51
|
Bougie TC, Brelsford A, Hedin M. Evolutionary impacts of introgressive hybridization in a rapidly evolving group of jumping spiders (F. Salticidae, Habronattus americanus group). Mol Phylogenet Evol 2021; 161:107165. [PMID: 33798670 DOI: 10.1016/j.ympev.2021.107165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Introgressive hybridization can be a powerful force impacting patterns of evolution at multiple taxonomic levels. We aimed to understand how introgression has affected speciation and diversification within a species complex of jumping spiders. The Habronattus americanus subgroup is a recently radiating group of jumping spiders, with species now in contact after hypothesized periods of isolation during glaciation cycles of the Pleistocene. Effects of introgression on genomes and morphology were investigated using phylogenomic and clustering methods using RADseq, ultraconserved elements (UCEs), and morphological data. We characterized 14 unique species/morphs using non-metric multidimensional scaling of morphological data, a majority of which were not recovered as monophyletic in our phylogenomic analyses. Morphological clusters and genetic lineages are highly incongruent, such that geographic region was a greater predictor of phylogenetic relatedness and genomic similarity than species or morph identity. STRUCTURE analyses support this pattern, revealing clusters corresponding to larger geographic regions. A history of rapid radiation in combination with frequent introgression seems to have mostly homogenized the genomes of species in this system, while selective forces maintain distinct male morphologies. GEMMA analyses support this idea by identifying SNPs correlated with distinct male morphologies. Overall, we have uncovered a system at odds with a typical bifurcating evolutionary model, instead supporting one where closely related species evolve together connected through multiple introgression events, creating a reticulate evolutionary history.
Collapse
Affiliation(s)
- T C Bougie
- Dept. of Biology, San Diego State University, San Diego, CA 92182, United States; Evolution, Ecology, and Organismal Biology Department, University of California Riverside, Riverside, CA 92521, United States.
| | - A Brelsford
- Evolution, Ecology, and Organismal Biology Department, University of California Riverside, Riverside, CA 92521, United States
| | - M Hedin
- Dept. of Biology, San Diego State University, San Diego, CA 92182, United States
| |
Collapse
|
52
|
DePasquale AN, Webb SE, Williamson RE, Fedigan LM, Melin AD. Testing the niche differentiation hypothesis in wild capuchin monkeys with polymorphic color vision. Behav Ecol 2021. [DOI: 10.1093/beheco/arab001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
The polymorphic color vision system present in most North, Central, and South American monkeys is a textbook case of balancing selection, yet the mechanism behind it remains poorly understood. Previous work has established task-specific foraging advantages to different color vision phenotypes: dichromats (red-green colorblind) are more efficient foraging for invertebrates, while trichromats (color “normal” relative to humans) are more efficient foraging for “reddish” ripe fruit, suggesting that niche differentiation may underlie the maintenance of color vision variation. We explore a prediction of the niche differentiation hypothesis by asking whether dichromatic and trichromatic capuchin monkeys (Cebus imitator) diverge in their foraging activity budget, specifically testing whether dichromats forage more frequently for invertebrates and trichromats forage more frequently for “reddish” ripe fruit. To assess this, we analyze a large data set of behavioral scan samples (n = 21 984) from 48 wild adult female capuchins of known color vision genotype, dominance rank, and reproductive status, together with models of food conspicuity. We find no significant differences between dichromats and trichromats in the frequency of scans spent foraging for different food types but do find that nursing females forage less overall than cycling females. Our results suggest that the potential for color-vision-based niche differentiation in foraging time may be curtailed by the energetic requirements of reproduction, behavioral synchrony caused by group living, and/or individual preferences. While niche differentiation in activity budgets by color vision type is not apparent, fine-scale niche differentiation may be occurring. This research enhances our understanding of the evolutionary processes maintaining sensory polymorphisms.
Collapse
Affiliation(s)
- Allegra N DePasquale
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Shasta E Webb
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Rachel E Williamson
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Linda M Fedigan
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
53
|
Isildak U, Stella A, Fumagalli M. Distinguishing between recent balancing selection and incomplete sweep using deep neural networks. Mol Ecol Resour 2021; 21:2706-2718. [PMID: 33749134 DOI: 10.1111/1755-0998.13379] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Balancing selection is an important adaptive mechanism underpinning a wide range of phenotypes. Despite its relevance, the detection of recent balancing selection from genomic data is challenging as its signatures are qualitatively similar to those left by ongoing positive selection. In this study, we developed and implemented two deep neural networks and tested their performance to predict loci under recent selection, either due to balancing selection or incomplete sweep, from population genomic data. Specifically, we generated forward-in-time simulations to train and test an artificial neural network (ANN) and a convolutional neural network (CNN). ANN received as input multiple summary statistics calculated on the locus of interest, while CNN was applied directly on the matrix of haplotypes. We found that both architectures have high accuracy to identify loci under recent selection. CNN generally outperformed ANN to distinguish between signals of balancing selection and incomplete sweep and was less affected by incorrect training data. We deployed both trained networks on neutral genomic regions in European populations and demonstrated a lower false-positive rate for CNN than ANN. We finally deployed CNN within the MEFV gene region and identified several common variants predicted to be under incomplete sweep in a European population. Notably, two of these variants are functional changes and could modulate susceptibility to familial Mediterranean fever, possibly as a consequence of past adaptation to pathogens. In conclusion, deep neural networks were able to characterize signals of selection on intermediate frequency variants, an analysis currently inaccessible by commonly used strategies.
Collapse
Affiliation(s)
- Ulas Isildak
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Alessandro Stella
- Laboratory of Medical Genetics, Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Matteo Fumagalli
- Department of Life Sciences, Silwood Park Campus, Imperial College London, London, UK
| |
Collapse
|
54
|
Mutation load at a mimicry supergene sheds new light on the evolution of inversion polymorphisms. Nat Genet 2021; 53:288-293. [PMID: 33495598 DOI: 10.1038/s41588-020-00771-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
Chromosomal inversions are ubiquitous in genomes and often coordinate complex phenotypes, such as the covariation of behavior and morphology in many birds, fishes, insects or mammals1-11. However, why and how inversions become associated with polymorphic traits remains obscure. Here we show that despite a strong selective advantage when they form, inversions accumulate recessive deleterious mutations that generate frequency-dependent selection and promote their maintenance at intermediate frequency. Combining genomics and in vivo fitness analyses in a model butterfly for wing-pattern polymorphism, Heliconius numata, we reveal that three ecologically advantageous inversions have built up a heavy mutational load from the sequential accumulation of deleterious mutations and transposable elements. Inversions associate with sharply reduced viability when homozygous, which prevents them from replacing ancestral chromosome arrangements. Our results suggest that other complex polymorphisms, rather than representing adaptations to competing ecological optima, could evolve because chromosomal rearrangements are intrinsically prone to carrying recessive harmful mutations.
Collapse
|
55
|
Engen S, Sæther BE. Structure of the G-matrix in relation to phenotypic contributions to fitness. Theor Popul Biol 2021; 138:43-56. [PMID: 33610661 DOI: 10.1016/j.tpb.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
Classical theory in population genetics includes derivation of the stationary distribution of allele frequencies under balance between selection, genetic drift, and mutation. Here we investigate the simplest generalization of these single locus models to quantitative genetics with many loci, assuming simple additive effects on a set of phenotypes and a linear approximation to the fitness function. Genetic effects and pleiotropy are simulated by a prescribed stochastic model. Our goal is to analyze the structure of the G-matrix at stasis when the model is not very close to being neutral. The smallest eigenvalue of the G-matrix is practically zero by Fisher's fundamental theorem for natural selection and the fitness function is approximately a linear function of the corresponding eigenvector. Evolution of genetic trade-offs is closely linked to the fitness function. If a single locus never codes for more than two traits, then additive genetic covariance between two phenotype components always has the opposite sign of the product of their coefficients in the fitness function under no mutation, a pattern that is likely to occur frequently also in more complex models. In our major examples only 1-2 percent of the loci are over-dominant for fitness, but they still account for practically all dominance variance in fitness as well as all contributions to the G-matrix. These analyses show that the structure of the G-matrix reveals important information about the contribution of different traits to fitness.
Collapse
Affiliation(s)
- Steinar Engen
- Centre for Biodiversity Dynamics, Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Bernt-Erik Sæther
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
56
|
Zahnd S, Fontcuberta A, Koken M, Cardinaux A, Chapuisat M. Fine-scale habitat heterogeneity favours the coexistence of supergene-controlled social forms in Formica selysi. BMC Ecol Evol 2021; 21:24. [PMID: 33583395 PMCID: PMC7883426 DOI: 10.1186/s12862-020-01742-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/25/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Social insects vary widely in social organization, yet the genetical and ecological factors influencing this variation remain poorly known. In particular, whether spatially varying selection influences the maintenance of social polymorphisms in ants has been rarely investigated. To fill this gap, we examined whether fine-scale habitat heterogeneity contributes to the co-existence of alternative forms of social organization within populations. Single-queen colonies (monogyne social form) are generally associated with better colonization abilities, whereas multiple-queen colonies (polygyne social form) are predicted to be better competitors and monopolize saturated habitats. We hypothesize that each social form colonizes and thrives in distinct local habitats, as a result of their alternative dispersal and colony founding strategies. Here, we test this hypothesis in the Alpine silver ant, in which a supergene controls polymorphic social organization. RESULTS Monogyne and polygyne colonies predominate in distinct habitats of the same population. The analysis of 59 sampling plots distributed across six habitats revealed that single-queen colonies mostly occupy unconnected habitats that were most likely reached by flight. This includes young habitats isolated by water and old habitats isolated by vegetation. In contrast, multiple-queen colonies were abundant in young, continuous and saturated habitats. Hence, alternative social forms colonize and monopolize distinct niches at a very local scale. CONCLUSIONS Alternative social forms colonized and monopolized different local habitats, in accordance with differences in colonization and competition abilities. The monogyne social form displays a colonizer phenotype, by efficiently occupying empty habitats, while the polygyne social form exhibits a competitor phenotype, thriving in saturated habitats. The combination of the two phenotypes, coupled with fine-scale habitat heterogeneity, may allow the coexistence of alternative social forms within populations. Overall, these results suggest that spatially varying selection may be one of the mechanisms contributing to the maintenance of genetic polymorphisms in social organization.
Collapse
Affiliation(s)
- Sacha Zahnd
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Amaranta Fontcuberta
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Mesut Koken
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Aline Cardinaux
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Michel Chapuisat
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
57
|
Ubiquitous Selfish Toxin-Antidote Elements in Caenorhabditis Species. Curr Biol 2021; 31:990-1001.e5. [PMID: 33417886 DOI: 10.1016/j.cub.2020.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/28/2020] [Accepted: 12/09/2020] [Indexed: 11/22/2022]
Abstract
Toxin-antidote elements (TAs) are selfish genetic dyads that spread in populations by selectively killing non-carriers. TAs are common in prokaryotes, but very few examples are known in animals. Here, we report the discovery of maternal-effect TAs in both C. tropicalis and C. briggsae, two distant relatives of C. elegans. In C. tropicalis, multiple TAs combine to cause a striking degree of intraspecific incompatibility: five elements reduce the fitness of >70% of the F2 hybrid progeny of two Caribbean isolates. We identified the genes underlying one of the novel TAs, slow-1/grow-1, and found that its toxin, slow-1, is homologous to nuclear hormone receptors. Remarkably, although previously known TAs act during embryonic development, maternal loading of slow-1 in oocytes specifically slows down larval development, delaying the onset of reproduction by several days. Finally, we found that balancing selection acting on linked, conflicting TAs hampers their ability to spread in populations, leading to more stable genetic incompatibilities. Our findings indicate that TAs are widespread in Caenorhabditis species and target a wide range of developmental processes and that antagonism between them may cause lasting incompatibilities in natural populations. We expect that similar phenomena exist in other animal species.
Collapse
|
58
|
MacPherson A, Keeling MJ, Otto SP. Coevolution fails to maintain genetic variation in a host-parasite model with constant finite population size. Theor Popul Biol 2020; 137:10-21. [PMID: 33340528 DOI: 10.1016/j.tpb.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 01/17/2023]
Abstract
Coevolutionary negative frequency-dependent selection has been hypothesized to maintain genetic variation in host and parasites. Despite the extensive literature pertaining to host-parasite coevolution, the temporal dynamics of genetic variation have not been examined in a matching-alleles model (MAM) with a finite population size relative to the expectation under neutral genetic drift alone. The dynamics of the MA coevolution in an infinite population, in fact, suggests that genetic variation in these coevolving populations behaves neutrally. By comparing host heterozygosity to the expectation in a single-species model of neutral genetic drift we find that while this is also largely true in finite populations two additional phenomena arise. First, reciprocal natural selection acting on stochastic perturbations in host and pathogen allele frequencies results in a slight increase or decrease in genetic variation depending on the parameter conditions. Second, following the fixation of an allele in the parasite, selection in the MAM becomes directional, which then rapidly erodes genetic variation in the host. Hence, rather than maintain it, we find that, on average, matching-alleles coevolution depletes genetic variation.
Collapse
Affiliation(s)
- Ailene MacPherson
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada.
| | - Matthew J Keeling
- Zeeman Institute of Systems Biology and Infectious Disease Research (SBIDER), University of Warwick, Coventry, United Kingdom
| | - Sarah P Otto
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
59
|
Sole-Navais P, Bacelis J, Helgeland Ø, Modzelewska D, Vaudel M, Flatley C, Andreassen O, Njølstad PR, Muglia LJ, Johansson S, Zhang G, Jacobsson B. Autozygosity mapping and time-to-spontaneous delivery in Norwegian parent-offspring trios. Hum Mol Genet 2020; 29:3845-3858. [PMID: 33291140 PMCID: PMC7861013 DOI: 10.1093/hmg/ddaa255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 11/18/2022] Open
Abstract
Parental genetic relatedness may lead to adverse health and fitness outcomes in the offspring. However, the degree to which it affects human delivery timing is unknown. We use genotype data from ≃25 000 parent-offspring trios from the Norwegian Mother, Father and Child Cohort Study to optimize runs of homozygosity (ROH) calling by maximizing the correlation between parental genetic relatedness and offspring ROHs. We then estimate the effect of maternal, paternal and fetal autozygosity and that of autozygosity mapping (common segments and gene burden test) on the timing of spontaneous onset of delivery. The correlation between offspring ROH using a variety of parameters and parental genetic relatedness ranged between −0.2 and 0.6, revealing the importance of the minimum number of genetic variants included in an ROH and the use of genetic distance. The optimized compared to predefined parameters showed a ≃45% higher correlation between parental genetic relatedness and offspring ROH. We found no evidence of an effect of maternal, paternal nor fetal overall autozygosity on spontaneous delivery timing. Yet, through autozygosity mapping, we identified three maternal loci TBC1D1, SIGLECs and EDN1 gene regions reducing the median time-to-spontaneous onset of delivery by ≃2–5% (P-value < 2.3 × 10−6). We also found suggestive evidence of a fetal locus at 3q22.2, near the RYK gene region (P-value = 2.0 × 10−6). Autozygosity mapping may provide new insights on the genetic determinants of delivery timing beyond traditional genome-wide association studies, but particular and rigorous attention should be given to ROH calling parameter selection.
Collapse
Affiliation(s)
- Pol Sole-Navais
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg 41685, Sweden
| | - Jonas Bacelis
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg 41685, Sweden
| | - Øyvind Helgeland
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.,Division of Health Data and Digitalization, Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Dominika Modzelewska
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg 41685, Sweden
| | - Marc Vaudel
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.,Department of Pediatrics and Adolescents, Haukeland University Hospital, Bergen 5021, Norway
| | - Christopher Flatley
- Division of Health Data and Digitalization, Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Ole Andreassen
- NORMENT, University of Oslo, Oslo 0450, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0450, Norway.,Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Pål R Njølstad
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.,Department of Pediatrics and Adolescents, Haukeland University Hospital, Bergen 5021, Norway
| | - Louis J Muglia
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.,Division of Human Genetics, The Center for Prevention of Preterm Birth, Perinatal Institute, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45267, USA
| | - Stefan Johansson
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.,Center for Medical Genetics, Haukeland University Hospital, Bergen 5021, Norway
| | - Ge Zhang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.,Division of Human Genetics, The Center for Prevention of Preterm Birth, Perinatal Institute, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45267, USA
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg 41685, Sweden.,Division of Health Data and Digitalization, Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo 0213, Norway.,Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg 41685, Sweden
| |
Collapse
|
60
|
Komata S, Kitamura T, Fujiwara H. Batesian mimicry has evolved with deleterious effects of the pleiotropic gene doublesex. Sci Rep 2020; 10:21333. [PMID: 33288816 PMCID: PMC7721872 DOI: 10.1038/s41598-020-78055-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/19/2022] Open
Abstract
Dimorphic female-limited Batesian mimicry in the swallowtail butterfly Papilio polytes is regulated by the supergene locus H, harbouring the mimetic (H) and non-mimetic (h) doublesex (dsx) gene. In the present study, we demonstrated that dsx-H negatively affects the number of eggs laid, hatching rate, larval survival rate, and adult lifespan. When crossed with hh males, the number of eggs laid of mimetic females (genotype HH) was lower than that of non-mimetic females (hh). Moreover, hh and Hh females laid fewer eggs when crossed with HH males. The hatching and larval survival rates were lower when both female and male parents harboured dsx-H. The adult lifespan of HH females was shorter than that of hh females, while it was similar in males regardless of the genotype. These findings suggest the presence of a cost-benefit balance of Batesian mimicry, which is evolved to avoid predation but is accompanied by physiological deficits, in this species.
Collapse
Affiliation(s)
- Shinya Komata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Tasuku Kitamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
61
|
Mora-Obando D, Salazar-Valenzuela D, Pla D, Lomonte B, Guerrero-Vargas JA, Ayerbe S, Gibbs HL, Calvete JJ. Venom variation in Bothrops asper lineages from North-Western South America. J Proteomics 2020; 229:103945. [DOI: 10.1016/j.jprot.2020.103945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 01/09/2023]
|
62
|
Ebert D, Fields PD. Host-parasite co-evolution and its genomic signature. Nat Rev Genet 2020; 21:754-768. [PMID: 32860017 DOI: 10.1038/s41576-020-0269-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 01/14/2023]
Abstract
Studies in diverse biological systems have indicated that host-parasite co-evolution is responsible for the extraordinary genetic diversity seen in some genomic regions, such as major histocompatibility (MHC) genes in jawed vertebrates and resistance genes in plants. This diversity is believed to evolve under balancing selection on hosts by parasites. However, the mechanisms that link the genomic signatures in these regions to the underlying co-evolutionary process are only slowly emerging. We still lack a clear picture of the co-evolutionary concepts and of the genetic basis of the co-evolving phenotypic traits in the interacting antagonists. Emerging genomic tools that provide new options for identifying underlying genes will contribute to a fuller understanding of the co-evolutionary process.
Collapse
Affiliation(s)
- Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland. .,Wissenschaftskolleg zu Berlin, Berlin, Germany.
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| |
Collapse
|
63
|
Maternal effect killing by a supergene controlling ant social organization. Proc Natl Acad Sci U S A 2020; 117:17130-17134. [PMID: 32636262 DOI: 10.1073/pnas.2003282117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Supergenes underlie striking polymorphisms in nature, yet the evolutionary mechanisms by which they arise and persist remain enigmatic. These clusters of linked loci can spread in populations because they captured coadapted alleles or by selfishly distorting the laws of Mendelian inheritance. Here, we show that the supergene haplotype associated with multiple-queen colonies in Alpine silver ants is a maternal effect killer. All eggs from heterozygous queens failed to hatch when they did not inherit this haplotype. Hence, the haplotype specific to multiple-queen colonies is a selfish genetic element that enhances its own transmission by causing developmental arrest of progeny that do not carry it. At the population level, such transmission ratio distortion favors the spread of multiple-queen colonies, to the detriment of the alternative haplotype associated with single-queen colonies. Hence, selfish gene drive by one haplotype will impact the evolutionary dynamics of alternative forms of colony social organization. This killer hidden in a social supergene shows that large nonrecombining genomic regions are prone to cause multifarious effects across levels of biological organization.
Collapse
|
64
|
Durand E, Chantreau M, Le Veve A, Stetsenko R, Dubin M, Genete M, Llaurens V, Poux C, Roux C, Billiard S, Vekemans X, Castric V. Evolution of self-incompatibility in the Brassicaceae: Lessons from a textbook example of natural selection. Evol Appl 2020; 13:1279-1297. [PMID: 32684959 PMCID: PMC7359833 DOI: 10.1111/eva.12933] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Self-incompatibility (SI) is a self-recognition genetic system enforcing outcrossing in hermaphroditic flowering plants and results in one of the arguably best understood forms of natural (balancing) selection maintaining genetic variation over long evolutionary times. A rich theoretical and empirical population genetics literature has considerably clarified how the distribution of SI phenotypes translates into fitness differences among individuals by a combination of inbreeding avoidance and rare-allele advantage. At the same time, the molecular mechanisms by which self-pollen is specifically recognized and rejected have been described in exquisite details in several model organisms, such that the genotype-to-phenotype map is also pretty well understood, notably in the Brassicaceae. Here, we review recent advances in these two fronts and illustrate how the joint availability of detailed characterization of genotype-to-phenotype and phenotype-to-fitness maps on a single genetic system (plant self-incompatibility) provides the opportunity to understand the evolutionary process in a unique perspective, bringing novel insight on general questions about the emergence, maintenance, and diversification of a complex genetic system.
Collapse
Affiliation(s)
| | | | - Audrey Le Veve
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | | | - Manu Dubin
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | - Mathieu Genete
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | - Violaine Llaurens
- Institut de Systématique, Evolution et Biodiversité (ISYEB)Muséum national d'Histoire naturelleCNRS, Sorbonne Université, EPHE, Université des Antilles CP 5057 rue Cuvier, 75005 ParisFrance
| | - Céline Poux
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | - Camille Roux
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | | | | | | |
Collapse
|
65
|
Lomonte B, Díaz C, Chaves F, Fernández J, Ruiz M, Salas M, Zavaleta A, Calvete JJ, Sasa M. Comparative characterization of Viperidae snake venoms from Perú reveals two compositional patterns of phospholipase A 2 expression. Toxicon X 2020; 7:100044. [PMID: 32550596 PMCID: PMC7285926 DOI: 10.1016/j.toxcx.2020.100044] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
Snake species within the Bothrops complex (sensu lato) are of medical relevance in Latin America, but knowledge on their venom characteristics is limited, or even unavailable, for some taxa. Perú harbors 17 species of pit vipers, within the genera Bothrops, Bothriechis, Bothrocophias, Porthidium, Crotalus, and Lachesis. This study compared the venoms of twelve species, through chromatographic and electrophoretic profiles, as well as proteolytic and phospholipase A2 (PLA2) activities. Also, proteomic profiles were analyzed for nine of the venoms using a shotgun approach. Results unveiled conspicuous differences in the expression of venom PLA2s among species, six of them presenting scarce levels as judged by RP-HPLC profiles. Since most species within the bothropoid lineage possess venoms with high to intermediate abundances of this protein family, our findings suggest the existence of a phenotypic duality in the expression of venom PLA2s within the Bothrops (sensu lato) complex. Bothrops barnetti and Bothrocophias andianus venoms, very scarce in PLA2s, were shown to lack significant myotoxic activity, highlighting that the observed variability in PLA2 expression bears toxicological correlations with effects attributed to these proteins. Finally, an attempt to identify phylogenetic relationships of bothropoid species from Perú presenting low- or high-PLA2 venom phenotypes showed an interspersed pattern, thus precluding a simple phylogenetic interpretation of this venom compositional dichotomy. Venoms from 12 viperids of Perú were compared. Conspicuous differences in the expression of PLA2 were found. Venoms presenting scarce levels of PLA2 lack myotoxicity. A new phenotypic dichotomy in venom PLA2 expression is described within Bothrops (sensu lato).
Collapse
Affiliation(s)
- Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Cecilia Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.,Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| | - Fernando Chaves
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Marco Ruiz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - María Salas
- Departamento Académico de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alfonso Zavaleta
- Departamento Académico de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Juan J Calvete
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.,Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
66
|
Sánchez-Guillén RA, Cordero-Rivera A, Rivas-Torres A, Wellenreuther M, Bybee S, Hansson B, Velasquez-Vélez MI, Realpe E, Chávez-Ríos JR, Villalobos F, Dumont H. Retracted: The evolutionary history of colour polymorphism in Ischnura damselflies. J Evol Biol 2020; 33:551. [PMID: 29746704 DOI: 10.1111/jeb.13289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 12/22/2022]
Abstract
The above article from Journal of Evolutionary Biology, published online on 24 May 2018 in Wiley Online Library (http://wileyonlinelibrary.com), has been retracted on the request of the authors and with the agreement of the Journal's Editor in Chief Wolf Blanckenhorn and John Wiley & Sons, following disagreement on potential corrections to the article after publication. The decision to retract followed significant issues with the methods and analyses of the manuscript that were originally not uncovered during peer-review, but which were subsequently brought to the Journal's attention following publication of the Article on Early View. [Correction added on 2 July 2021, after first online publication: retraction statement has been modified.].
Collapse
|
67
|
Billiard S, Smadi C. Stochastic Dynamics of Three Competing Clones: Conditions and Times for Invasion, Coexistence, and Fixation. Am Nat 2020; 195:463-484. [DOI: 10.1086/707017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
68
|
Kurbalija Novičić Z, Sayadi A, Jelić M, Arnqvist G. Negative frequency dependent selection contributes to the maintenance of a global polymorphism in mitochondrial DNA. BMC Evol Biol 2020; 20:20. [PMID: 32019493 PMCID: PMC7001298 DOI: 10.1186/s12862-020-1581-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 01/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding the forces that maintain diversity across a range of scales is at the very heart of biology. Frequency-dependent processes are generally recognized as the most central process for the maintenance of ecological diversity. The same is, however, not generally true for genetic diversity. Negative frequency dependent selection, where rare genotypes have an advantage, is often regarded as a relatively weak force in maintaining genetic variation in life history traits because recombination disassociates alleles across many genes. Yet, many regions of the genome show low rates of recombination and genetic variation in such regions (i.e., supergenes) may in theory be upheld by frequency dependent selection. RESULTS We studied what is essentially a ubiquitous life history supergene (i.e., mitochondrial DNA) in the fruit fly Drosophila subobscura, showing sympatric polymorphism with two main mtDNA genotypes co-occurring in populations world-wide. Using an experimental evolution approach involving manipulations of genotype starting frequencies, we show that negative frequency dependent selection indeed acts to maintain genetic variation in this region. Moreover, the strength of selection was affected by food resource conditions. CONCLUSIONS Our work provides novel experimental support for the view that balancing selection through negative frequency dependency acts to maintain genetic variation in life history genes. We suggest that the emergence of negative frequency dependent selection on mtDNA is symptomatic of the fundamental link between ecological processes related to resource use and the maintenance of genetic variation.
Collapse
Affiliation(s)
- Zorana Kurbalija Novičić
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden.,Department of Neuroscience, Psychiatry, Uppsala University Hospital, Entrance 10, 751 85, Uppsala, Sweden
| | - Ahmed Sayadi
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Mihailo Jelić
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, 11000, Serbia
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden.
| |
Collapse
|
69
|
Mérot C, Llaurens V, Normandeau E, Bernatchez L, Wellenreuther M. Balancing selection via life-history trade-offs maintains an inversion polymorphism in a seaweed fly. Nat Commun 2020; 11:670. [PMID: 32015341 PMCID: PMC6997199 DOI: 10.1038/s41467-020-14479-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022] Open
Abstract
How natural diversity is maintained is an evolutionary puzzle. Genetic variation can be eroded by drift and directional selection but some polymorphisms persist for long time periods, implicating a role for balancing selection. Here, we investigate the maintenance of a chromosomal inversion polymorphism in the seaweed fly Coelopa frigida. Using experimental evolution and quantifying fitness, we show that the inversion underlies a life-history trade-off, whereby each haplotype has opposing effects on larval survival and adult reproduction. Numerical simulations confirm that such antagonistic pleiotropy can maintain polymorphism. Our results also highlight the importance of sex-specific effects, dominance and environmental heterogeneity, whose interaction enhances the maintenance of polymorphism through antagonistic pleiotropy. Overall, our findings directly demonstrate how overdominance and sexual antagonism can emerge from a life-history trade-off, inviting reconsideration of antagonistic pleiotropy as a key part of multi-headed balancing selection processes that enable the persistence of genetic variation. Few studies empirically pinpoint how balanced polymorphisms are maintained. “Mérot et al”. identify an inversion polymorphism that is maintained in seaweed fly populations because of antagonistic pleiotropy that mediates a classic life history tradeoff between larval survival and adult reproduction.
Collapse
Affiliation(s)
- Claire Mérot
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Quebec, Canada.
| | - Violaine Llaurens
- Institut de Systématique, Evolution et Biodiversité (UMR 7205 CNRS/MNHN/SU/EPHE), Museum National d'Histoire Naturelle, CP50, 57 rue Cuvier, 75005, Paris, France
| | - Eric Normandeau
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Quebec, Canada
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Quebec, Canada
| | - Maren Wellenreuther
- The New Zealand Institute for Plant & Food Research Ltd, PO Box 5114, Port Nelson, Nelson, 7043, New Zealand.,School of Biological Sciences, University of Auckland, 5 Symonds St, 1010, Auckland, New Zealand
| |
Collapse
|
70
|
Yan Z, Martin SH, Gotzek D, Arsenault SV, Duchen P, Helleu Q, Riba-Grognuz O, Hunt BG, Salamin N, Shoemaker D, Ross KG, Keller L. Evolution of a supergene that regulates a trans-species social polymorphism. Nat Ecol Evol 2020; 4:240-249. [PMID: 31959939 DOI: 10.1038/s41559-019-1081-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/04/2019] [Indexed: 11/09/2022]
Abstract
Supergenes are clusters of linked genetic loci that jointly affect the expression of complex phenotypes, such as social organization. Little is known about the origin and evolution of these intriguing genomic elements. Here we analyse whole-genome sequences of males from native populations of six fire ant species and show that variation in social organization is under the control of a novel supergene haplotype (termed Sb), which evolved by sequential incorporation of three inversions spanning half of a 'social chromosome'. Two of the inversions interrupt protein-coding genes, resulting in the increased expression of one gene and modest truncation in the primary protein structure of another. All six socially polymorphic species studied harbour the same three inversions, with the single origin of the supergene in their common ancestor inferred by phylogenomic analyses to have occurred half a million years ago. The persistence of Sb along with the ancestral SB haplotype through multiple speciation events provides a striking example of a functionally important trans-species social polymorphism presumably maintained by balancing selection. We found that while recombination between the Sb and SB haplotypes is severely restricted in all species, a low level of gene flux between the haplotypes has occurred following the appearance of the inversions, potentially mitigating the evolutionary degeneration expected at genomic regions that cannot freely recombine. These results provide a detailed picture of the structural genomic innovations involved in the formation of a supergene controlling a complex social phenotype.
Collapse
Affiliation(s)
- Zheng Yan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Simon H Martin
- Institute of Evolutionary Biology, the University of Edinburgh, Edinburgh, UK
| | - Dietrich Gotzek
- Department of Entomology and Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | | - Pablo Duchen
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Quentin Helleu
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Oksana Riba-Grognuz
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Brendan G Hunt
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - DeWayne Shoemaker
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Kenneth G Ross
- Department of Entomology, University of Georgia, Athens, GA, USA.
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
71
|
Wolfe MD, Bauchet GJ, Chan AW, Lozano R, Ramu P, Egesi C, Kawuki R, Kulakow P, Rabbi I, Jannink JL. Historical Introgressions from a Wild Relative of Modern Cassava Improved Important Traits and May Be Under Balancing Selection. Genetics 2019; 213:1237-1253. [PMID: 31624088 PMCID: PMC6893375 DOI: 10.1534/genetics.119.302757] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022] Open
Abstract
Introgression of alleles from wild relatives has often been adaptive in plant breeding. However, the significance of historical hybridization events in modern breeding is often not clear. Cassava (Manihot esculenta) is among the most important staple foods in the world, sustaining hundreds of millions of people in the tropics, especially in sub-Saharan Africa. Widespread genotyping makes cassava a model for clonally propagated root and tuber crops in the developing world, and provides an opportunity to study the modern benefits and consequences of historical introgression. We detected large introgressed Manihot glaziovii genome-segments in a collection of 2742 modern cassava landraces and elite germplasm, the legacy of a 1930s era breeding to combat disease epidemics. African landraces and improved varieties were, on average, 3.8% (max 13.6%) introgressed. Introgressions accounted for a significant (mean 20%, max 56%) portion of the heritability of tested traits. M. glaziovii alleles on the distal 10 Mb of chr. 1 increased dry matter and root number. On chr. 4, introgressions in a 20 Mb region improved harvest index and brown streak disease tolerance. We observed the introgression frequency on chr. 1 double over three cycles of selection, and that later stage trials selectively excluded homozygotes from consideration as varieties. This indicates a heterozygous advantage of introgressions. However, we also found that maintaining large recombination-suppressed introgressions in the heterozygous state allowed the accumulation of deleterious mutations. We conclude that targeted recombination of introgressions would increase the efficiency of cassava breeding by allowing simultaneous fixation of beneficial alleles and purging of genetic load.
Collapse
Affiliation(s)
- Marnin D Wolfe
- Section on Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, New York 14850
| | | | - Ariel W Chan
- Section on Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, New York 14850
| | - Roberto Lozano
- Section on Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, New York 14850
| | - Punna Ramu
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14850
| | - Chiedozie Egesi
- International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14850
- National Root Crops Research Institute (NRCRI), Umudike, Umuahia, 440221, Nigeria
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria
| | - Robert Kawuki
- National Root Crops Resources Research Institute, Namulonge, Uganda
| | - Peter Kulakow
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria
| | - Ismail Rabbi
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria
| | - Jean-Luc Jannink
- Section on Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, New York 14850
- United States Department of Agriculture - Agriculture Research Service, Ithaca, New York 14850
| |
Collapse
|
72
|
Pearse DE, Barson NJ, Nome T, Gao G, Campbell MA, Abadía-Cardoso A, Anderson EC, Rundio DE, Williams TH, Naish KA, Moen T, Liu S, Kent M, Moser M, Minkley DR, Rondeau EB, Brieuc MSO, Sandve SR, Miller MR, Cedillo L, Baruch K, Hernandez AG, Ben-Zvi G, Shem-Tov D, Barad O, Kuzishchin K, Garza JC, Lindley ST, Koop BF, Thorgaard GH, Palti Y, Lien S. Sex-dependent dominance maintains migration supergene in rainbow trout. Nat Ecol Evol 2019; 3:1731-1742. [DOI: 10.1038/s41559-019-1044-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/18/2019] [Indexed: 11/09/2022]
Abstract
AbstractMales and females often differ in their fitness optima for shared traits that have a shared genetic basis, leading to sexual conflict. Morphologically differentiated sex chromosomes can resolve this conflict and protect sexually antagonistic variation, but they accumulate deleterious mutations. However, how sexual conflict is resolved in species that lack differentiated sex chromosomes is largely unknown. Here we present a chromosome-anchored genome assembly for rainbow trout (Oncorhynchus mykiss) and characterize a 55-Mb double-inversion supergene that mediates sex-specific migratory tendency through sex-dependent dominance reversal, an alternative mechanism for resolving sexual conflict. The double inversion contains key photosensory, circadian rhythm, adiposity and sex-related genes and displays a latitudinal frequency cline, indicating environmentally dependent selection. Our results show sex-dependent dominance reversal across a large autosomal supergene, a mechanism for sexual conflict resolution capable of protecting sexually antagonistic variation while avoiding the homozygous lethality and deleterious mutations associated with typical heteromorphic sex chromosomes.
Collapse
|
73
|
Chapman JR, Hill T, Unckless RL. Balancing Selection Drives the Maintenance of Genetic Variation in Drosophila Antimicrobial Peptides. Genome Biol Evol 2019; 11:2691-2701. [PMID: 31504505 PMCID: PMC6764478 DOI: 10.1093/gbe/evz191] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
Genes involved in immune defense against pathogens provide some of the most well-known examples of both directional and balancing selection. Antimicrobial peptides (AMPs) are innate immune effector genes, playing a key role in pathogen clearance in many species, including Drosophila. Conflicting lines of evidence have suggested that AMPs may be under directional, balancing, or purifying selection. Here, we use both a linear model and control-gene-based approach to show that balancing selection is an important force shaping AMP diversity in Drosophila. In Drosophila melanogaster, this is most clearly observed in ancestral African populations. Furthermore, the signature of balancing selection is even more striking once background selection has been accounted for. Balancing selection also acts on AMPs in Drosophila mauritiana, an isolated island endemic separated from D. melanogaster by about 4 Myr of evolution. This suggests that balancing selection may be broadly acting to maintain adaptive diversity in Drosophila AMPs, as has been found in other taxa.
Collapse
Affiliation(s)
| | - Tom Hill
- Department of Molecular Biosciences, University of Kansas
| | | |
Collapse
|
74
|
Saenko SV, Chouteau M, Piron-Prunier F, Blugeon C, Joron M, Llaurens V. Unravelling the genes forming the wing pattern supergene in the polymorphic butterfly Heliconius numata. EvoDevo 2019; 10:16. [PMID: 31406559 PMCID: PMC6686539 DOI: 10.1186/s13227-019-0129-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/12/2019] [Indexed: 11/25/2022] Open
Abstract
Background Unravelling the genetic basis of polymorphic characters is central to our understanding of the origins and diversification of living organisms. Recently, supergenes have been implicated in a wide range of complex polymorphisms, from adaptive colouration in butterflies and fish to reproductive strategies in birds and plants. The concept of a supergene is now a hot topic in biology, and identification of its functional elements is needed to shed light on the evolution of highly divergent adaptive traits. Here, we apply different gene expression analyses to study the supergene P that controls polymorphism of mimetic wing colour patterns in the neotropical butterfly Heliconius numata. Results We performed de novo transcriptome assembly and differential expression analyses using high-throughput Illumina RNA sequencing on developing wing discs of different H. numata morphs. Within the P interval, 30 and 17 of the 191 transcripts were expressed differentially in prepupae and day-1 pupae, respectively. Among these is the gene cortex, known to play a role in wing pattern formation in Heliconius and other Lepidoptera. Our in situ hybridization experiments confirmed the relationship between cortex expression and adult wing patterns. Conclusions This study found the majority of genes in the P interval to be expressed in the developing wing discs during the critical stages of colour pattern formation, and detect drastic changes in expression patterns in multiple genes associated with structural variants. The patterns of expression of cortex only partially recapitulate the variation in adult phenotype, suggesting that the remaining phenotypic variation could be controlled by other genes within the P interval. Although functional studies on cortex are now needed to determine its exact developmental role, our results are in accordance with the classical supergene hypothesis, whereby several genes inherited together due to tight linkage control a major developmental switch. Electronic supplementary material The online version of this article (10.1186/s13227-019-0129-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suzanne V Saenko
- 1Institut de Systématique, Evolution et Biodiversité, UMR 7205 (CNRS, MNHN, Sorbonne Université, EPHE), Muséum National d'Histoire Naturelle CP50, 57 rue Cuvier, 75005 Paris, France
| | - Mathieu Chouteau
- 2Laboratoire Ecologie, Evolution, Interactions Des Systèmes Amazoniens (LEEISA), USR 3456, CNRS Guyane, Université De Guyane, 275 route de Montabo, 97334 Cayenne, French Guiana
| | - Florence Piron-Prunier
- 1Institut de Systématique, Evolution et Biodiversité, UMR 7205 (CNRS, MNHN, Sorbonne Université, EPHE), Muséum National d'Histoire Naturelle CP50, 57 rue Cuvier, 75005 Paris, France
| | - Corinne Blugeon
- Genomic Facility, Institut de Biologie de l'Ecole normale superieure (IBENS), École normale supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Mathieu Joron
- 4Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS-Université de Montpellier, École Pratique des Hautes Études, Université Paul Valéry, 34293 Montpellier 5, France
| | - Violaine Llaurens
- 1Institut de Systématique, Evolution et Biodiversité, UMR 7205 (CNRS, MNHN, Sorbonne Université, EPHE), Muséum National d'Histoire Naturelle CP50, 57 rue Cuvier, 75005 Paris, France
| |
Collapse
|
75
|
Sanz L, de Freitas-Lima LN, Quesada-Bernat S, Graça-de-Souza VK, Soares AM, Calderón LDA, Calvete JJ, Caldeira CA. Comparative venomics of Brazilian coral snakes: Micrurus frontalis, Micrurus spixii spixii, and Micrurus surinamensis. Toxicon 2019; 166:39-45. [DOI: 10.1016/j.toxicon.2019.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/23/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
|
76
|
Lewis PA. Leucine rich repeat kinase 2: a paradigm for pleiotropy. J Physiol 2019; 597:3511-3521. [PMID: 31124140 DOI: 10.1113/jp276163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
The LRRK2 gene, coding for leucine rich repeat kinase 2 (LRRK2), is a key player in the genetics of Parkinson's disease. Despite extensive efforts, LRRK2 has proved remarkably evasive with regard to attempts to understand both the role it plays in disease and its normal physiological function. At least part of why LRRK2 has been so difficult to define is that it appears to be many things to many cellular functions and diseases - a pleiotropic actor at both the genetic and the molecular level. Gaining greater insight into the mechanisms and pathways allowing LRRK2 to act in this manner will have implications for our understanding of the role of genes in the aetiology of complex disease, the molecular underpinnings of signal transduction pathways in the cell, and drug discovery in the genome era.
Collapse
Affiliation(s)
- Patrick A Lewis
- School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
77
|
Avril A, Zahnd S, Djordjevic J, Chapuisat M. No mate preference associated with the supergene controlling social organization in Alpine silver ants. J Evol Biol 2019; 32:742-748. [PMID: 31016785 DOI: 10.1111/jeb.13479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/22/2019] [Accepted: 04/16/2019] [Indexed: 01/30/2023]
Abstract
Disassortative mating is a powerful mechanism stabilizing polymorphisms at sex chromosomes and other supergenes. The Alpine silver ant, Formica selysi, has two forms of social organization-single-queen and multiple-queen colonies-determined by alternate haplotypes at a large supergene. Here, we explore whether mate preference contributes to the maintenance of the genetic polymorphism at the social supergene. With mate choice experiments, we found that females and males mated randomly with respect to social form. Moreover, queens were able to produce offspring irrespective of whether they had mated with a male from the same or the alternative social form. Yet, females originating from single-queen colonies were more fertile, suggesting that they may be more successful at independent colony founding. We conclude that the pattern of asymmetric assortative mating documented from mature F. selysi colonies in the field is not caused by mate preferences or major genetic incompatibilities between social forms. More generally, we found no evidence that disassortative mate preference contributes to the maintenance of polymorphism at this supergene controlling ant social organization.
Collapse
Affiliation(s)
- Amaury Avril
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Sacha Zahnd
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Michel Chapuisat
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
78
|
Mérot C, Berdan EL, Babin C, Normandeau E, Wellenreuther M, Bernatchez L. Intercontinental karyotype-environment parallelism supports a role for a chromosomal inversion in local adaptation in a seaweed fly. Proc Biol Sci 2019; 285:rspb.2018.0519. [PMID: 29925615 PMCID: PMC6030540 DOI: 10.1098/rspb.2018.0519] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022] Open
Abstract
Large chromosomal rearrangements are thought to facilitate adaptation to heterogeneous environments by limiting genomic recombination. Indeed, inversions have been implicated in adaptation along environmental clines and in ecotype specialization. Here, we combine classical ecological studies and population genetics to investigate an inversion polymorphism previously documented in Europe among natural populations of the seaweed fly Coelopa frigida along a latitudinal cline in North America. We test if the inversion is present in North America and polymorphic, assess which environmental conditions modulate the inversion karyotype frequencies, and document the relationship between inversion karyotype and adult size. We sampled nearly 2000 flies from 20 populations along several environmental gradients to quantify associations of inversion frequencies to heterogeneous environmental variables. Genotyping and phenotyping showed a widespread and conserved inversion polymorphism between Europe and America. Variation in inversion frequency was significantly associated with environmental factors, with parallel patterns between continents, indicating that the inversion may play a role in local adaptation. The three karyotypes of the inversion are differently favoured across micro-habitats and represent life-history strategies likely to be maintained by the collective action of several mechanisms of balancing selection. Our study adds to the mounting evidence that inversions are facilitators of adaptation and enhance within-species diversity.
Collapse
Affiliation(s)
- Claire Mérot
- Département de biologie, Université Laval, Quebec, Canada
| | - Emma L Berdan
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Charles Babin
- Département de biologie, Université Laval, Quebec, Canada
| | | | - Maren Wellenreuther
- School of Biological Sciences, University of Auckland, New Zealand.,Seafood Research Unit, Port Nelson, Nelson, New Zealand
| | | |
Collapse
|
79
|
Discrete or indiscrete? Redefining the colour polymorphism of the land snail Cepaea nemoralis. Heredity (Edinb) 2019; 123:162-175. [PMID: 30804571 PMCID: PMC6629550 DOI: 10.1038/s41437-019-0189-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/08/2019] [Accepted: 01/13/2019] [Indexed: 01/09/2023] Open
Abstract
Biologists have long tried to describe and name the different phenotypes that make up the shell polymorphism of the land snail Cepaea nemoralis. Traditionally, the view is that the ground colour of the shell is one of a few major colour classes, either yellow, pink or brown, but in practise it is frequently difficult to distinguish the colours, and define different shades of the same colour. To understand whether colour variation is in reality continuous, and to investigate how the variation may be perceived by an avian predator, we applied psychophysical models of colour vision to shell reflectance measures. We found that both achromatic and chromatic variation are indiscrete in Cepaea nemoralis, being continuously distributed over many perceptual units. Nonetheless, clustering analysis based on the density of the distribution did reveal three groups, roughly corresponding to human-perceived yellow, pink and brown shells. We also found large-scale geographic variation in the frequency of these groups across Europe, and some covariance between shell colour and banding patterns. Although further studies are necessary, the observation of continuous variation in colour is intriguing because the traditional theory is that the underlying supergene that determines colour has evolved to prevent phenotypes from “dissolving” into continuous trait distributions. The findings thus have significance for understanding the Cepaea polymorphism, and the nature of the selection that acts upon it, as well as more generally highlighting the need to measure colour objectively in other systems.
Collapse
|
80
|
Nelson TC, Monnahan PJ, McIntosh MK, Anderson K, MacArthur-Waltz E, Finseth FR, Kelly JK, Fishman L. Extreme copy number variation at a tRNA ligase gene affecting phenology and fitness in yellow monkeyflowers. Mol Ecol 2018; 28:1460-1475. [PMID: 30346101 DOI: 10.1111/mec.14904] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022]
Abstract
Copy number variation (CNV) is a major part of the genetic diversity segregating within populations, but remains poorly understood relative to single nucleotide variation. Here, we report on a tRNA ligase gene (Migut.N02091; RLG1a) exhibiting unprecedented, and fitness-relevant, CNV within an annual population of the yellow monkeyflower Mimulus guttatus. RLG1a variation was associated with multiple traits in pooled population sequencing (PoolSeq) scans of phenotypic and phenological cohorts. Resequencing of inbred lines revealed intermediate-frequency three-copy variants of RLG1a (trip+; 5/35 = 14%), and trip+ lines exhibited elevated RLG1a expression under multiple conditions. trip+ carriers, in addition to being over-represented in late-flowering and large-flowered PoolSeq populations, flowered later under stressful conditions in a greenhouse experiment (p < 0.05). In wild population samples, we discovered an additional rare RLG1a variant (high+) that carries 250-300 copies of RLG1a totalling ~5.7 Mb (20-40% of a chromosome). In the progeny of a high+ carrier, Mendelian segregation of diagnostic alleles and qPCR-based copy counts indicate that high+ is a single tandem array unlinked to the single-copy RLG1a locus. In the wild, high+ carriers had highest fitness in two particularly dry and/or hot years (2015 and 2017; both p < 0.01), while single-copy individuals were twice as fecund as either CNV type in a lush year (2016: p < 0.005). Our results demonstrate fluctuating selection on CNVs affecting phenological traits in a wild population, suggest that plant tRNA ligases mediate stress-responsive life-history traits, and introduce a novel system for investigating the molecular mechanisms of gene amplification.
Collapse
Affiliation(s)
- Thomas C Nelson
- Division of Biological Sciences, University of Montana, Missoula, Montana
| | - Patrick J Monnahan
- Department of Ecology and Evolution, University of Kansas, Lawrence, Kansas
| | - Mariah K McIntosh
- Division of Biological Sciences, University of Montana, Missoula, Montana
| | - Kayli Anderson
- Division of Biological Sciences, University of Montana, Missoula, Montana
| | | | - Findley R Finseth
- Division of Biological Sciences, University of Montana, Missoula, Montana
| | - John K Kelly
- Department of Ecology and Evolution, University of Kansas, Lawrence, Kansas
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana
| |
Collapse
|
81
|
Evidence for divergent patterns of local selection driving venom variation in Mojave Rattlesnakes (Crotalus scutulatus). Sci Rep 2018; 8:17622. [PMID: 30514908 PMCID: PMC6279745 DOI: 10.1038/s41598-018-35810-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/09/2018] [Indexed: 01/20/2023] Open
Abstract
Snake venoms represent an enriched system for investigating the evolutionary processes that lead to complex and dynamic trophic adaptations. It has long been hypothesized that natural selection may drive geographic variation in venom composition, yet previous studies have lacked the population genetic context to examine these patterns. We leverage range-wide sampling of Mojave Rattlesnakes (Crotalus scutulatus) and use a combination of venom, morphological, phylogenetic, population genetic, and environmental data to characterize the striking dichotomy of neurotoxic (Type A) and hemorrhagic (Type B) venoms throughout the range of this species. We find that three of the four previously identified major lineages within C. scutulatus possess a combination of Type A, Type B, and a ‘mixed’ Type A + B venom phenotypes, and that fixation of the two main venom phenotypes occurs on a more fine geographic scale than previously appreciated. We also find that Type A + B individuals occur in regions of inferred introgression, and that this mixed phenotype is comparatively rare. Our results support strong directional local selection leading to fixation of alternative venom phenotypes on a fine geographic scale, and are inconsistent with balancing selection to maintain both phenotypes within a single population. Our comparisons to biotic and abiotic factors further indicate that venom phenotype correlates with fang morphology and climatic variables. We hypothesize that links to fang morphology may be indicative of co-evolution of venom and other trophic adaptations, and that climatic variables may be linked to prey distributions and/or physiology, which in turn impose selection pressures on snake venoms.
Collapse
|
82
|
Strážnická M, Marková S, Searle JB, Kotlík P. Playing Hide-and-Seek in Beta-Globin Genes: Gene Conversion Transferring a Beneficial Mutation between Differentially Expressed Gene Duplicates. Genes (Basel) 2018; 9:genes9100492. [PMID: 30321987 PMCID: PMC6209878 DOI: 10.3390/genes9100492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence suggests that adaptation to diverse environments often involves selection on existing variation rather than new mutations. A previous study identified a nonsynonymous single nucleotide polymorphism (SNP) in exon 2 of two paralogous β-globin genes of the bank vole (Clethrionomys glareolus) in Britain in which the ancestral serine (Ser) and the derived cysteine (Cys) allele represent geographically partitioned functional variation affecting the erythrocyte antioxidative capacity. Here we studied the geographical pattern of the two-locus Ser/Cys polymorphism throughout Europe and tested for the geographic correlation between environmental variables and allele frequency, expected if the polymorphism was under spatially heterogeneous environment-related selection. Although bank vole population history clearly is important in shaping the dispersal of the oxidative stress protective Cys allele, analyses correcting for population structure suggest the Europe-wide pattern is affected by geographical variation in environmental conditions. The β-globin phenotype is encoded by the major paralog HBB-T1 but we found evidence of bidirectional gene conversion of exon 2 with the low-expression paralog HBB-T2. Our data support the model where gene conversion reshuffling genotypes between high- and low- expressed paralogs enables tuning of erythrocyte thiol levels, which may help maintain intracellular redox balance under fluctuating environmental conditions. Therefore, our study suggests a possible role for gene conversion between differentially expressed gene duplicates as a mechanism of physiological adaptation of populations to new or changing environments.
Collapse
Affiliation(s)
- Michaela Strážnická
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic.
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12844 Prague 2, Czech Republic.
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6-Suchdol, Czech Republic.
| | - Silvia Marková
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic.
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Petr Kotlík
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic.
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
83
|
Avril A, Purcell J, Brelsford A, Chapuisat M. Asymmetric assortative mating and queen polyandry are linked to a supergene controlling ant social organization. Mol Ecol 2018; 28:1428-1438. [PMID: 30003603 DOI: 10.1111/mec.14793] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 01/04/2023]
Abstract
Nonrecombining genomic variants underlie spectacular social polymorphisms, from bird mating systems to ant social organization. Because these "social supergenes" affect multiple phenotypic traits linked to survival and reproduction, explaining their persistence remains a substantial challenge. Here, we investigate how large nonrecombining genomic variants relate to colony social organization, mating system and dispersal in the Alpine silver ant, Formica selysi. The species has colonies headed by a single queen (monogynous) and colonies headed by multiple queens (polygynous). We confirmed that a supergene with alternate haplotypes-Sm and Sp-underlies this polymorphism in social structure: Females from mature monogynous colonies had the Sm/Sm genotype, while those from polygynous colonies were Sm/Sp and Sp/Sp. Queens heading monogynous colonies were exclusively mated with Sm males. In contrast, queens heading polygynous colonies were mated with Sp males and Sm males. Sm males, which are only produced by monogynous colonies, accounted for 22.9% of the matings with queens from mature polygynous colonies. This asymmetry between social forms in the degree of assortative mating generates unidirectional male-mediated gene flow from the monogynous to the polygynous social form. Biased gene flow was confirmed by a significantly higher number of private alleles in the polygynous social form. Moreover, heterozygous queens were three times as likely as homozygous queens to be multiply mated. This study reveals that the supergene variants jointly affect social organization and multiple components of the mating system that alter the transmission of the variants and thus influence the dynamics of the system.
Collapse
Affiliation(s)
- Amaury Avril
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jessica Purcell
- Department of Entomology, University of California Riverside, Riverside, California
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, California
| | - Michel Chapuisat
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
84
|
Tennessen JA. Gene buddies: linked balanced polymorphisms reinforce each other even in the absence of epistasis. PeerJ 2018; 6:e5110. [PMID: 29967750 PMCID: PMC6026533 DOI: 10.7717/peerj.5110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/05/2018] [Indexed: 01/16/2023] Open
Abstract
The fates of genetic polymorphisms maintained by balancing selection depend on evolutionary dynamics at linked sites. While coevolution across linked, epigenetically-interacting loci has been extensively explored, such supergenes may be relatively rare. However, genes harboring adaptive variation can occur in close physical proximity while generating independent effects on fitness. Here, I present a model in which two linked loci without epistasis are both under balancing selection for unrelated reasons. Using forward-time simulations, I show that recombination rate strongly influences the retention of adaptive polymorphism, especially for intermediate selection coefficients. A locus is more likely to retain adaptive variation if it is closely linked to another locus under balancing selection, even if the two loci have no interaction. Thus, two linked polymorphisms can both be retained indefinitely even when they would both be lost to drift if unlinked. While these results may be intuitive, they have important implications for genetic architecture: clusters of mutually reinforcing genes may underlie phenotypic variation in natural populations, and such genes cannot be assumed to be functionally associated. Future studies that measure selection coefficients and recombination rates among closely linked genes will be fruitful for characterizing the extent of this phenomenon.
Collapse
Affiliation(s)
- Jacob A. Tennessen
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
85
|
Supergene Evolution Triggered by the Introgression of a Chromosomal Inversion. Curr Biol 2018; 28:1839-1845.e3. [DOI: 10.1016/j.cub.2018.04.072] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/29/2018] [Accepted: 04/18/2018] [Indexed: 12/30/2022]
|
86
|
Bachmann JA, Tedder A, Laenen B, Steige KA, Slotte T. Targeted Long-Read Sequencing of a Locus Under Long-Term Balancing Selection in Capsella. G3 (BETHESDA, MD.) 2018; 8:1327-1333. [PMID: 29476024 PMCID: PMC5873921 DOI: 10.1534/g3.117.300467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/20/2018] [Indexed: 11/18/2022]
Abstract
Rapid advances in short-read DNA sequencing technologies have revolutionized population genomic studies, but there are genomic regions where this technology reaches its limits. Limitations mostly arise due to the difficulties in assembly or alignment to genomic regions of high sequence divergence and high repeat content, which are typical characteristics for loci under strong long-term balancing selection. Studying genetic diversity at such loci therefore remains challenging. Here, we investigate the feasibility and error rates associated with targeted long-read sequencing of a locus under balancing selection. For this purpose, we generated bacterial artificial chromosomes (BACs) containing the Brassicaceae S-locus, a region under strong negative frequency-dependent selection which has previously proven difficult to assemble in its entirety using short reads. We sequence S-locus BACs with single-molecule long-read sequencing technology and conduct de novo assembly of these S-locus haplotypes. By comparing repeated assemblies resulting from independent long-read sequencing runs on the same BAC clone we do not detect any structural errors, suggesting that reliable assemblies are generated, but we estimate an indel error rate of 5.7×10-5 A similar error rate was estimated based on comparison of Illumina short-read sequences and BAC assemblies. Our results show that, until de novo assembly of multiple individuals using long-read sequencing becomes feasible, targeted long-read sequencing of loci under balancing selection is a viable option with low error rates for single nucleotide polymorphisms or structural variation. We further find that short-read sequencing is a valuable complement, allowing correction of the relatively high rate of indel errors that result from this approach.
Collapse
Affiliation(s)
- Jörg A Bachmann
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Andrew Tedder
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Benjamin Laenen
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Kim A Steige
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| |
Collapse
|
87
|
Dowell NL, Giorgianni MW, Griffin S, Kassner VA, Selegue JE, Sanchez EE, Carroll SB. Extremely Divergent Haplotypes in Two Toxin Gene Complexes Encode Alternative Venom Types within Rattlesnake Species. Curr Biol 2018; 28:1016-1026.e4. [PMID: 29576471 DOI: 10.1016/j.cub.2018.02.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/11/2018] [Accepted: 02/14/2018] [Indexed: 11/17/2022]
Abstract
Natural selection is generally expected to favor one form of a given trait within a population. The presence of multiple functional variants of traits involved in activities such as feeding, reproduction, or the defense against predators is relatively uncommon within animal species. The genetic architecture and evolutionary mechanisms underlying the origin and maintenance of such polymorphisms are of special interest. Among rattlesnakes, several instances of the production of biochemically distinct neurotoxic or hemorrhagic venom types within the same species are known. Here, we investigated the genetic basis of this phenomenon in three species and found that neurotoxic and hemorrhagic individuals of the same species possess markedly different haplotypes at two toxin gene complexes. For example, neurotoxic and hemorrhagic Crotalus scutulatus individuals differ by 5 genes at the phospholipase A2 (PLA2) toxin gene complex and by 11 genes at the metalloproteinase (MP) gene complex. A similar set of extremely divergent haplotypes also underlies alternate venom types within C. helleri and C. horridus. We further show that the MP and PLA2 haplotypes of neurotoxic C. helleri appear to have been acquired through hybridization with C. scutulatus-a rare example of the horizontal transfer of a potentially highly adaptive suite of genes. These large structural variants appear analogous to immunity gene complexes in host-pathogen arms races and may reflect the impact of balancing selection at the PLA2 and MP complexes for predation on different prey.
Collapse
Affiliation(s)
- Noah L Dowell
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Matt W Giorgianni
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Sam Griffin
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Victoria A Kassner
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Jane E Selegue
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Elda E Sanchez
- National Natural Toxins Research Center and Department of Chemistry, Texas A&M University, Kingsville, MSC 224, Kingsville, TX 78363, USA
| | - Sean B Carroll
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 1525 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
88
|
|
89
|
Zhang W, Westerman E, Nitzany E, Palmer S, Kronforst MR. Tracing the origin and evolution of supergene mimicry in butterflies. Nat Commun 2017; 8:1269. [PMID: 29116078 PMCID: PMC5677128 DOI: 10.1038/s41467-017-01370-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022] Open
Abstract
Supergene mimicry is a striking phenomenon but we know little about the evolution of this trait in any species. Here, by studying genomes of butterflies from a recent radiation in which supergene mimicry has been isolated to the gene doublesex, we show that sexually dimorphic mimicry and female-limited polymorphism are evolutionarily related as a result of ancient balancing selection combined with independent origins of similar morphs in different lineages and secondary loss of polymorphism in other lineages. Evolutionary loss of polymorphism appears to have resulted from an interaction between natural selection and genetic drift. Furthermore, molecular evolution of the supergene is dominated not by adaptive protein evolution or balancing selection, but by extensive hitchhiking of linked variants on the mimetic dsx haplotype that occurred at the origin of mimicry. Our results suggest that chance events have played important and possibly opposing roles throughout the history of this classic example of adaptation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Erica Westerman
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Eyal Nitzany
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA
| | - Stephanie Palmer
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA
| | - Marcus R Kronforst
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
90
|
Lindtke D, Lucek K, Soria-Carrasco V, Villoutreix R, Farkas TE, Riesch R, Dennis SR, Gompert Z, Nosil P. Long-term balancing selection on chromosomal variants associated with crypsis in a stick insect. Mol Ecol 2017; 26:6189-6205. [DOI: 10.1111/mec.14280] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Dorothea Lindtke
- Department of Biological Sciences; University of Calgary; Calgary AB Canada
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
| | - Kay Lucek
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
- Department of Environmental Sciences; University of Basel; Basel Switzerland
| | | | - Romain Villoutreix
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
| | - Timothy E. Farkas
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs CT USA
| | - Rüdiger Riesch
- School of Biological Sciences; Royal Holloway; University of London; Egham UK
| | - Stuart R. Dennis
- Department of Aquatic Ecology; Eawag: Swiss Federal Institute of Aquatic Science and Technology; Dübendorf Switzerland
| | - Zach Gompert
- Department of Biology; Utah State University; Logan UT USA
| | - Patrik Nosil
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
| |
Collapse
|
91
|
Milesi P, Weill M, Lenormand T, Labbé P. Heterogeneous gene duplications can be adaptive because they permanently associate overdominant alleles. Evol Lett 2017; 1:169-180. [PMID: 30283647 PMCID: PMC6121789 DOI: 10.1002/evl3.17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/23/2017] [Indexed: 01/04/2023] Open
Abstract
Gene duplications are widespread in genomes, but their role in contemporary adaptation is not fully understood. Although mostly deleterious, homogeneous duplications that associate identical repeats of a locus often increase the quantity of protein produced, which can be selected in certain environments. However, another type exists: heterogeneous gene duplications, which permanently associate two (or more) alleles of a single locus on the same chromosome. They are far less studied, as only few examples of contemporary heterogeneous duplications are known. Haldane proposed in 1954 that they could be adaptive in situations of heterozygote advantage, or overdominance, but this hypothesis was never tested. To assess its validity, we took advantage of the well-known model of insecticide resistance in mosquitoes. We used experimental evolution to estimate the fitnesses associated with homozygous and heterozygous genotypes in different selection regimes. It first showed that balanced antagonist selective pressures frequently induce overdominance, generating stable polymorphic equilibriums. The frequency of equilibrium moreover depends on the magnitude of two antagonistic selective pressures, the survival advantage conferred by the resistant allele versus the selective costs it induces. We then showed that heterogeneous duplications are selected over single-copy alleles in such contexts. They allow the fixation of the heterozygote phenotype, providing an alternative and stable intermediate fitness trade-off. By allowing the rapid fixation of divergent alleles, this immediate advantage could contribute to the rarity of overdominance. More importantly, it also creates new material for long-term genetic innovation, making a crucial but underestimated contribution to the evolution of new genes and gene families.
Collapse
Affiliation(s)
- Pascal Milesi
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS‐Université de Montpellier‐IRD‐EPHE)Campus Université de MontpellierPlace Eugène Bataillon34095MontpellierCEDEX 05France
| | - Mylène Weill
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS‐Université de Montpellier‐IRD‐EPHE)Campus Université de MontpellierPlace Eugène Bataillon34095MontpellierCEDEX 05France
| | - Thomas Lenormand
- Centre d'Ecologie Fonctionnelle et Evolutive (UMR 5175, CNRS‐Université de Montpellier‐Université Paul‐Valéry Montpellier‐EPHE) 1919 route de MendeF‐34293MontpellierCEDEX 05France
| | - Pierrick Labbé
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS‐Université de Montpellier‐IRD‐EPHE)Campus Université de MontpellierPlace Eugène Bataillon34095MontpellierCEDEX 05France
| |
Collapse
|