51
|
Hu W, Han Y, Sheng Y, Wang Y, Pan Q, Nie H. Mass spectrometry imaging for direct visualization of components in plants tissues. J Sep Sci 2021; 44:3462-3476. [PMID: 34245221 DOI: 10.1002/jssc.202100138] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Mass spectrometry is considered the most informative technique for components identification and has been widely adopted in plant sciences. However, the spatial distribution of compounds in the plant, which is vital for the exploration of plant physiological mechanisms, is missed in MS analysis. In recent years, mass spectrometry imaging has brought a great breakthrough in plant analysis because it can determine both the molecular compositions and spatial distributions, which is conducive to understand functions and regulation pathways of specific components in plants. Mass spectrometry imaging analysis of plant tissue is toward high sensitivity, high spatial resolution, and even single-cell analysis. Despite many challenges and technical barriers, such as difficulties of sample pretreatment caused by morphological diversity of plant tissues, obstacles for high spatial resolution imaging, and so on, lots of researches have contributed to remarkable progress, including improvement in tissue preparation, matrix innovation, and ionization mode development. This review focuses on the advances of mass spectrometry imaging analysis of plants in the last 5 years, including commonly used ionization techniques, technical advances, and recent applications of mass spectrometry imaging in plants.
Collapse
Affiliation(s)
- Wenya Hu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yiqi Sheng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Qiong Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| |
Collapse
|
52
|
Li B, Ge J, Liu W, Hu D, Li P. Unveiling spatial metabolome of Paeonia suffruticosa and Paeonia lactiflora roots using MALDI MS imaging. THE NEW PHYTOLOGIST 2021; 231:892-902. [PMID: 33864691 DOI: 10.1111/nph.17393] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/01/2021] [Indexed: 05/26/2023]
Abstract
Paeonia suffruticosa (PS) and Paeonia lactiflora (PL) belong to the only genus in the family Paeoniaceae. Comparative analysis of the spatial metabolomes of PS and PL has rarely been performed. In this work, combined with multiple matrixes and dual-polarity detection, high mass resolution matrix-assisted laser desorption/ionization MS imaging (MALDI MSI) and MALDI tandem MSI were performed on the root sections of the two Paeonia species. The spatial distributions of many metabolites including monoterpene and paeonol glycosides, tannins, flavonoids, saccharides and lipids were systematically characterized. The ambiguous tissue distribution of the two isomers paeoniflorin and albiflorin were distinguished by tandem MSI using lithium salt doped 2,5-dihydroxybenzoate matrix. In addition, the major intermediates involved in the biosynthetic pathway of gallotannins were successfully localized and visualized in the root sections. High-mass resolution MALDI full-scan MSI provides comprehensive and accurate spatial distribution of metabolites. The analytical power of the technique was further tested in the tandem MSI of two isomers. The ion images of individual metabolites provide chemical and microscopic characteristics beyond morphological identification, and the detailed spatiochemical information could not only improve our understanding of the biosynthetic pathway of hydrolyzable tannins, but also ensure the safety and effectiveness of their medicinal use.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Junyue Ge
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Liu
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Dejun Hu
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ping Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
53
|
Hunt L, Klem K, Lhotáková Z, Vosolsobě S, Oravec M, Urban O, Špunda V, Albrechtová J. Light and CO 2 Modulate the Accumulation and Localization of Phenolic Compounds in Barley Leaves. Antioxidants (Basel) 2021; 10:385. [PMID: 33807526 PMCID: PMC7999350 DOI: 10.3390/antiox10030385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Barley (Hordeum vulgare) accumulates phenolic compounds (PhCs), which play a key role in plant defense against environmental stressors as antioxidants or UV screening compounds. The influence of light and atmospheric CO2 concentration ([CO2]) on the accumulation and localization of PhCs in barley leaves was examined for two varieties with different tolerances to oxidative stress. PhC localization was visualized in vivo using fluorescence microscopy. Close relationships were found between fluorescence-determined localization of PhCs in barley leaves and PhC content estimated using liquid chromatography coupled with mass spectroscopy detection. Light intensity had the strongest effect on the accumulation of PhCs, but the total PhC content was similar at elevated [CO2], minimizing the differences between high and low light. PhCs localized preferentially near the surfaces of leaves, but under low light, an increasing allocation of PhCs in deeper mesophyll layers was observed. The PhC profile was significantly different between barley varieties. The relatively tolerant variety accumulated significantly more hydroxycinnamic acids, indicating that these PhCs may play a more prominent role in oxidative stress prevention. Our research presents novel evidence that [CO2] modulates the accumulation of PhCs in barley leaves. Mesophyll cells, rather than epidermal cells, were most responsive to environmental stimuli in terms of PhC accumulation.
Collapse
Affiliation(s)
- Lena Hunt
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (Z.L.); (S.V.)
| | - Karel Klem
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.); (V.Š.)
| | - Zuzana Lhotáková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (Z.L.); (S.V.)
| | - Stanislav Vosolsobě
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (Z.L.); (S.V.)
| | - Michal Oravec
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.); (V.Š.)
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.); (V.Š.)
| | - Vladimír Špunda
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.); (V.Š.)
- Department of Physics, Faculty of Science, University of Ostrava, Dvořákova 7, 70103 Ostrava, Czech Republic
| | - Jana Albrechtová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (Z.L.); (S.V.)
| |
Collapse
|
54
|
Zhang L, Chen WS, Lv ZY, Sun WJ, Jiang R, Chen JF, Ying X. Phytohormones jasmonic acid, salicylic acid, gibberellins, and abscisic acid are key mediators of plant secondary metabolites. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_20_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
55
|
Liu L, Wang Y, Zhang J, Wang S. Advances in the chemical constituents and chemical analysis of Ginkgo biloba leaf, extract, and phytopharmaceuticals. J Pharm Biomed Anal 2020; 193:113704. [PMID: 33157480 DOI: 10.1016/j.jpba.2020.113704] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/16/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Ginkgo biloba leaf (GBL) is an important botanical drug that can be used for treating many diseases. This review summarizes the reported chemical constituents from GBL or Ginkgo biloba extract (GBE) to date, as well as the recent advances in the extraction, purification, qualitative and quantitative analysis methods (from 2015 to 2020). To date, about 110 flavonoids have been reported to have unambiguous structures, including flavonol and its glycosides, flavone and its glycosides, flavanone and its glycosides, isoflavone and its glycosides, flavan-3-ols, bioflavonoids, and biginkgosides. In recent years, in addition to new flavonoids, new terpenoids and lignan have been also isolated from GBL. Further, several extraction and purification methods have been described and compared. Quantitative analysis of the constituents have been mainly carried out by high-performance liquid chromatography with different detector methods. Many studies have focused on variations of compounds contents in GBL from different regions, tree ages, or collection times, which provide references for the selection of GBL. Liquid chromatography-mass spectrometry coupled with activity assay methods were used to on-line screen the bioactive compounds from GBL or its phytopharmaceuticals. The application of other analytical technologies such as MS imaging, supercritical fluid chromatography, capillary electrophoresis, quantitative nuclear magnetic resonance, and spectroscopy, has also been discussed. This review of the chemical constituents and analytical methods of Ginkgo will provide a reference for the research on the quality control and discovery of effective constituents for GBL and its related phytopharmaceuticals.
Collapse
Affiliation(s)
- Lingmei Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yating Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jucong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shufang Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
56
|
Ahn AV, dos Santos JHZ. Quantitative GC-FID and UHPLC-DAD Evaluation of Bioactive Compounds Extracted from Ginkgo biloba. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411015666191010124224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The official compendium of the quantification of ginkgo flavonoids from
Ginkgo biloba extract has been proposed using HPLC. The drawbacks of this technique appear to be
due to the restricted efficiency in terms of the recovery results and suitability of the system for the
quantification of these compounds. This study investigated the potential advantages and limitations
of the development of efficient extraction methods for the recovery of flavonol glycosides (quercetin,
kaempferol and isorhamnetin) and terpene trilactones (bilobalide, ginkgolide A, ginkgolide B and
ginkgolide C) using extraction, quantification and detection techniques, namely, GC-FID and
UHPLC-DAD, which are alternatives to those techniques available in the literature.
Methods:
Two different extraction methodologies have been developed for the determination of flavonoids
(quercetin, kaempferol and isorhamnetin) and terpene trilactones (bilobalide, ginkgolide A,
ginkgolide B and ginkgolide C) using ultra-high-pressure liquid chromatography coupled to a diode
array detector and gas chromatography coupled to a flame ionization detector.
Results:
In this study, the Ginkgo biloba extract mass, hydrolysis preparation method (with or without
reflux), and volume of the extraction solution seemed to affect the ginkgo flavonoid recovery.
The UHPLC-based method exhibited higher extraction efficiency for ginkgo flavonoid quantification
compared to the pharmacopoeial method. The developed method exhibited higher extraction efficiency
for terpene quantification compared to the previous method that used extractive solution without
pH adjustment, with less time of extraction and less amount of the sample and organic solvent
aliquots.
Conclusion:
The UHPLC and GC analysis methods established in this study are both effective and
efficient. These methods may improve the quality control procedures for ginkgo extract and commercial
products available in today´s natural health product market. The results indicate that redeveloped
extraction methods can be a viable alternative to traditional extraction methods.
Collapse
Affiliation(s)
- Alessandra von Ahn
- Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, Porto Alegre, CEP 91500-000, Brazil
| | - João Henrique Z. dos Santos
- Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, Porto Alegre, CEP 91500-000, Brazil
| |
Collapse
|
57
|
Shiono K, Taira S. Imaging of Multiple Plant Hormones in Roots of Rice ( Oryza sativa) Using Nanoparticle-Assisted Laser Desorption/Ionization Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6770-6775. [PMID: 32437141 DOI: 10.1021/acs.jafc.0c00749] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Plant hormones can act in synergistic and antagonistic ways in response to biotic and abiotic stresses and in plant growth and development. Thus, a technique is needed to simultaneously determine the distributions and concentrations of several plant hormones. Previously, we reported that localizations of two plant hormones [cytokinin (CK) and abscisic acid (ABA)] can be simultaneously visualized in a plant tissue using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). In MALDI-MS, however, self-ionization of an organic matrix occasionally interferes with ionizations of small molecules (<500 m/z) including most plant hormones. Another technique, nanoparticle-assisted laser desorption/ionization (Nano-PALDI), can avoid matrix self-ionization using nanoparticles to assist the ionization of analytes. Here, we compared the ionization efficiencies of common plant hormones by MALDI-MS and Nano-PALDI-MS. For the comparison, we prepared a standard mix of seven plant hormones [ABA, auxin (IAA), brassinosteroid (Br), two CKs (trans-zeatin, tZ, and 6-(γ,γ-dimethylallylamino) purine, iP), jasmonic acid, and salicylic acid (SA)], an ethylene precursor (1-aminocyclopropane-1-carboxylic acid, ACC), and a heavy hydrogen-labeled ABA (D6-ABA). Basic MALDI-MS detected all compounds except IAA, Br, and D6-ABA, while Nano-PALDI-MS detected all nine compounds. By Nano-PALDI-MS imaging (MSI), each of the abovementioned hormones and ACC were also detected in root cross sections of rice which were incubated in the hormone mix for 2 h. In the elongation zone of untreated roots, Nano-PALDI-MSI revealed high levels of ABA and CKs in the outer part of roots and much lower levels in the stele, but Br, SA, and ACC were broadly distributed in the cross section. IAA seemed to be distributed in the epidermis, cortex, and stele. Multiple-hormone imaging using Nano-PALDI-MS has great potential for investigating the roles of hormone signaling in crop development and stress responses.
Collapse
Affiliation(s)
- Katsuhiro Shiono
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Fukui 910-1195, Japan
| | - Shu Taira
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima 960-1296, Japan
| |
Collapse
|
58
|
A novel spatial-resolution targeted metabolomics method in a single leaf of the tea plant (Camellia sinensis). Food Chem 2020; 311:126007. [DOI: 10.1016/j.foodchem.2019.126007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 11/19/2022]
|
59
|
Sun C, Liu W, Ma S, Zhang M, Geng Y, Wang X. Development of a high-coverage matrix-assisted laser desorption/ionization mass spectrometry imaging method for visualizing the spatial dynamics of functional metabolites in Salvia miltiorrhiza Bge. J Chromatogr A 2020; 1614:460704. [DOI: 10.1016/j.chroma.2019.460704] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
|
60
|
A spatially-resolved approach to visualize the distribution and biosynthesis of flavones in Scutellaria baicalensis Georgi. J Pharm Biomed Anal 2019; 179:113014. [PMID: 31812804 DOI: 10.1016/j.jpba.2019.113014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/21/2023]
Abstract
Imaging the spatial distributions and dynamics of flavones in heterogeneous plant tissues is significant for our understanding of plant metabolism. Here, we proposed a spatially-resolved approach to map the locations and biosynthesis of flavones in S. baicalensis. A total of 11 flavones, 5 flavone glycosides, 6 carbohydrates, and a variety of flavone synthesis-related metabolites were imaged. Most of these flavone-related metabolites presented stronger ion intensities in root phloem. The biosynthetic network of flavones and their glycosides in S. baicalensis were visualized for the first time. Moreover, we characterized the region-specific activities of four crucial enzymes in flavone synthesis pathway, including l-phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, 4-coumarate coenzyme A ligase, and flavone synthase. In line with the spatial characteristic of flavones, all these four enzymes exhibit higher activity in the root phloem of S. baicalensis. The combination of spatially-resolved metabolites and enzymes information greatly broadens our understanding of flavone biosynthetic network.
Collapse
|
61
|
LIU F, ZHANG L, ZHANG ZX, ZHANG SC. Application of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Imaging in Analysis of Medicinal Plants. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61178-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
62
|
Liao Y, Fu X, Zhou H, Rao W, Zeng L, Yang Z. Visualized analysis of within-tissue spatial distribution of specialized metabolites in tea (Camellia sinensis) using desorption electrospray ionization imaging mass spectrometry. Food Chem 2019; 292:204-210. [PMID: 31054666 DOI: 10.1016/j.foodchem.2019.04.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022]
Abstract
Although specialized metabolite distributions in different tea (Camellia sinensis) tissues has been studied extensively, little is known about their within-tissue distribution owing to the lack of nondestructive methodology. In this study, desorption electrospray ionization imaging mass spectrometry was used to investigate the within-tissue spatial distributions of specialized metabolites in tea. To overcome the negative effects of the large amount of wax on tea leaves, several sample preparation methods were compared, with a Teflon-imprint method established for tea leaves. Polyphenols are characteristic metabolites in tea leaves. Epicatechin gallate/catechin gallate, epigallocatechin gallate/gallocatechin gallate, and gallic acid were evenly distributed on both sides of the leaves, while epicatechin/catechin, epigallocatechin/gallocatechin, and assamicain A were distributed near the leaf vein. L-Theanine was mainly accumulated in tea roots. L-Theanine and valinol were distributed around the outer root cross-section. The results will advance our understanding of the precise localizations and in-vivo biosyntheses of specialized metabolites in tea.
Collapse
Affiliation(s)
- Yinyin Liao
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiumin Fu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
| | - Haiyun Zhou
- Instrumental Analysis & Research Center, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China
| | - Wei Rao
- Waters Technologies (Shanghai) Ltd., No. 1000 Jinhai Road, Shanghai 201203, China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
| | - Ziyin Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
63
|
Tang W, Chen J, Zhou J, Ge J, Zhang Y, Li P, Li B. Quantitative MALDI Imaging of Spatial Distributions and Dynamic Changes of Tetrandrine in Multiple Organs of Rats. Am J Cancer Res 2019; 9:932-944. [PMID: 30867807 PMCID: PMC6401406 DOI: 10.7150/thno.30408] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/22/2018] [Indexed: 12/16/2022] Open
Abstract
Detailed spatio-temporal information on drug distribution in organs is of paramount importance to assess drug clinically-relevant properties and potential side-effects. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) as a label-free and sensitive imaging modality provides an additional means of accurately visualizing drug and its metabolites distributions in tissue sections. However, technical limitations, complex physiochemical environment of surface and low abundance of target drugs make quantitative MALDI imaging of drug and its metabolites quite challenging. Methods: In this study, an internal standard correction strategy was applied for quantitative MALDI imaging of tetrandrine in multiple organs of rats including lung, liver, kidney, spleen, and heart. The feasibility and reliability of the developed quantitative MSI method were validated by conventional liquid chromatography-tandem MS (LC-MS/MS) analysis, and the two methods showed a significant correlation. Results: The quantitative MALDI imaging method met the requirements of specificity, sensitivity and linearity. Tissue-specific spatio-temporal distribution patterns of tetrandrine in different organs were revealed after intravenous administration in the rat. Moreover, demethylated metabolite was detected in liver tissues. Conclusions: The current work illustrates that quantitative MALDI imaging provides an alternative means of accurately addressing the problem of drug and its metabolites distribution in tissues, complementary to traditional LC-MS/MS of tissue homogenates and whole-body autoradiography (WBA). Quantitative spatio-chemical information obtained here can improve our understanding of pharmacokinetics (PK), pharmacodynamics (PD), and potential transient toxicities of tetrandrine in organs, and possibly direct further optimization of drug properties to reduce drug-induced organ toxicity.
Collapse
|
64
|
He H, Qin L, Zhang Y, Han M, Li J, Liu Y, Qiu K, Dai X, Li Y, Zeng M, Guo H, Zhou Y, Wang X. 3,4-Dimethoxycinnamic Acid as a Novel Matrix for Enhanced In Situ Detection and Imaging of Low-Molecular-Weight Compounds in Biological Tissues by MALDI-MSI. Anal Chem 2019; 91:2634-2643. [DOI: 10.1021/acs.analchem.8b03522] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Huixin He
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Liang Qin
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yawen Zhang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Manman Han
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jinming Li
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yaqin Liu
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Kaidi Qiu
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiaoyan Dai
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yanyan Li
- The Hospital of Minzu University of China, Minzu University of China, Beijing 100081, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Huihong Guo
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiaodong Wang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|