, P = <.001). Non-distortion-corrected mean upper cervical cord area measures were shown to be robust in real-world data (t = -1.04, P = .31). The main sources of variability were found to be artifacts from movement, head/neck positioning, and/or metal implants. CONCLUSIONS Technical variability in cord measures decreased using non-distortion-corrected MRIs, a semiautomatic segmentation approach, and 1 rater. Rescan variability was within ±4.4% for group mean upper cervical cord area when MR imaging quality criteria were met.
Collapse
Affiliation(s)
- C Chien
- From the Experimental and Clinical Research Center (C.C., V.J., A.U.B., F.P.), Max Delbrück Center for Molecular Medicine & Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center (C.C., V.J., M.S., A.U.B., F.P.)
| | - V Juenger
- From the Experimental and Clinical Research Center (C.C., V.J., A.U.B., F.P.), Max Delbrück Center for Molecular Medicine & Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center (C.C., V.J., M.S., A.U.B., F.P.)
- Departments of Neuroradiology (V.J., M.S.)
| | - M Scheel
- Departments of Neuroradiology (V.J., M.S.)
| | - A U Brandt
- From the Experimental and Clinical Research Center (C.C., V.J., A.U.B., F.P.), Max Delbrück Center for Molecular Medicine & Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center (C.C., V.J., M.S., A.U.B., F.P.)
- Department of Neurology (A.U.B.), University of California, Irvine, Irvine, California
| | - F Paul
- From the Experimental and Clinical Research Center (C.C., V.J., A.U.B., F.P.), Max Delbrück Center for Molecular Medicine & Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center (C.C., V.J., M.S., A.U.B., F.P.)
- Neurology (F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
65
|
Oh J, Alikhani K, Bruno T, Devonshire V, Giacomini PS, Giuliani F, Nakhaipour HR, Schecter R, Larochelle C. Diagnosis and management of secondary-progressive multiple sclerosis: time for change. Neurodegener Dis Manag 2019; 9:301-317. [PMID: 31769344 DOI: 10.2217/nmt-2019-0024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Identifying the transition of relapsing-remitting multiple sclerosis (MS) to the secondary-progressive MS form remains a clinical challenge due to the gradual nature of the transition, superimposed relapses, the heterogeneous course of disease among patients and the absence of validated biomarkers and diagnostic tools. The uncertainty associated with the transition makes clinical care challenging for both patients and physicians. The emergence of new disease-modifying treatments for progressive MS and the increasing emphasis of nonpharmacological strategies mark a new era in the treatment of progressive MS. This article summarizes challenges in diagnosis and management, discusses novel treatment strategies and highlights the importance of establishing a clear diagnosis and instituting an interdisciplinary management plan in the care of patients with progressive MS.
Collapse
Affiliation(s)
- Jiwon Oh
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Katayoun Alikhani
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tania Bruno
- Division of Physiatry, Department of Medicine, University Health Network - Toronto Rehabilitation Institute, University of Toronto, Toronto, ON M4G 1R7, Canada
| | - Virginia Devonshire
- Division of Neurology, Department of Medicine, University of British Columbia MS/NMO Center, Vancouver, BC V6T 1Z3, Canada
| | - Paul S Giacomini
- Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Fabrizio Giuliani
- Division of Neurology, Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | | | - Robyn Schecter
- Novartis Pharmaceuticals Canada, Montreal, QC H9S 1A9, Canada
| | | |
Collapse
|
66
|
Rocca MA, Valsasina P, Meani A, Gobbi C, Zecca C, Rovira À, Montalban X, Kearney H, Ciccarelli O, Matthews L, Palace J, Gallo A, Bisecco A, Gass A, Eisele P, Lukas C, Bellenberg B, Barkhof F, Vrenken H, Preziosa P, Comi G, Filippi M. Clinically relevant cranio-caudal patterns of cervical cord atrophy evolution in MS. Neurology 2019; 93:e1852-e1866. [PMID: 31611336 DOI: 10.1212/wnl.0000000000008466] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 06/04/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To characterize the distribution and regional evolution of cervical cord atrophy in patients with multiple sclerosis (MS) in a multicenter dataset. METHODS MRI and clinical evaluations were acquired from 179 controls and 435 patients (35 clinically isolated syndromes [CIS], 259 relapsing-remitting multiple sclerosis [RRMS], 99 secondary progressive multiple sclerosis [SPMS], and 42 primary progressive multiple sclerosis [PPMS]). Sixty-nine controls and 178 patients underwent a 1-year MRI and clinical follow-up. Patients were classified as clinically stable/worsened according to their disability change. Longitudinal changes of cord atrophy were investigated with linear mixed-effect models. Sample size calculations were performed using age-, sex- and site-adjusted annualized percentage normalized cord cross-sectional area (CSAn) changes. RESULTS Baseline CSAn was lower in patients with MS vs controls (p < 0.001), but not different between controls and patients with CIS or between patients with early RRMS (disease duration ≤5 years) and patients with CIS. Patients with late RRMS (disease duration >5 years) showed significant cord atrophy vs patients with early RRMS (p = 0.02). Patients with progressive MS had decreased CSAn (p < 0.001) vs patients with RRMS. Atrophy was located between C1/C2 and C5 in patients with RRMS vs patients with CIS, and widespread along the cord in patients with progressive MS vs patients with RRMS, with an additional C5/C6 involvement in patients with SPMS vs patients with PPMS. At follow-up, CSAn decreased in all phenotypes (p < 0.001), except CIS. Cord atrophy rates were highest in patients with early RRMS and clinically worsened patients, who had a more widespread cord involvement than stable patients. The sample size per arm required to detect a 50% treatment effect was 118 for patients with early RRMS. CONCLUSIONS Cord atrophy increased in MS during 1 year, except for CIS. Faster atrophy contributed to explain clinical worsening.
Collapse
Affiliation(s)
- Maria A Rocca
- From the Neuroimaging Research Unit (M.A.R., P.V., A.M., P.P., M.F.) and Neurology Unit (M.A.R., P.P., G.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Neurology (C.G., C.Z.), Neurocenter of Southern Switzerland, Regional Hospital Lugano (EOC), Lugano; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Section of Neuroradiology and MRI Unit, Department of Radiology (A.R.), and Department of Neurology/Neuroimmunology (X.M.), Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain; NMR Research Unit (H.K., O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London; Nuffield Department of Clinical Neurosciences (L.M., J.P.), University of Oxford, UK; Department of Advanced Medical and Surgical Sciences, and 3T MRI Center, (A.G., A.B.), University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Neurology (A.G., P.E.), Universitätsmedizin Mannheim, University of Heidelberg, Germany; Department of Radiology and Nuclear Medicine (C.L., B.B.) and Institute of Neuroradiology (C.L., B.B.), St. Josef Hospital, Ruhr-University Bochum, Germany; Department of Radiology and Nuclear Medicine (F.B., H.V.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; and Vita-Salute San Raffaele University (P.P., G.C., M.F.), Milan, Italy.
| | - Paola Valsasina
- From the Neuroimaging Research Unit (M.A.R., P.V., A.M., P.P., M.F.) and Neurology Unit (M.A.R., P.P., G.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Neurology (C.G., C.Z.), Neurocenter of Southern Switzerland, Regional Hospital Lugano (EOC), Lugano; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Section of Neuroradiology and MRI Unit, Department of Radiology (A.R.), and Department of Neurology/Neuroimmunology (X.M.), Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain; NMR Research Unit (H.K., O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London; Nuffield Department of Clinical Neurosciences (L.M., J.P.), University of Oxford, UK; Department of Advanced Medical and Surgical Sciences, and 3T MRI Center, (A.G., A.B.), University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Neurology (A.G., P.E.), Universitätsmedizin Mannheim, University of Heidelberg, Germany; Department of Radiology and Nuclear Medicine (C.L., B.B.) and Institute of Neuroradiology (C.L., B.B.), St. Josef Hospital, Ruhr-University Bochum, Germany; Department of Radiology and Nuclear Medicine (F.B., H.V.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; and Vita-Salute San Raffaele University (P.P., G.C., M.F.), Milan, Italy
| | - Alessandro Meani
- From the Neuroimaging Research Unit (M.A.R., P.V., A.M., P.P., M.F.) and Neurology Unit (M.A.R., P.P., G.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Neurology (C.G., C.Z.), Neurocenter of Southern Switzerland, Regional Hospital Lugano (EOC), Lugano; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Section of Neuroradiology and MRI Unit, Department of Radiology (A.R.), and Department of Neurology/Neuroimmunology (X.M.), Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain; NMR Research Unit (H.K., O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London; Nuffield Department of Clinical Neurosciences (L.M., J.P.), University of Oxford, UK; Department of Advanced Medical and Surgical Sciences, and 3T MRI Center, (A.G., A.B.), University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Neurology (A.G., P.E.), Universitätsmedizin Mannheim, University of Heidelberg, Germany; Department of Radiology and Nuclear Medicine (C.L., B.B.) and Institute of Neuroradiology (C.L., B.B.), St. Josef Hospital, Ruhr-University Bochum, Germany; Department of Radiology and Nuclear Medicine (F.B., H.V.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; and Vita-Salute San Raffaele University (P.P., G.C., M.F.), Milan, Italy
| | - Claudio Gobbi
- From the Neuroimaging Research Unit (M.A.R., P.V., A.M., P.P., M.F.) and Neurology Unit (M.A.R., P.P., G.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Neurology (C.G., C.Z.), Neurocenter of Southern Switzerland, Regional Hospital Lugano (EOC), Lugano; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Section of Neuroradiology and MRI Unit, Department of Radiology (A.R.), and Department of Neurology/Neuroimmunology (X.M.), Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain; NMR Research Unit (H.K., O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London; Nuffield Department of Clinical Neurosciences (L.M., J.P.), University of Oxford, UK; Department of Advanced Medical and Surgical Sciences, and 3T MRI Center, (A.G., A.B.), University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Neurology (A.G., P.E.), Universitätsmedizin Mannheim, University of Heidelberg, Germany; Department of Radiology and Nuclear Medicine (C.L., B.B.) and Institute of Neuroradiology (C.L., B.B.), St. Josef Hospital, Ruhr-University Bochum, Germany; Department of Radiology and Nuclear Medicine (F.B., H.V.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; and Vita-Salute San Raffaele University (P.P., G.C., M.F.), Milan, Italy
| | - Chiara Zecca
- From the Neuroimaging Research Unit (M.A.R., P.V., A.M., P.P., M.F.) and Neurology Unit (M.A.R., P.P., G.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Neurology (C.G., C.Z.), Neurocenter of Southern Switzerland, Regional Hospital Lugano (EOC), Lugano; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Section of Neuroradiology and MRI Unit, Department of Radiology (A.R.), and Department of Neurology/Neuroimmunology (X.M.), Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain; NMR Research Unit (H.K., O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London; Nuffield Department of Clinical Neurosciences (L.M., J.P.), University of Oxford, UK; Department of Advanced Medical and Surgical Sciences, and 3T MRI Center, (A.G., A.B.), University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Neurology (A.G., P.E.), Universitätsmedizin Mannheim, University of Heidelberg, Germany; Department of Radiology and Nuclear Medicine (C.L., B.B.) and Institute of Neuroradiology (C.L., B.B.), St. Josef Hospital, Ruhr-University Bochum, Germany; Department of Radiology and Nuclear Medicine (F.B., H.V.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; and Vita-Salute San Raffaele University (P.P., G.C., M.F.), Milan, Italy
| | - Àlex Rovira
- From the Neuroimaging Research Unit (M.A.R., P.V., A.M., P.P., M.F.) and Neurology Unit (M.A.R., P.P., G.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Neurology (C.G., C.Z.), Neurocenter of Southern Switzerland, Regional Hospital Lugano (EOC), Lugano; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Section of Neuroradiology and MRI Unit, Department of Radiology (A.R.), and Department of Neurology/Neuroimmunology (X.M.), Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain; NMR Research Unit (H.K., O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London; Nuffield Department of Clinical Neurosciences (L.M., J.P.), University of Oxford, UK; Department of Advanced Medical and Surgical Sciences, and 3T MRI Center, (A.G., A.B.), University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Neurology (A.G., P.E.), Universitätsmedizin Mannheim, University of Heidelberg, Germany; Department of Radiology and Nuclear Medicine (C.L., B.B.) and Institute of Neuroradiology (C.L., B.B.), St. Josef Hospital, Ruhr-University Bochum, Germany; Department of Radiology and Nuclear Medicine (F.B., H.V.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; and Vita-Salute San Raffaele University (P.P., G.C., M.F.), Milan, Italy
| | - Xavier Montalban
- From the Neuroimaging Research Unit (M.A.R., P.V., A.M., P.P., M.F.) and Neurology Unit (M.A.R., P.P., G.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Neurology (C.G., C.Z.), Neurocenter of Southern Switzerland, Regional Hospital Lugano (EOC), Lugano; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Section of Neuroradiology and MRI Unit, Department of Radiology (A.R.), and Department of Neurology/Neuroimmunology (X.M.), Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain; NMR Research Unit (H.K., O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London; Nuffield Department of Clinical Neurosciences (L.M., J.P.), University of Oxford, UK; Department of Advanced Medical and Surgical Sciences, and 3T MRI Center, (A.G., A.B.), University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Neurology (A.G., P.E.), Universitätsmedizin Mannheim, University of Heidelberg, Germany; Department of Radiology and Nuclear Medicine (C.L., B.B.) and Institute of Neuroradiology (C.L., B.B.), St. Josef Hospital, Ruhr-University Bochum, Germany; Department of Radiology and Nuclear Medicine (F.B., H.V.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; and Vita-Salute San Raffaele University (P.P., G.C., M.F.), Milan, Italy
| | - Hugh Kearney
- From the Neuroimaging Research Unit (M.A.R., P.V., A.M., P.P., M.F.) and Neurology Unit (M.A.R., P.P., G.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Neurology (C.G., C.Z.), Neurocenter of Southern Switzerland, Regional Hospital Lugano (EOC), Lugano; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Section of Neuroradiology and MRI Unit, Department of Radiology (A.R.), and Department of Neurology/Neuroimmunology (X.M.), Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain; NMR Research Unit (H.K., O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London; Nuffield Department of Clinical Neurosciences (L.M., J.P.), University of Oxford, UK; Department of Advanced Medical and Surgical Sciences, and 3T MRI Center, (A.G., A.B.), University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Neurology (A.G., P.E.), Universitätsmedizin Mannheim, University of Heidelberg, Germany; Department of Radiology and Nuclear Medicine (C.L., B.B.) and Institute of Neuroradiology (C.L., B.B.), St. Josef Hospital, Ruhr-University Bochum, Germany; Department of Radiology and Nuclear Medicine (F.B., H.V.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; and Vita-Salute San Raffaele University (P.P., G.C., M.F.), Milan, Italy
| | - Olga Ciccarelli
- From the Neuroimaging Research Unit (M.A.R., P.V., A.M., P.P., M.F.) and Neurology Unit (M.A.R., P.P., G.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Neurology (C.G., C.Z.), Neurocenter of Southern Switzerland, Regional Hospital Lugano (EOC), Lugano; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Section of Neuroradiology and MRI Unit, Department of Radiology (A.R.), and Department of Neurology/Neuroimmunology (X.M.), Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain; NMR Research Unit (H.K., O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London; Nuffield Department of Clinical Neurosciences (L.M., J.P.), University of Oxford, UK; Department of Advanced Medical and Surgical Sciences, and 3T MRI Center, (A.G., A.B.), University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Neurology (A.G., P.E.), Universitätsmedizin Mannheim, University of Heidelberg, Germany; Department of Radiology and Nuclear Medicine (C.L., B.B.) and Institute of Neuroradiology (C.L., B.B.), St. Josef Hospital, Ruhr-University Bochum, Germany; Department of Radiology and Nuclear Medicine (F.B., H.V.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; and Vita-Salute San Raffaele University (P.P., G.C., M.F.), Milan, Italy
| | - Lucy Matthews
- From the Neuroimaging Research Unit (M.A.R., P.V., A.M., P.P., M.F.) and Neurology Unit (M.A.R., P.P., G.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Neurology (C.G., C.Z.), Neurocenter of Southern Switzerland, Regional Hospital Lugano (EOC), Lugano; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Section of Neuroradiology and MRI Unit, Department of Radiology (A.R.), and Department of Neurology/Neuroimmunology (X.M.), Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain; NMR Research Unit (H.K., O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London; Nuffield Department of Clinical Neurosciences (L.M., J.P.), University of Oxford, UK; Department of Advanced Medical and Surgical Sciences, and 3T MRI Center, (A.G., A.B.), University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Neurology (A.G., P.E.), Universitätsmedizin Mannheim, University of Heidelberg, Germany; Department of Radiology and Nuclear Medicine (C.L., B.B.) and Institute of Neuroradiology (C.L., B.B.), St. Josef Hospital, Ruhr-University Bochum, Germany; Department of Radiology and Nuclear Medicine (F.B., H.V.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; and Vita-Salute San Raffaele University (P.P., G.C., M.F.), Milan, Italy
| | - Jacqueline Palace
- From the Neuroimaging Research Unit (M.A.R., P.V., A.M., P.P., M.F.) and Neurology Unit (M.A.R., P.P., G.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Neurology (C.G., C.Z.), Neurocenter of Southern Switzerland, Regional Hospital Lugano (EOC), Lugano; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Section of Neuroradiology and MRI Unit, Department of Radiology (A.R.), and Department of Neurology/Neuroimmunology (X.M.), Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain; NMR Research Unit (H.K., O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London; Nuffield Department of Clinical Neurosciences (L.M., J.P.), University of Oxford, UK; Department of Advanced Medical and Surgical Sciences, and 3T MRI Center, (A.G., A.B.), University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Neurology (A.G., P.E.), Universitätsmedizin Mannheim, University of Heidelberg, Germany; Department of Radiology and Nuclear Medicine (C.L., B.B.) and Institute of Neuroradiology (C.L., B.B.), St. Josef Hospital, Ruhr-University Bochum, Germany; Department of Radiology and Nuclear Medicine (F.B., H.V.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; and Vita-Salute San Raffaele University (P.P., G.C., M.F.), Milan, Italy
| | - Antonio Gallo
- From the Neuroimaging Research Unit (M.A.R., P.V., A.M., P.P., M.F.) and Neurology Unit (M.A.R., P.P., G.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Neurology (C.G., C.Z.), Neurocenter of Southern Switzerland, Regional Hospital Lugano (EOC), Lugano; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Section of Neuroradiology and MRI Unit, Department of Radiology (A.R.), and Department of Neurology/Neuroimmunology (X.M.), Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain; NMR Research Unit (H.K., O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London; Nuffield Department of Clinical Neurosciences (L.M., J.P.), University of Oxford, UK; Department of Advanced Medical and Surgical Sciences, and 3T MRI Center, (A.G., A.B.), University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Neurology (A.G., P.E.), Universitätsmedizin Mannheim, University of Heidelberg, Germany; Department of Radiology and Nuclear Medicine (C.L., B.B.) and Institute of Neuroradiology (C.L., B.B.), St. Josef Hospital, Ruhr-University Bochum, Germany; Department of Radiology and Nuclear Medicine (F.B., H.V.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; and Vita-Salute San Raffaele University (P.P., G.C., M.F.), Milan, Italy
| | - Alvino Bisecco
- From the Neuroimaging Research Unit (M.A.R., P.V., A.M., P.P., M.F.) and Neurology Unit (M.A.R., P.P., G.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Neurology (C.G., C.Z.), Neurocenter of Southern Switzerland, Regional Hospital Lugano (EOC), Lugano; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Section of Neuroradiology and MRI Unit, Department of Radiology (A.R.), and Department of Neurology/Neuroimmunology (X.M.), Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain; NMR Research Unit (H.K., O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London; Nuffield Department of Clinical Neurosciences (L.M., J.P.), University of Oxford, UK; Department of Advanced Medical and Surgical Sciences, and 3T MRI Center, (A.G., A.B.), University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Neurology (A.G., P.E.), Universitätsmedizin Mannheim, University of Heidelberg, Germany; Department of Radiology and Nuclear Medicine (C.L., B.B.) and Institute of Neuroradiology (C.L., B.B.), St. Josef Hospital, Ruhr-University Bochum, Germany; Department of Radiology and Nuclear Medicine (F.B., H.V.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; and Vita-Salute San Raffaele University (P.P., G.C., M.F.), Milan, Italy
| | - Achim Gass
- From the Neuroimaging Research Unit (M.A.R., P.V., A.M., P.P., M.F.) and Neurology Unit (M.A.R., P.P., G.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Neurology (C.G., C.Z.), Neurocenter of Southern Switzerland, Regional Hospital Lugano (EOC), Lugano; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Section of Neuroradiology and MRI Unit, Department of Radiology (A.R.), and Department of Neurology/Neuroimmunology (X.M.), Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain; NMR Research Unit (H.K., O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London; Nuffield Department of Clinical Neurosciences (L.M., J.P.), University of Oxford, UK; Department of Advanced Medical and Surgical Sciences, and 3T MRI Center, (A.G., A.B.), University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Neurology (A.G., P.E.), Universitätsmedizin Mannheim, University of Heidelberg, Germany; Department of Radiology and Nuclear Medicine (C.L., B.B.) and Institute of Neuroradiology (C.L., B.B.), St. Josef Hospital, Ruhr-University Bochum, Germany; Department of Radiology and Nuclear Medicine (F.B., H.V.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; and Vita-Salute San Raffaele University (P.P., G.C., M.F.), Milan, Italy
| | - Philipp Eisele
- From the Neuroimaging Research Unit (M.A.R., P.V., A.M., P.P., M.F.) and Neurology Unit (M.A.R., P.P., G.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Neurology (C.G., C.Z.), Neurocenter of Southern Switzerland, Regional Hospital Lugano (EOC), Lugano; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Section of Neuroradiology and MRI Unit, Department of Radiology (A.R.), and Department of Neurology/Neuroimmunology (X.M.), Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain; NMR Research Unit (H.K., O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London; Nuffield Department of Clinical Neurosciences (L.M., J.P.), University of Oxford, UK; Department of Advanced Medical and Surgical Sciences, and 3T MRI Center, (A.G., A.B.), University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Neurology (A.G., P.E.), Universitätsmedizin Mannheim, University of Heidelberg, Germany; Department of Radiology and Nuclear Medicine (C.L., B.B.) and Institute of Neuroradiology (C.L., B.B.), St. Josef Hospital, Ruhr-University Bochum, Germany; Department of Radiology and Nuclear Medicine (F.B., H.V.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; and Vita-Salute San Raffaele University (P.P., G.C., M.F.), Milan, Italy
| | - Carsten Lukas
- From the Neuroimaging Research Unit (M.A.R., P.V., A.M., P.P., M.F.) and Neurology Unit (M.A.R., P.P., G.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Neurology (C.G., C.Z.), Neurocenter of Southern Switzerland, Regional Hospital Lugano (EOC), Lugano; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Section of Neuroradiology and MRI Unit, Department of Radiology (A.R.), and Department of Neurology/Neuroimmunology (X.M.), Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain; NMR Research Unit (H.K., O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London; Nuffield Department of Clinical Neurosciences (L.M., J.P.), University of Oxford, UK; Department of Advanced Medical and Surgical Sciences, and 3T MRI Center, (A.G., A.B.), University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Neurology (A.G., P.E.), Universitätsmedizin Mannheim, University of Heidelberg, Germany; Department of Radiology and Nuclear Medicine (C.L., B.B.) and Institute of Neuroradiology (C.L., B.B.), St. Josef Hospital, Ruhr-University Bochum, Germany; Department of Radiology and Nuclear Medicine (F.B., H.V.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; and Vita-Salute San Raffaele University (P.P., G.C., M.F.), Milan, Italy
| | - Barbara Bellenberg
- From the Neuroimaging Research Unit (M.A.R., P.V., A.M., P.P., M.F.) and Neurology Unit (M.A.R., P.P., G.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Neurology (C.G., C.Z.), Neurocenter of Southern Switzerland, Regional Hospital Lugano (EOC), Lugano; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Section of Neuroradiology and MRI Unit, Department of Radiology (A.R.), and Department of Neurology/Neuroimmunology (X.M.), Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain; NMR Research Unit (H.K., O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London; Nuffield Department of Clinical Neurosciences (L.M., J.P.), University of Oxford, UK; Department of Advanced Medical and Surgical Sciences, and 3T MRI Center, (A.G., A.B.), University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Neurology (A.G., P.E.), Universitätsmedizin Mannheim, University of Heidelberg, Germany; Department of Radiology and Nuclear Medicine (C.L., B.B.) and Institute of Neuroradiology (C.L., B.B.), St. Josef Hospital, Ruhr-University Bochum, Germany; Department of Radiology and Nuclear Medicine (F.B., H.V.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; and Vita-Salute San Raffaele University (P.P., G.C., M.F.), Milan, Italy
| | - Frederik Barkhof
- From the Neuroimaging Research Unit (M.A.R., P.V., A.M., P.P., M.F.) and Neurology Unit (M.A.R., P.P., G.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Neurology (C.G., C.Z.), Neurocenter of Southern Switzerland, Regional Hospital Lugano (EOC), Lugano; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Section of Neuroradiology and MRI Unit, Department of Radiology (A.R.), and Department of Neurology/Neuroimmunology (X.M.), Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain; NMR Research Unit (H.K., O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London; Nuffield Department of Clinical Neurosciences (L.M., J.P.), University of Oxford, UK; Department of Advanced Medical and Surgical Sciences, and 3T MRI Center, (A.G., A.B.), University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Neurology (A.G., P.E.), Universitätsmedizin Mannheim, University of Heidelberg, Germany; Department of Radiology and Nuclear Medicine (C.L., B.B.) and Institute of Neuroradiology (C.L., B.B.), St. Josef Hospital, Ruhr-University Bochum, Germany; Department of Radiology and Nuclear Medicine (F.B., H.V.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; and Vita-Salute San Raffaele University (P.P., G.C., M.F.), Milan, Italy
| | - Hugo Vrenken
- From the Neuroimaging Research Unit (M.A.R., P.V., A.M., P.P., M.F.) and Neurology Unit (M.A.R., P.P., G.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Neurology (C.G., C.Z.), Neurocenter of Southern Switzerland, Regional Hospital Lugano (EOC), Lugano; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Section of Neuroradiology and MRI Unit, Department of Radiology (A.R.), and Department of Neurology/Neuroimmunology (X.M.), Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain; NMR Research Unit (H.K., O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London; Nuffield Department of Clinical Neurosciences (L.M., J.P.), University of Oxford, UK; Department of Advanced Medical and Surgical Sciences, and 3T MRI Center, (A.G., A.B.), University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Neurology (A.G., P.E.), Universitätsmedizin Mannheim, University of Heidelberg, Germany; Department of Radiology and Nuclear Medicine (C.L., B.B.) and Institute of Neuroradiology (C.L., B.B.), St. Josef Hospital, Ruhr-University Bochum, Germany; Department of Radiology and Nuclear Medicine (F.B., H.V.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; and Vita-Salute San Raffaele University (P.P., G.C., M.F.), Milan, Italy
| | - Paolo Preziosa
- From the Neuroimaging Research Unit (M.A.R., P.V., A.M., P.P., M.F.) and Neurology Unit (M.A.R., P.P., G.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Neurology (C.G., C.Z.), Neurocenter of Southern Switzerland, Regional Hospital Lugano (EOC), Lugano; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Section of Neuroradiology and MRI Unit, Department of Radiology (A.R.), and Department of Neurology/Neuroimmunology (X.M.), Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain; NMR Research Unit (H.K., O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London; Nuffield Department of Clinical Neurosciences (L.M., J.P.), University of Oxford, UK; Department of Advanced Medical and Surgical Sciences, and 3T MRI Center, (A.G., A.B.), University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Neurology (A.G., P.E.), Universitätsmedizin Mannheim, University of Heidelberg, Germany; Department of Radiology and Nuclear Medicine (C.L., B.B.) and Institute of Neuroradiology (C.L., B.B.), St. Josef Hospital, Ruhr-University Bochum, Germany; Department of Radiology and Nuclear Medicine (F.B., H.V.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; and Vita-Salute San Raffaele University (P.P., G.C., M.F.), Milan, Italy
| | - Giancarlo Comi
- From the Neuroimaging Research Unit (M.A.R., P.V., A.M., P.P., M.F.) and Neurology Unit (M.A.R., P.P., G.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Neurology (C.G., C.Z.), Neurocenter of Southern Switzerland, Regional Hospital Lugano (EOC), Lugano; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Section of Neuroradiology and MRI Unit, Department of Radiology (A.R.), and Department of Neurology/Neuroimmunology (X.M.), Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain; NMR Research Unit (H.K., O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London; Nuffield Department of Clinical Neurosciences (L.M., J.P.), University of Oxford, UK; Department of Advanced Medical and Surgical Sciences, and 3T MRI Center, (A.G., A.B.), University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Neurology (A.G., P.E.), Universitätsmedizin Mannheim, University of Heidelberg, Germany; Department of Radiology and Nuclear Medicine (C.L., B.B.) and Institute of Neuroradiology (C.L., B.B.), St. Josef Hospital, Ruhr-University Bochum, Germany; Department of Radiology and Nuclear Medicine (F.B., H.V.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; and Vita-Salute San Raffaele University (P.P., G.C., M.F.), Milan, Italy
| | - Massimo Filippi
- From the Neuroimaging Research Unit (M.A.R., P.V., A.M., P.P., M.F.) and Neurology Unit (M.A.R., P.P., G.C., M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Neurology (C.G., C.Z.), Neurocenter of Southern Switzerland, Regional Hospital Lugano (EOC), Lugano; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana, Lugano, Switzerland; Section of Neuroradiology and MRI Unit, Department of Radiology (A.R.), and Department of Neurology/Neuroimmunology (X.M.), Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain; NMR Research Unit (H.K., O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London; Nuffield Department of Clinical Neurosciences (L.M., J.P.), University of Oxford, UK; Department of Advanced Medical and Surgical Sciences, and 3T MRI Center, (A.G., A.B.), University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Neurology (A.G., P.E.), Universitätsmedizin Mannheim, University of Heidelberg, Germany; Department of Radiology and Nuclear Medicine (C.L., B.B.) and Institute of Neuroradiology (C.L., B.B.), St. Josef Hospital, Ruhr-University Bochum, Germany; Department of Radiology and Nuclear Medicine (F.B., H.V.), MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; and Vita-Salute San Raffaele University (P.P., G.C., M.F.), Milan, Italy
| | | |
Collapse
|
67
|
Song X, Li D, Qiu Z, Su S, Wu Y, Wang J, Liu Z, Dong H. Correlation between EDSS scores and cervical spinal cord atrophy at 3T MRI in multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord 2019; 37:101426. [PMID: 32172997 DOI: 10.1016/j.msard.2019.101426] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/28/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cervical spinal cord atrophy (CSCA), which partly reflects the axonal loss in the spinal cord, is increasingly recognized as a valuable predictor of disease outcome. However, inconsistent results have been reported regarding the correlation of CSCA and clinical disability in multiple sclerosis (MS). The aim of this meta-analysis was to synthesize the available data obtained from 3.0-Tesla (3T) MRI scanners and to explore the relationship between CSCA and scores on the Expanded Disability Status Scale (EDSS). METHODS We searched PubMed, Embase, and Web of Science for articles published from the database inception to February 1, 2019. The quality of the articles was assessed according to a quality evaluation checklist which was created based on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines. We conducted a meta-analysis of the correlation between EDSS scores and CSCA at 3T MRI in MS. RESULTS Twenty-two eligible studies involving 1933 participants were incorporated into our meta-analysis. Our results demonstrated that CSCA was negatively and moderately correlated with EDSS scores (rs = -0.42, 95% CI: -0.51 to -0.32; p < 0.0001). Subgroup analyses revealed a weaker correlation in the group of relapsing-remitting multiple sclerosis (RRMS) and clinically isolated syndrome (CIS) (rs = -0.19, 95% CI: -0.31 to -0.07; p = 0.0029). CONCLUSIONS The correlation between CSCA and EDSS scores was significant but moderate. We encourage more studies using reliable and consistent methods to explore whether CSCA is suitable as a predictor for MS progression.
Collapse
Affiliation(s)
- Xiaodong Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China
| | - Dawei Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China
| | - Zhandong Qiu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China
| | - Shengyao Su
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China
| | - Yan Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China
| | - Jingsi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China
| | - Zheng Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China.
| | - Huiqing Dong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China.
| |
Collapse
|
68
|
Papinutto N, Asteggiano C, Bischof A, Gundel TJ, Caverzasi E, Stern WA, Bastianello S, Hauser SL, Henry RG. Intersubject Variability and Normalization Strategies for Spinal Cord Total Cross-Sectional and Gray Matter Areas. J Neuroimaging 2019; 30:110-118. [PMID: 31571307 DOI: 10.1111/jon.12666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/02/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The quantification of spinal cord (SC) atrophy by MRI has assumed an important role in assessment of neuroinflammatory/neurodegenerative diseases and traumatic SC injury. Recent technical advances make possible the quantification of gray matter (GM) and white matter tissues in clinical settings. However, the goal of a reliable diagnostic, prognostic or predictive marker is still elusive, in part due to large intersubject variability of SC areas. Here, we investigated the sources of this variability and explored effective strategies to reduce it. METHODS One hundred twenty-nine healthy subjects (mean age: 41.0 ± 15.9) underwent MRI on a Siemens 3T Skyra scanner. Two-dimensional PSIR at the C2-C3 vertebral level and a sagittal 1 mm3 3D T1-weighted brain acquisition extended to the upper cervical cord were acquired. Total cross-sectional area and GM area were measured at C2-C3, as well as measures of the vertebra, spinal canal and the skull. Correlations between the different metrics were explored using Pearson product-moment coefficients. The most promising metrics were used to normalize cord areas using multiple regression analyses. RESULTS The most effective normalization metrics were the V-scale (from SienaX) and the product of the C2-C3 spinal canal diameters. Normalization methods based on these metrics reduced the intersubject variability of cord areas of up to 17.74%. The measured cord areas had a statistically significant sex difference, while the effect of age was moderate. CONCLUSIONS The present work explored in a large cohort of healthy subjects the source of intersubject variability of SC areas and proposes effective normalization methods for its reduction.
Collapse
Affiliation(s)
- Nico Papinutto
- Department of Neurology, University of California, San Francisco, CA
| | - Carlo Asteggiano
- Department of Neurology, University of California, San Francisco, CA.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Antje Bischof
- Department of Neurology, University of California, San Francisco, CA
| | - Tristan J Gundel
- Department of Neurology, University of California, San Francisco, CA
| | - Eduardo Caverzasi
- Department of Neurology, University of California, San Francisco, CA.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - William A Stern
- Department of Neurology, University of California, San Francisco, CA
| | - Stefano Bastianello
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Stephen L Hauser
- Department of Neurology, University of California, San Francisco, CA
| | - Roland G Henry
- Department of Neurology, University of California, San Francisco, CA
| |
Collapse
|
69
|
Moccia M, Prados F, Filippi M, Rocca MA, Valsasina P, Brownlee WJ, Zecca C, Gallo A, Rovira A, Gass A, Palace J, Lukas C, Vrenken H, Ourselin S, Gandini Wheeler‐Kingshott CAM, Ciccarelli O, Barkhof F. Longitudinal spinal cord atrophy in multiple sclerosis using the generalized boundary shift integral. Ann Neurol 2019; 86:704-713. [DOI: 10.1002/ana.25571] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Marcello Moccia
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College London London United Kingdom
- Multiple Sclerosis Clinical Care and Research Center, Department of NeurosciencesFederico II University Naples Italy
| | - Ferran Prados
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College London London United Kingdom
- Centre for Medical Image Computing, Department of Medical Physics and BioengineeringUniversity College London London United Kingdom
- National Institute for Health ResearchUniversity College London Hospitals Biomedical Research Centre London United Kingdom
- Open University of Catalonia Barcelona Spain
| | - Massimo Filippi
- Division of Neuroscience, San Raffaele Scientific Institute, Vita‐Salute San Raffaele UniversityNeuroimaging Research Unit, Institute of Experimental Neurology Milan Italy
- Department of NeurologySan Raffaele Scientific Institute Milan Italy
| | - Maria A. Rocca
- Division of Neuroscience, San Raffaele Scientific Institute, Vita‐Salute San Raffaele UniversityNeuroimaging Research Unit, Institute of Experimental Neurology Milan Italy
- Department of NeurologySan Raffaele Scientific Institute Milan Italy
| | - Paola Valsasina
- Division of Neuroscience, San Raffaele Scientific Institute, Vita‐Salute San Raffaele UniversityNeuroimaging Research Unit, Institute of Experimental Neurology Milan Italy
| | - Wallace J. Brownlee
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College London London United Kingdom
| | - Chiara Zecca
- Neurocenter of Southern SwitzerlandLugano Regional Hospital Lugano Switzerland
| | - Antonio Gallo
- 3T‐MRI Research Center, Department of Advanced Medical and Surgical SciencesUniversity of Campania Luigi Vanvitelli Naples Italy
| | - Alex Rovira
- Section of Neuroradiology, Department of RadiologyVall d'Hebron University Hospital, Autonomous University of Barcelona Barcelona Spain
| | - Achim Gass
- Department of NeurologyUniversitätsmedizin Mannheim, University of Heidelberg Mannheim Germany
| | - Jacqueline Palace
- Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital Oxford United Kingdom
| | | | - Hugo Vrenken
- Department of Radiology and Nuclear MedicineVU University Medical Center Amsterdam the Netherlands
| | - Sebastien Ourselin
- Department of Imaging and Biomedical EngineeringKing's College London London United Kingdom
| | - Claudia A. M. Gandini Wheeler‐Kingshott
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College London London United Kingdom
- Department of Brain and Behavioral SciencesUniversity of Pavia Pavia Italy
- Brain MRI 3T Research Center, Mondino FoundationScientific Institute for Research and Health Care Pavia Italy
| | - Olga Ciccarelli
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College London London United Kingdom
- National Institute for Health ResearchUniversity College London Hospitals Biomedical Research Centre London United Kingdom
| | - Frederik Barkhof
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College London London United Kingdom
- Centre for Medical Image Computing, Department of Medical Physics and BioengineeringUniversity College London London United Kingdom
- National Institute for Health ResearchUniversity College London Hospitals Biomedical Research Centre London United Kingdom
- Department of Radiology and Nuclear MedicineVU University Medical Center Amsterdam the Netherlands
| | | |
Collapse
|
70
|
van der Burgh HK, Westeneng HJ, Meier JM, van Es MA, Veldink JH, Hendrikse J, van den Heuvel MP, van den Berg LH. Cross-sectional and longitudinal assessment of the upper cervical spinal cord in motor neuron disease. NEUROIMAGE-CLINICAL 2019; 24:101984. [PMID: 31499409 PMCID: PMC6734179 DOI: 10.1016/j.nicl.2019.101984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 11/28/2022]
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease characterized by both upper and lower motor neuron degeneration. While neuroimaging studies of the brain can detect upper motor neuron degeneration, these brain MRI scans also include the upper part of the cervical spinal cord, which offers the possibility to expand the focus also towards lower motor neuron degeneration. Here, we set out to investigate cross-sectional and longitudinal disease effects in the upper cervical spinal cord in patients with ALS, progressive muscular atrophy (PMA: primarily lower motor neuron involvement) and primary lateral sclerosis (PLS: primarily upper motor neuron involvement), and their relation to disease severity and grey and white matter brain measurements. Methods We enrolled 108 ALS patients without C9orf72 repeat expansion (ALS C9–), 26 ALS patients with C9orf72 repeat expansion (ALS C9+), 28 PLS patients, 56 PMA patients and 114 controls. During up to five visits, longitudinal T1-weighted brain MRI data were acquired and used to segment the upper cervical spinal cord (UCSC, up to C3) and individual cervical segments (C1 to C4) to calculate cross-sectional areas (CSA). Using linear (mixed-effects) models, the CSA differences were assessed between groups and correlated with disease severity. Furthermore, a relationship between CSA and brain measurements was examined in terms of cortical thickness of the precentral gyrus and white matter integrity of the corticospinal tract. Results Compared to controls, CSAs at baseline showed significantly thinner UCSC in all groups in the MND spectrum. Over time, ALS C9– patients demonstrated significant thinning of the UCSC and, more specifically, of segment C3 compared to controls. Progressive thinning over time was also observed in C1 of PMA patients, while ALS C9+ and PLS patients did not show any longitudinal changes. Longitudinal spinal cord measurements showed a significant relationship with disease severity and we found a significant correlation between spinal cord and motor cortex thickness or corticospinal tract integrity for PLS and PMA, but not for ALS patients. Discussion Our findings demonstrate atrophy of the upper cervical spinal cord in the motor neuron disease spectrum, which was progressive over time for all but PLS patients. Cervical spinal cord imaging in ALS seems to capture different disease effects than brain neuroimaging. Atrophy of the cervical spinal cord is therefore a promising additional biomarker for both diagnosis and disease progression and could help in the monitoring of treatment effects in future clinical trials. Atrophy of upper cervical spinal cord is shown in the motor neuron disease spectrum. Progressive cervical spinal cord thinning occurs over time for all but PLS patients. Cervical spinal cord imaging is a potential biomarker for disease progression in ALS.
Collapse
Affiliation(s)
- Hannelore K van der Burgh
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Henk-Jan Westeneng
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Jil M Meier
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Michael A van Es
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Jeroen Hendrikse
- Department of Radiology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands.
| | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
71
|
Andelova M, Uher T, Krasensky J, Sobisek L, Kusova E, Srpova B, Vodehnalova K, Friedova L, Motyl J, Preiningerova JL, Kubala Havrdova E, Horakova D, Vaneckova M. Additive Effect of Spinal Cord Volume, Diffuse and Focal Cord Pathology on Disability in Multiple Sclerosis. Front Neurol 2019; 10:820. [PMID: 31447759 PMCID: PMC6691803 DOI: 10.3389/fneur.2019.00820] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/16/2019] [Indexed: 11/30/2022] Open
Abstract
Introduction: Spinal cord (SC) pathology is strongly associated with disability in multiple sclerosis (MS). We aimed to evaluate the association between focal and diffuse SC abnormalities and spinal cord volume and to assess their contribution to physical disability in MS patients. Methods: This large sample-size cross-sectional study investigated 1,249 patients with heterogeneous MS phenotypes. Upper cervical-cord cross-sectional area (MUCCA) was calculated on an axial 3D-T2w-FatSat sequence acquired at 3T using a novel semiautomatic edge-finding tool. SC images were scored for the presence of sharply demarcated hyperintense areas (focal lesions) and homogenously increased signal intensity (diffuse changes). Patients were dichotomized according EDSS in groups with mild (EDSS up to 3.0) and moderate (EDSS ≥ 3.5) physical disability. Analysis of covariance was used to identify factors associated with dichotomized MUCCA. In binary logistic regression, the SC imaging parameters were entered in blocks to assess their individual contribution to risk of moderate disability. In order to assess the risk of combined SC damage in terms of atrophy and lesional pathology on disability, secondary analysis was carried out where patients were divided into four categories (SC phenotypes) according to median dichotomized MUCCA and presence/absence of focal and/or diffuse changes. Results: MUCCA was strongly associated with total intracranial volume, followed by presence of diffuse SC pathology, and disease duration. Compared to the reference group (normally appearing SC, MUCCA>median), patients with the most severe SC changes (SC affected with focal and/or diffuse lesions, MUCCA
Collapse
Affiliation(s)
- Michaela Andelova
- Department of Neurology, First Faculty of Medicine, Center of Clinical Neuroscience, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Tomas Uher
- Department of Neurology, First Faculty of Medicine, Center of Clinical Neuroscience, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Jan Krasensky
- Department of Radiology, Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czechia
| | | | - Eliska Kusova
- Department of Radiology, Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czechia
| | - Barbora Srpova
- Department of Neurology, First Faculty of Medicine, Center of Clinical Neuroscience, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Karolina Vodehnalova
- Department of Neurology, First Faculty of Medicine, Center of Clinical Neuroscience, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Lucie Friedova
- Department of Neurology, First Faculty of Medicine, Center of Clinical Neuroscience, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Jiri Motyl
- Department of Neurology, First Faculty of Medicine, Center of Clinical Neuroscience, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Jana Lizrova Preiningerova
- Department of Neurology, First Faculty of Medicine, Center of Clinical Neuroscience, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Eva Kubala Havrdova
- Department of Neurology, First Faculty of Medicine, Center of Clinical Neuroscience, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Dana Horakova
- Department of Neurology, First Faculty of Medicine, Center of Clinical Neuroscience, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Manuela Vaneckova
- Department of Radiology, Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czechia
| |
Collapse
|
72
|
Weeda MM, Middelkoop SM, Steenwijk MD, Daams M, Amiri H, Brouwer I, Killestein J, Uitdehaag BMJ, Dekker I, Lukas C, Bellenberg B, Barkhof F, Pouwels PJW, Vrenken H. Validation of mean upper cervical cord area (MUCCA) measurement techniques in multiple sclerosis (MS): High reproducibility and robustness to lesions, but large software and scanner effects. NEUROIMAGE-CLINICAL 2019; 24:101962. [PMID: 31416017 PMCID: PMC6704046 DOI: 10.1016/j.nicl.2019.101962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/12/2019] [Accepted: 07/26/2019] [Indexed: 11/15/2022]
Abstract
Introduction Atrophy of the spinal cord is known to occur in multiple sclerosis (MS). The mean upper cervical cord area (MUCCA) can be used to measure this atrophy. Currently, several (semi-)automated methods for MUCCA measurement exist, but validation in clinical magnetic resonance (MR) images is lacking. Methods Five methods to measure MUCCA (SCT-PropSeg, SCT-DeepSeg, NeuroQLab, Xinapse JIM and ITK-SNAP) were investigated in a predefined upper cervical cord region. First, within-scanner reproducibility and between-scanner robustness were assessed using intra-class correlation coefficient (ICC) and Dice's similarity index (SI) in scan-rescan 3DT1-weighted images (brain, including cervical spine using a head coil) performed on three 3 T MR machines (GE MR750, Philips Ingenuity, Toshiba Vantage Titan) in 21 subjects with MS and 6 healthy controls (dataset A). Second, sensitivity of MUCCA measurement to lesions in the upper cervical cord was assessed with cervical 3D T1-weighted images (3 T GE HDxT using a head-neck-spine coil) in 7 subjects with MS without and 14 subjects with MS with cervical lesions (dataset B), using ICC and SI with manual reference segmentations. Results In dataset A, MUCCA differed between MR machines (p < 0.001) and methods (p < 0.001) used, but not between scan sessions. With respect to MUCCA values, Xinapse JIM showed the highest within-scanner reproducibility (ICC absolute agreement = 0.995) while Xinapse JIM and SCT-PropSeg showed the highest between-scanner robustness (ICC consistency = 0.981 and 0.976, respectively). Reproducibility of segmentations between scan sessions was highest in Xinapse JIM and SCT-PropSeg segmentations (median SI ≥ 0.921), with a significant main effect of method (p < 0.001), but not of MR machine or subject group. In dataset B, SI with manual outlines did not differ between patients with or without cervical lesions for any of the segmentation methods (p > 0.176). However, there was an effect of method for both volumetric and voxel wise agreement of the segmentations (both p < 0.001). Highest volumetric and voxel wise agreement was obtained with Xinapse JIM (ICC absolute agreement = 0.940 and median SI = 0.962). Conclusion Although MUCCA is highly reproducible within a scanner for each individual measurement method, MUCCA differs between scanners and between methods. Cervical cord lesions do not affect MUCCA measurement performance. Mean upper cervical cord area (MUCCA) was obtained with five different methods. MUCCA was determined in a unique scan-rescan multi-vendor MR study. Reproducibility: MUCCA did not differ between scan-rescan images for any method. Robustness: MUCCA differed between methods and between scanners. Performance of MUCCA methods was not affected by the presence of lesions.
Collapse
Affiliation(s)
- M M Weeda
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC-location VUmc, Amsterdam, the Netherlands.
| | - S M Middelkoop
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC-location VUmc, Amsterdam, the Netherlands
| | - M D Steenwijk
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - location VUmc, Amsterdam, the Netherlands
| | - M Daams
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC-location VUmc, Amsterdam, the Netherlands
| | - H Amiri
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC-location VUmc, Amsterdam, the Netherlands
| | - I Brouwer
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC-location VUmc, Amsterdam, the Netherlands
| | - J Killestein
- Department of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - location VUmc, Amsterdam, the Netherlands
| | - B M J Uitdehaag
- Department of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - location VUmc, Amsterdam, the Netherlands
| | - I Dekker
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC-location VUmc, Amsterdam, the Netherlands; Department of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - location VUmc, Amsterdam, the Netherlands
| | - C Lukas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, St. Josef Hospital, Ruhr University, Bochum, Germany
| | - B Bellenberg
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, St. Josef Hospital, Ruhr University, Bochum, Germany
| | - F Barkhof
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC-location VUmc, Amsterdam, the Netherlands; Institutes of Neurology and Healthcare Engineering, UCL, London, UK
| | - P J W Pouwels
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC-location VUmc, Amsterdam, the Netherlands
| | - H Vrenken
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC-location VUmc, Amsterdam, the Netherlands
| |
Collapse
|
73
|
Nakamura Y, Liu Z, Fukumoto S, Shinoda K, Sakoda A, Matsushita T, Hayashida S, Isobe N, Watanabe M, Hiwatashi A, Yamasaki R, Kira JI. Spinal cord involvement by atrophy and associations with disability are different between multiple sclerosis and neuromyelitis optica spectrum disorder. Eur J Neurol 2019; 27:92-99. [PMID: 31304648 DOI: 10.1111/ene.14038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/18/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE The cervical and thoracic cross-sectional spinal cord area (CS-SCA) in multiple sclerosis (MS) correlates with disability, whilst such a correlation remains to be established in neuromyelitis optica spectrum disorder (NMOSD). Our aim was to clarify differences between MS and NMOSD in spinal cord segments where CS-SCA is associated with disability. METHODS The CS-SCA at C2/C3, C3/C4, T8/T9 and T9/T10 vertebral disc levels was measured in 140 MS patients (111 with relapsing-remitting MS and 29 with progressive MS) and 42 NMOSD patients with anti-aquaporin-4 immunoglobulin G. Disability was evaluated by Expanded Disability Status Scale (EDSS) scores. Multivariate associations between CS-SCA and disability were assessed by stepwise forward multiple linear regression. RESULTS Thoracic CS-SCA was significantly smaller in NMOSD patients than in MS patients even after adjusting for age, sex and disease duration (P = 0.002 at T8/T9), whilst there was no difference in cervical CS-SCA between the two diseases. Cervical and thoracic CS-SCA had a negative correlation with EDSS scores in MS patients (P < 0.0001 at C3/C4 and P = 0.0002 at T8/T9) whereas only thoracic CS-SCA correlated with EDSS scores in NMOSD patients (P = 0.0006 at T8/T9). By multiple regression analyses, predictive factors for disability in MS were smaller cervical CS-SCA, progressive course, older age and a higher number of relapses, whilst those in NMOSD were smaller thoracic CS-SCA and older age. CONCLUSIONS Thoracic CS-SCA is a useful predictive marker for disability in patients with NMOSD whilst cervical CS-SCA is associated with disability in patients with MS.
Collapse
Affiliation(s)
- Y Nakamura
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Z Liu
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - S Fukumoto
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - K Shinoda
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - A Sakoda
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - T Matsushita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - S Hayashida
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - N Isobe
- Department of Neurological Therapeutics, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - M Watanabe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - A Hiwatashi
- Department of Molecular Imaging & Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - R Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - J-I Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
74
|
Moccia M, Ruggieri S, Ianniello A, Toosy A, Pozzilli C, Ciccarelli O. Advances in spinal cord imaging in multiple sclerosis. Ther Adv Neurol Disord 2019; 12:1756286419840593. [PMID: 31040881 PMCID: PMC6477770 DOI: 10.1177/1756286419840593] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/03/2019] [Indexed: 11/18/2022] Open
Abstract
The spinal cord is frequently affected in multiple sclerosis (MS), causing motor, sensory and autonomic dysfunction. A number of pathological abnormalities, including demyelination and neuroaxonal loss, occur in the MS spinal cord and are studied in vivo with magnetic resonance imaging (MRI). The aim of this review is to summarise and discuss recent advances in spinal cord MRI. Advances in conventional spinal cord MRI include improved identification of MS lesions, recommended spinal cord MRI protocols, enhanced recognition of MRI lesion characteristics that allow MS to be distinguished from other myelopathies, evidence for the role of spinal cord lesions in predicting prognosis and monitoring disease course, and novel post-processing methods to obtain lesion probability maps. The rate of spinal cord atrophy is greater than that of brain atrophy (-1.78% versus -0.5% per year), and reflects neuroaxonal loss in an eloquent site of the central nervous system, suggesting that it can become an important outcome measure in clinical trials, especially in progressive MS. Recent developments allow the calculation of spinal cord atrophy from brain volumetric scans and evaluation of its progression over time with registration-based techniques. Fully automated analysis methods, including segmentation of grey matter and intramedullary lesions, will facilitate the use of spinal cord atrophy in trial designs and observational studies. Advances in quantitative imaging techniques to evaluate neuroaxonal integrity, myelin content, metabolic changes, and functional connectivity, have provided new insights into the mechanisms of damage in MS. Future directions of research and the possible impact of 7T scanners on spinal cord imaging will be discussed.
Collapse
Affiliation(s)
- Marcello Moccia
- Queen Square MS Centre, NMR Research Unit, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Federico II University of Naples, via Sergio Pansini, 5, Edificio 17 - piano terra, Napoli, 80131 Naples, Italy
| | - Serena Ruggieri
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| | - Antonio Ianniello
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| | - Ahmed Toosy
- Queen Square MS Centre, NMR Research Unit, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Carlo Pozzilli
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| | - Olga Ciccarelli
- Queen Square MS Centre, NMR Research Unit, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- National Institute for Health Research, University College London Hospitals Biomedical Research Centre, London, UK
| |
Collapse
|
75
|
Comparison of Reported Spinal Cord Lesions in Progressive Multiple Sclerosis with Theiler's Murine Encephalomyelitis Virus Induced Demyelinating Disease. Int J Mol Sci 2019; 20:ijms20040989. [PMID: 30823515 PMCID: PMC6413032 DOI: 10.3390/ijms20040989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/10/2019] [Accepted: 02/21/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Spinal cord (SC) lesions in Theiler's murine encephalomyelitis virus induced demyelinating disease (TMEV-IDD) resemble important features of brain lesions in progressive multiple sclerosis (MS) including inflammation, demyelination, and axonal damage. The aim of the present study was a comparison of SC lesions in MS and TMEV-IDD focusing on spatial and temporal distribution of demyelination, inflammation, SC atrophy (SCA), and axonal degeneration/loss in major descending motor pathways. METHODS TMEV and mock-infected mice were investigated clinically once a week. SC tissue was collected at 42, 98, 147, and 196 days post infection, and investigated using hematoxylin and eosin (HE) staining, immunohistochemistry targeting myelin basic protein (demyelination), Mac3 (microglia/macrophages), phosphorylated neurofilaments (axonal damage) and transmission electron microscopy. RESULTS Demyelination prevailed in SC white matter in TMEV-IDD, contrasting a predominant gray matter involvement in MS. TMEV-infected mice revealed a significant loss of axons similar to MS. Ultrastructural analysis in TMEV-IDD revealed denuded axons, degenerative myelin changes, axonal degeneration, as well as remyelination. SCA is a consistent finding in the SC of MS patients and was also detected at a late time point in TMEV-IDD. CONCLUSION This comparative study further indicates the suitability of TMEV-IDD as animal model also for the investigation of progressive SC lesions in MS.
Collapse
|