51
|
Compensatory mutations improve general permissiveness to antibiotic resistance plasmids. Nat Ecol Evol 2017; 1:1354-1363. [PMID: 29046540 PMCID: PMC5649373 DOI: 10.1038/s41559-017-0243-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/16/2017] [Indexed: 11/08/2022]
Abstract
Horizontal gene transfer mediated by broad-host-range plasmids is an important mechanism of antibiotic resistance spread. While not all bacteria maintain plasmids equally well, plasmid persistence can improve over time, yet no general evolutionary mechanisms have emerged. Our goal was to identify these mechanisms and to assess if adaptation to one plasmid affects the permissiveness to others. We experimentally evolved Pseudomonas sp. H2 containing multidrug resistance plasmid RP4, determined plasmid persistence and cost using a joint experimental-modelling approach, resequenced evolved clones, and reconstructed key mutations. Plasmid persistence improved in fewer than 600 generations because the fitness cost turned into a benefit. Improved retention of naive plasmids indicated that the host evolved towards increased plasmid permissiveness. Key chromosomal mutations affected two accessory helicases and the RNA polymerase β-subunit. Our and other findings suggest that poor plasmid persistence can be caused by a high cost involving helicase-plasmid interactions that can be rapidly ameliorated.
Collapse
|
52
|
An evolutionary perspective on plasmid lifestyle modes. Curr Opin Microbiol 2017; 38:74-80. [DOI: 10.1016/j.mib.2017.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 11/19/2022]
|
53
|
Stalder T, Rogers LM, Renfrow C, Yano H, Smith Z, Top EM. Emerging patterns of plasmid-host coevolution that stabilize antibiotic resistance. Sci Rep 2017; 7:4853. [PMID: 28687759 PMCID: PMC5501780 DOI: 10.1038/s41598-017-04662-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/17/2017] [Indexed: 11/09/2022] Open
Abstract
Multidrug resistant bacterial pathogens have become a serious global human health threat, and conjugative plasmids are important drivers of the rapid spread of resistance to last-resort antibiotics. Whereas antibiotics have been shown to select for adaptation of resistance plasmids to their new bacterial hosts, or vice versa, a general evolutionary mechanism has not yet emerged. Here we conducted an experimental evolution study aimed at determining general patterns of plasmid-bacteria evolution. Specifically, we found that a large conjugative resistance plasmid follows the same evolutionary trajectories as its non-conjugative mini-replicon in the same and other species. Furthermore, within a single host-plasmid pair three distinct patterns of adaptive evolution led to increased plasmid persistence: i) mutations in the replication protein gene (trfA1); ii) the acquisition by the resistance plasmid of a transposon from a co-residing plasmid encoding a putative toxin-antitoxin system; iii) a mutation in the host's global transcriptional regulator gene fur. Since each of these evolutionary solutions individually have been shown to increase plasmid persistence in other plasmid-host pairs, our work points towards common mechanisms of plasmid stabilization. These could become the targets of future alternative drug therapies to slow down the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Linda M Rogers
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Chris Renfrow
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Hirokazu Yano
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Zachary Smith
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Eva M Top
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA. .,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA.
| |
Collapse
|
54
|
Harrison E, Hall JPJ, Paterson S, Spiers AJ, Brockhurst MA. Conflicting selection alters the trajectory of molecular evolution in a tripartite bacteria-plasmid-phage interaction. Mol Ecol 2017; 26:2757-2764. [PMID: 28247474 PMCID: PMC5655702 DOI: 10.1111/mec.14080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 01/21/2023]
Abstract
Bacteria engage in a complex network of ecological interactions, which includes mobile genetic elements (MGEs) such as phages and plasmids. These elements play a key role in microbial communities as vectors of horizontal gene transfer but can also be important sources of selection for their bacterial hosts. In natural communities, bacteria are likely to encounter multiple MGEs simultaneously and conflicting selection among MGEs could alter the bacterial evolutionary response to each MGE. Here, we test the effect of interactions with multiple MGEs on bacterial molecular evolution in the tripartite interaction between the bacterium, Pseudomonas fluorescens, the lytic bacteriophage, SBW25φ2, and conjugative plasmid, pQBR103, using genome sequencing of experimentally evolved bacteria. We show that individually, both plasmids and phages impose selection leading to bacterial evolutionary responses that are distinct from bacterial populations evolving without MGEs, but that together, plasmids and phages impose conflicting selection on bacteria, constraining the evolutionary responses observed in pairwise interactions. Our findings highlight the likely difficulties of predicting evolutionary responses to multiple selective pressures from the observed evolutionary responses to each selective pressure alone. Understanding evolution in complex microbial communities comprising many species and MGEs will require that we go beyond studies of pairwise interactions.
Collapse
Affiliation(s)
- Ellie Harrison
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - James P. J. Hall
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Steve Paterson
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUK
| | | | | |
Collapse
|
55
|
Wegrzyn KE, Gross M, Uciechowska U, Konieczny I. Replisome Assembly at Bacterial Chromosomes and Iteron Plasmids. Front Mol Biosci 2016; 3:39. [PMID: 27563644 PMCID: PMC4980987 DOI: 10.3389/fmolb.2016.00039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/25/2016] [Indexed: 11/13/2022] Open
Abstract
The proper initiation and occurrence of DNA synthesis depends on the formation and rearrangements of nucleoprotein complexes within the origin of DNA replication. In this review article, we present the current knowledge on the molecular mechanism of replication complex assembly at the origin of bacterial chromosome and plasmid replicon containing direct repeats (iterons) within the origin sequence. We describe recent findings on chromosomal and plasmid replication initiators, DnaA and Rep proteins, respectively, and their sequence-specific interactions with double- and single-stranded DNA. Also, we discuss the current understanding of the activities of DnaA and Rep proteins required for replisome assembly that is fundamental to the duplication and stability of genetic information in bacterial cells.
Collapse
Affiliation(s)
- Katarzyna E Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Marta Gross
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Urszula Uciechowska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| |
Collapse
|