51
|
Bartsch MV, Boehler CN, Stoppel CM, Merkel C, Heinze HJ, Schoenfeld MA, Hopf JM. Determinants of Global Color-Based Selection in Human Visual Cortex. Cereb Cortex 2014; 25:2828-41. [PMID: 24770709 DOI: 10.1093/cercor/bhu078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Feature attention operates in a spatially global way, with attended feature values being prioritized for selection outside the focus of attention. Accounts of global feature attention have emphasized feature competition as a determining factor. Here, we use magnetoencephalographic recordings in humans to test whether competition is critical for global feature selection to arise. Subjects performed a color/shape discrimination task in one visual field (VF), while irrelevant color probes were presented in the other unattended VF. Global effects of color attention were assessed by analyzing the response to the probe as a function of whether or not the probe's color was a target-defining color. We find that global color selection involves a sequence of modulations in extrastriate cortex, with an initial phase in higher tier areas (lateral occipital complex) followed by a later phase in lower tier retinotopic areas (V3/V4). Importantly, these modulations appeared with and without color competition in the focus of attention. Moreover, early parts of the modulation emerged for a task-relevant color not even present in the focus of attention. All modulations, however, were eliminated during simple onset-detection of the colored target. These results indicate that global color-based attention depends on target discrimination independent of feature competition in the focus of attention.
Collapse
Affiliation(s)
- Mandy V Bartsch
- Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Carsten N Boehler
- Department of Experimental Psychology, Ghent University, 9000 Ghent, Belgium
| | - Christian M Stoppel
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Christian Merkel
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Hans-Jochen Heinze
- Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Mircea A Schoenfeld
- Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Jens-Max Hopf
- Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
52
|
McKeefry D, Kremers J, Kommanapalli D, Challa NK, Murray IJ, Maguire J, Parry NRA. Incremental and decremental L- and M-cone-driven ERG responses: I. Square-wave pulse stimulation. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2014; 31:A159-A169. [PMID: 24695165 DOI: 10.1364/josaa.31.00a159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Electroretinograms (ERGs) elicited by transient, square-wave L- and M-cone isolating stimuli were recorded from human trichromatic (n=19) and dichromatic (n=4) observers. The stimuli were generated on a four primary LED stimulator and were equated in terms of cone modulation (cone contrast=0.11) and retinal illuminance (12,000 trolands). L- and M-cone isolated ERGs had waveforms similar to those observed for luminance responses. However, M-cone ERGs exhibited a phase reversal in their responses to onset and offset stimuli relative to the L-cone responses. This on-off response reversal was observed in trichromats but not dichromats. Simultaneous counterphase and inphase combinations of L- and M-cone isolating stimuli generated responses that reflected chromatic and luminance processing, respectively. We conclude that L- and M-cone specific ERGs provide a measure of how photoreceptors contribute to postreceptoral mechanisms.
Collapse
|
53
|
Kommanapalli D, Murray IJ, Kremers J, Parry NRA, McKeefry DJ. Temporal characteristics of L- and M-cone isolating steady-state electroretinograms. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2014; 31:A113-A120. [PMID: 24695158 DOI: 10.1364/josaa.31.00a113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cone isolating stimuli were used to assess the temporal frequency response characteristics of L- and M-cone electroretinograms (ERGs) in nine trichromatic and four dichromatic human observers. The stimuli comprised sinusoidal temporal modulations varying from 5 to 100 Hz. ERGs were recorded using corneal fiber electrodes and subjected to fast Fourier transform analysis. At low temporal frequencies (<10 Hz) the L- and M-cone ERGs had similar amplitude and exhibited minimal differences in apparent latency. At higher flicker rates (>20 Hz) L-cone ERGs had greater amplitudes and shorter apparent latencies than the M-cone responses. These differences between the L- and M-cone ERGs are consistent with their mediation by chromatic and luminance postreceptoral processing pathways at low and high temporal frequencies, respectively.
Collapse
|
54
|
Abstract
Psychophysical experiments show that two different visual attributes, color and motion, processed in different areas of the visual brain, are perceived at different times relative to each other (Moutoussis and Zeki, 1997a). Here we demonstrate psychophysically that two variants of the same attribute, motion, which have the same temporal structure and are processed in the same visual areas, are also processed asynchronously. When subjects were asked to pair up–down motion of dots in one half of their hemifield with up-right motion in the other, they perceived the two directions of motion asynchronously, with the advantage in favor of up-right motion; when they were asked to pair the motion of white dots moving against a black background with that of red dots moving against an equiluminant green background, they perceived the luminant motion first, thus demonstrating a perceptual advantage of luminant over equiluminant motion. These results were not affected by motion speed or perceived motion “streaks.” We thus interpret these results to reflect the different processing times produced by luminant and equiluminant motion stimuli or by different degrees of motion direction change, thus adding to the evidence that processing time within the visual system is a major determinant of perceptual time.
Collapse
Affiliation(s)
- Yu Tung Lo
- Wellcome Laboratory of Neurobiology, University College London London, UK
| | - Semir Zeki
- Wellcome Laboratory of Neurobiology, University College London London, UK
| |
Collapse
|
55
|
Li X, Chen Y, Lashgari R, Bereshpolova Y, Swadlow HA, Lee BB, Alonso JM. Mixing of Chromatic and Luminance Retinal Signals in Primate Area V1. Cereb Cortex 2014; 25:1920-37. [PMID: 24464943 DOI: 10.1093/cercor/bhu002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vision emerges from activation of chromatic and achromatic retinal channels whose interaction in visual cortex is still poorly understood. To investigate this interaction, we recorded neuronal activity from retinal ganglion cells and V1 cortical cells in macaques and measured their visual responses to grating stimuli that had either luminance contrast (luminance grating), chromatic contrast (chromatic grating), or a combination of the two (compound grating). As with parvocellular or koniocellular retinal ganglion cells, some V1 cells responded mostly to the chromatic contrast of the compound grating. As with magnocellular retinal ganglion cells, other V1 cells responded mostly to the luminance contrast and generated a frequency-doubled response to equiluminant chromatic gratings. Unlike magnocellular and parvocellular retinal ganglion cells, V1 cells formed a unimodal distribution for luminance/color preference with a 2- to 4-fold bias toward luminance. V1 cells associated with positive local field potentials in deep layers showed the strongest combined responses to color and luminance and, as a population, V1 cells encoded a diverse combination of luminance/color edges that matched edge distributions of natural scenes. Taken together, these results suggest that the primary visual cortex combines magnocellular and parvocellular retinal inputs to increase cortical receptive field diversity and to optimize visual processing of our natural environment.
Collapse
Affiliation(s)
- Xiaobing Li
- Department of Biological Sciences, SUNY Optometry, New York, NY 10036, USA
| | - Yao Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Reza Lashgari
- Department of Biological Sciences, SUNY Optometry, New York, NY 10036, USA Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
| | - Yulia Bereshpolova
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA
| | - Harvey A Swadlow
- Department of Biological Sciences, SUNY Optometry, New York, NY 10036, USA Department of Psychology, University of Connecticut, Storrs, CT 06269, USA
| | - Barry B Lee
- Department of Biological Sciences, SUNY Optometry, New York, NY 10036, USA Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Jose Manuel Alonso
- Department of Biological Sciences, SUNY Optometry, New York, NY 10036, USA Department of Psychology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
56
|
Buschschulte A, Boehler CN, Strumpf H, Stoppel C, Heinze HJ, Schoenfeld MA, Hopf JM. Reward- and attention-related biasing of sensory selection in visual cortex. J Cogn Neurosci 2013; 26:1049-65. [PMID: 24345176 DOI: 10.1162/jocn_a_00539] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Attention to task-relevant features leads to a biasing of sensory selection in extrastriate cortex. Features signaling reward seem to produce a similar bias, but how modulatory effects due to reward and attention relate to each other is largely unexplored. To address this issue, it is critical to separate top-down settings defining reward relevance from those defining attention. To this end, we used a visual search paradigm in which the target's definition (attention to color) was dissociated from reward relevance by delivering monetary reward on search frames where a certain task-irrelevant color was combined with the target-defining color to form the target object. We assessed the state of neural biasing for the attended and reward-relevant color by analyzing the neuromagnetic brain response to asynchronously presented irrelevant distractor probes drawn in the target-defining color, the reward-relevant color, and a completely irrelevant color as a reference. We observed that for the prospect of moderate rewards, the target-defining color but not the reward-relevant color produced a selective enhancement of the neuromagnetic response between 180 and 280 msec in ventral extrastriate visual cortex. Increasing reward prospect caused a delayed attenuation (220-250 msec) of the response to reward probes, which followed a prior (160-180 msec) response enhancement in dorsal ACC. Notably, shorter latency responses in dorsal ACC were associated with stronger attenuation in extrastriate visual cortex. Finally, an analysis of the brain response to the search frames revealed that the presence of the reward-relevant color in search distractors elicited an enhanced response that was abolished after increasing reward size. The present data together indicate that when top-down definitions of reward relevance and attention are separated, the behavioral significance of reward-associated features is still rapidly coded in higher-level cortex areas, thereby commanding effective top-down inhibitory control to counter a selection bias for those features in extrastriate visual cortex.
Collapse
|
57
|
On using isoluminant stimuli to separate magno- and parvocellular responses in psychophysical experiments-a few words of caution. Behav Res Methods 2013; 45:637-45. [PMID: 23292567 DOI: 10.3758/s13428-012-0290-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Isoluminant (or equiluminant) color stimuli (i.e., those that contain variations only in chromaticity) have been employed in attempts to separate magno- and parvocellular responses in psychophysical and noninvasive electrophysiological experiments. The justification for this has been the assumption that magnocellular cells, unlike parvocellular neurons, do not respond to stimuli varying only in hue. However, several problems are associated with this notion: (1) under many conditions, magnocellular neurons are not fully silenced at isoluminance, and (2) in many circumstances, parvocellular responses are substantially reduced at isoluminance. To rely upon isoluminant stimuli to "bias" stimuli toward the parvocellular system also faces obstacles. Therefore, caution is required when attempting to use isoluminant color to separate magno- and parvocellular responses.
Collapse
|
58
|
Spatial sensitivity, responsivity, and surround suppression of LGN cell responses in the macaque. Vis Neurosci 2013; 30:153-67. [DOI: 10.1017/s0952523813000370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractResponses of cells in the lateral geniculate nucleus (LGN) of the macaque monkey have been measured for different sizes of chromatic and achromatic stimuli, with relative luminance spanning a range of 3–6 log units. Homogeneous illuminated test fields, centered on the receptive field, were used. Responses to these stimuli deviated from what is expected for the grating stimuli used to study the contrast-sensitive mechanisms in the visual pathway. For test fields smaller than the center of the receptive field, both the excitatory and the inhibitory cone-opponent components were present in the response, and the sensitivity to both components increased with the same factor when the test field increased in size (area summation). For test field areas extending into the suppressive surround of the extraclassical receptive field, the excitatory and the inhibitory cone opponents were both suppressed, again by the same factor. This suppression of the cell’s responsiveness, as a function of test spot area, was described by a logarithmic function, and the spatial sensitivity of attenuation could therefore be described by a power function of radius. The logarithmic suppression was clear for parvocellular and koniocellular cells but was more prominent for magnocellular cells. The surround field suppression was also found for the prepotential inputs to LGN cells, indicating a retinal origin. The difference of Gaussian (DOG) model has been used successfully to describe the cells’ contrast behavior for grating stimuli. However, this model fails to describe the constant excitatory/inhibitory response balance needed to obtain color (hue) stability for light stimuli of different sizes but with the same Commission Internationale de l’Eclairage (CIE) chromaticity and luminance factor. Neither the constant responsiveness found in the center of the receptive field nor the suppressive response in the surround can be described by the DOG model.
Collapse
|
59
|
Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina. Vis Neurosci 2013; 31:139-51. [PMID: 23895762 DOI: 10.1017/s0952523813000230] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Anatomical and physiological approaches are beginning to reveal the synaptic origins of parallel ON- and OFF-pathway retinal circuits for the transmission of short (S-) wavelength sensitive cone signals in the primate retina. Anatomical data suggest that synaptic output from S-cones is largely segregated; central elements of synaptic triads arise almost exclusively from the "blue-cone" bipolar cell, a presumed ON bipolar, whereas triad-associated contacts derive primarily from the "flat" midget bipolar cell, a hyperpolarizing, OFF bipolar. Similarly, horizontal cell connectivity is also segregated, with only the H2 cell-type receiving numerous contacts from S-cones. Negative feedback from long (L-) and middle (M-) wavelength sensitive cones via the H2 horizontal cells elicits an antagonistic surround in S-cones demonstrating that S versus L + M or "blue-yellow" opponency is first established in the S-cone. However, the S-cone output utilizes distinct synaptic mechanisms to create color opponency at the ganglion cell level. The blue-cone bipolar cell is presynaptic to the small bistratified, "blue-ON" ganglion cell. S versus L + M cone opponency arises postsynaptically by converging S-ON and LM-OFF excitatory bipolar inputs to the ganglion cell's bistratified dendritic tree. The common L + M cone surrounds of the parallel S-ON and LM-OFF cone bipolar inputs appear to cancel resulting in "blue-yellow" antagonism without center-surround spatial opponency. By contrast, in midget ganglion cells, opponency arises by the differential weighting of cone inputs to the receptive field center versus surround. In the macula, the "private-line" connection from a midget ganglion cell to a single cone predicts that S versus L + M opponency is transmitted from the S-cone to the S-OFF midget bipolar and ganglion cell. Beyond the macula, OFF-midget ganglion cell dendritic trees enlarge and collect additional input from multiple L and M cones. Thus S-OFF opponency via the midget pathway would be expected to become more complex in the near retinal periphery as L and/or M and S cone inputs sum to the receptive field center. An important goal for further investigation will be to explore the hypothesis that distinct bistratified S-ON versus midget S-OFF retinal circuits are the substrates for human psychophysical detection mechanisms attributed to S-ON versus S-OFF perceptual channels.
Collapse
|
60
|
Abstract
We used the perceptual reports of nonhuman primates to perform psychophysical calibrations of S-cone isolating stimuli. S-cone stimuli were calibrated separately at several spatial locations for each monkey. To do this we exploited the effect of transient tritanopia, which causes a selective decrease of sensitivity in the observer's S-cone channel. At the start of each transient tritanopia trial monkeys were visually adapted to a bright yellow background. This type of adaptation is known to induce transient tritanopia. Calibrated S-cone isolating stimuli were determined by finding a near S-cone stimulus whose detection threshold was maximally elevated during transient tritanopia. At the start of each control trial, monkeys were adapted to a bright white background. In these trials, monkeys' detection thresholds for near S-cone stimuli were unchanged. We found that S-cone isolating stimuli could be determined at most locations tested in each monkey. Calibrated S-cone stimuli were particular to both spatial location and animal. To understand the visual system as a whole in vivo requires physiological methods not possible in human subjects. The present results open the door to novel behavioral and physiological experiments by showing that S-cone isolating stimuli can be calibrated in monkeys.
Collapse
Affiliation(s)
- Nathan Hall
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
61
|
Leontiev O, Buracas GT, Liang C, Ances BM, Perthen JE, Shmuel A, Buxton RB. Coupling of cerebral blood flow and oxygen metabolism is conserved for chromatic and luminance stimuli in human visual cortex. Neuroimage 2012; 68:221-8. [PMID: 23238435 DOI: 10.1016/j.neuroimage.2012.11.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 11/19/2022] Open
Abstract
The ratio of the changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) during brain activation is a critical determinant of the magnitude of the blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI). Cytochrome oxidase (CO), a key component of oxidative metabolism in the mitochondria, is non-uniformly distributed in visual area V1 in distinct blob and interblob regions, suggesting significant spatial variation in the capacity for oxygen metabolism. The goal of this study was to test whether CBF/CMRO(2) coupling differed when these subpopulations of neurons were preferentially stimulated, using chromatic and luminance stimuli to preferentially stimulate either the blob or interblob regions. A dual-echo spiral arterial spin labeling (ASL) technique was used to measure CBF and BOLD responses simultaneously in 7 healthy human subjects. When the stimulus contrast levels were adjusted to evoke similar CBF responses (mean 65.4% ± 19.0% and 64.6% ± 19.9%, respectively for chromatic and luminance contrast), the BOLD responses were remarkably similar (1.57% ± 0.39% and 1.59% ± 0.35%) for both types of stimuli. We conclude that CBF-CMRO(2) coupling is conserved for the chromatic and luminance stimuli used, suggesting a consistent coupling for blob and inter-blob neuronal populations despite the difference in CO concentration.
Collapse
Affiliation(s)
- Oleg Leontiev
- Department of Radiology and Center for Functional MRI, University of California, San Diego, CA 92093-0677, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Gowrisankaran S, Alexander KR. Stimulus chromatic properties affect period doubling in the human cone flicker ERG. Doc Ophthalmol 2012; 125:21-9. [PMID: 22581377 DOI: 10.1007/s10633-012-9326-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 04/16/2012] [Indexed: 11/29/2022]
Abstract
Period doubling in the full-field cone flicker electroretinogram (ERG) refers to an alternation in waveform amplitude and/or shape from cycle to cycle, presumably owing to the operation of a nonlinear gain control mechanism. This study examined the influence of stimulus chromatic properties on the characteristics of period doubling in order to better understand the underlying mechanism. ERGs were acquired from 5 visually normal subjects in response to sinusoidally modulated flicker presented at frequencies from 25 to 100 Hz. The test stimuli and the pre-stimulus adaptation were either long wavelength (R), middle wavelength (G), or an equal combination of long and middle wavelengths (Y), all equated for photopic luminance. Fourier analysis was used to obtain the response amplitude at the stimulus frequency F and at a harmonic frequency of 3F/2, which was used as the index of period doubling. The frequency-response function for 3F/2 typically showed two peaks, occurring at approximately 33.3 and 50 Hz. However, the magnitude of period doubling within these frequency regions was dependent on the chromatic properties of both the test stimulus and the pre-stimulus adaptation. Period doubling was generally smallest when an R test was used, even though the stimuli were luminance-equated and the amplitude of F did not differ between the various conditions. The pattern of results indicates that the mechanism that generates period doubling is influenced by chromatic signals from both the test stimulus and the pre-stimulus adaptation, even though the high stimulus frequencies presumably favor the achromatic luminance system.
Collapse
Affiliation(s)
- Sowjanya Gowrisankaran
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL 60612, USA
| | | |
Collapse
|
63
|
Parry NRA, Murray IJ, Panorgias A, McKeefry DJ, Lee BB, Kremers J. Simultaneous chromatic and luminance human electroretinogram responses. J Physiol 2012; 590:3141-54. [PMID: 22586211 DOI: 10.1113/jphysiol.2011.226951] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The parallel processing of information forms an important organisational principle of the primate visual system. Here we describe experiments which use a novel chromatic–achromatic temporal compound stimulus to simultaneously identify colour and luminance specific signals in the human electroretinogram (ERG). Luminance and chromatic components are separated in the stimulus; the luminance modulation has twice the temporal frequency of the chromatic modulation. ERGs were recorded from four trichromatic and two dichromatic subjects (1 deuteranope and 1 protanope). At isoluminance, the fundamental (first harmonic) response was elicited by the chromatic component in the stimulus. The trichromatic ERGs possessed low-pass temporal tuning characteristics, reflecting the activity of parvocellular post-receptoral mechanisms. There was very little first harmonic response in the dichromats' ERGs. The second harmonic response was elicited by the luminance modulation in the compound stimulus and showed, in all subjects, band-pass temporal tuning characteristic of magnocellular activity. Thus it is possible to concurrently elicit ERG responses from the human retina which reflect processing in both chromatic and luminance pathways. As well as providing a clear demonstration of the parallel nature of chromatic and luminance processing in the human retina, the differences that exist between ERGs from trichromatic and dichromatic subjects point to the existence of interactions between afferent post-receptoral pathways that are in operation from the earliest stages of visual processing.
Collapse
Affiliation(s)
- Neil R A Parry
- University of Manchester, Academic Health Science Center, Faculty of Life Sciences, and Vision Science Centre, Manchester Royal Eye Hospital, Oxford Road, Manchester M13 9WH, UK.
| | | | | | | | | | | |
Collapse
|
64
|
Thomas C, Kveraga K, Huberle E, Karnath HO, Bar M. Enabling global processing in simultanagnosia by psychophysical biasing of visual pathways. ACTA ACUST UNITED AC 2012; 135:1578-85. [PMID: 22418740 DOI: 10.1093/brain/aws066] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A fundamental aspect of visual cognition is our disposition to see the 'forest before the trees'. However, damage to the posterior parietal cortex, a critical brain region along the dorsal visual pathway, can produce a neurological disorder called simultanagnosia, characterized by a debilitating inability to perceive the 'forest' but not the 'trees' (i.e. impaired global processing despite intact local processing). This impairment in perceiving the global shape persists even though the ventral visual pathway, the primary recognition pathway, is intact in these patients. Here, we enabled global processing in patients with simultanagnosia using a psychophysical technique, which allowed us to bias stimuli such that they are processed predominantly by the intact ventral visual pathway. Our findings reveal that the impairment in global processing that characterizes simultanagnosia stems from a disruption in the processing of low-spatial frequencies through the dorsal pathway. These findings advance our understanding of the relationship between visuospatial attention and perception and reveal the neural mechanism mediating the disposition to see the 'forest before the trees'.
Collapse
Affiliation(s)
- Cibu Thomas
- National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1365, USA.
| | | | | | | | | |
Collapse
|
65
|
Abstract
Comparisons of S- or prepotential activity, thought to derive from a retinal ganglion cell afferent, with the activity of relay cells of the lateral geniculate nucleus (LGN) have sometimes implied a loss, or leak, of visual information. The idea of the "leaky" relay cell is reconsidered in the present analysis of prepotential firing and LGN responses of color-opponent cells of the macaque LGN to stimuli varying in size, relative luminance, and spectral distribution. Above a threshold prepotential spike frequency, called the signal transfer threshold (STT), there is a range of more than 2 log units of test field luminance that has a 1:1 relationship between prepotential- and LGN-cell firing rates. Consequently, above this threshold, the LGN cell response can be viewed as an extension of prepotential firing (a "nonleaky relay cell"). The STT level decreased when the size of the stimulus increased beyond the classical receptive field center, indicating that the LGN cell is influenced by factors other than the prepotential input. For opponent ON cells, both the excitatory and the inhibitory response decreased similarly when the test field size increased beyond the center of the receptive field. These findings have consequences for the modeling of LGN cell responses and transmission of visual information, particularly for small fields. For instance, for LGN ON cells, information in the prepotential intensity-response curve for firing rates below the STT is left to be discriminated by OFF cells. Consequently, for a given light adaptation, the STT improves the separation of the response range of retinal ganglion cells into "complementary" ON and OFF pathways.
Collapse
|
66
|
Shevell SK. The Verriest Lecture: color lessons from space, time and motion. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2012; 29:A337-A345. [PMID: 22330398 PMCID: PMC3492961 DOI: 10.1364/josaa.29.00a337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The appearance of a chromatic stimulus depends on more than the wavelengths composing it. The scientific literature has countless examples showing that spatial and temporal features of light influence the colors we see. Studying chromatic stimuli that vary over space, time, or direction of motion has a further benefit beyond predicting color appearance: the unveiling of otherwise concealed neural processes of color vision. Spatial or temporal stimulus variation uncovers multiple mechanisms of brightness and color perception at distinct levels of the visual pathway. Spatial variation in chromaticity and luminance can change perceived three-dimensional shape, an example of chromatic signals that affect a percept other than color. Chromatic objects in motion expose the surprisingly weak link between the chromaticity of objects and their physical direction of motion, and the role of color in inducing an illusory motion direction. Space, time, and motion-color's colleagues-reveal the richness of chromatic neural processing.
Collapse
Affiliation(s)
- Steven K Shevell
- Psychology and Ophthalmology & Visual Science, Institute for Mind and Biology, The University of Chicago, 940 East 57th Street, Chicago, Illinois 60637, USA.
| |
Collapse
|
67
|
Cooper B, Sun H, Lee BB. Psychophysical and physiological responses to gratings with luminance and chromatic components of different spatial frequencies. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2012; 29:A314-A323. [PMID: 22330395 DOI: 10.1364/josaa.29.00a314] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gratings that contain luminance and chromatic components of different spatial frequencies were used to study the segregation of signals in luminance and chromatic pathways. Psychophysical detection and discrimination thresholds to these compound gratings, with luminance and chromatic components of the one either half or double the spatial frequency of the other, were measured in human observers. Spatial frequency tuning curves for detection of compound gratings followed the envelope of those for luminance and chromatic gratings. Different grating types were discriminable at detection threshold. Fourier analysis of physiological responses of macaque retinal ganglion cells to compound waveforms showed chromatic information to be restricted to the parvocellular pathway and luminance information to the magnocellular pathway. Taken together, the human psychophysical and macaque physiological data support the strict segregation of luminance and chromatic information in independent channels, with the magnocellular and parvocellular pathways, respectively, serving as likely the physiological substrates.
Collapse
Affiliation(s)
- Bonnie Cooper
- Graduate Center for Vision Research, SUNY College of Optometry, 33 West 42nd St., New York, New York 10036, USA.
| | | | | |
Collapse
|
68
|
Human vision with a lesion of the parvocellular pathway: an optic neuritis model for selective contrast sensitivity deficits with severe loss of midget ganglion cell function. Exp Brain Res 2011; 215:293-305. [DOI: 10.1007/s00221-011-2896-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 09/28/2011] [Indexed: 10/16/2022]
|
69
|
Martin PR, Blessing EM, Buzás P, Szmajda BA, Forte JD. Transmission of colour and acuity signals by parvocellular cells in marmoset monkeys. J Physiol 2011; 589:2795-812. [PMID: 21486786 DOI: 10.1113/jphysiol.2010.194076] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The red-green axis of colour vision evolved recently in primate evolutionary history. Signals serving red-green colour vision travel together with signals serving spatial vision, in the parvocellular (PC) division of the subcortical visual pathway. However, the question of whether receptive fields of PC pathway cells are specialized to transmit red-green colour signals remains unresolved. We addressed this question in single-cell recordings from the lateral geniculate nucleus of anaesthetized marmosets. Marmosets show a high proportion of dichromatic (red-green colour-blind) individuals, allowing spatial and colour tuning properties of PC cells to be directly compared in dichromatic and trichromatic visual systems. We measured spatial frequency tuning for sine gratings that provided selective stimulation of individual photoreceptor types. We found that in trichromatic marmosets, the foveal visual field representation is dominated by red-green colour-selective PC cells. Colour selectivity of PC cells is reduced at greater eccentricities, but cone inputs to centre and surround are biased to create more selectivity than predicted by a purely 'random wiring' model. Thus, one-to-one connections in the fovea are sufficient, but not necessary, to create colour-selective responses. The distribution of spatial tuning properties for achromatic stimuli shows almost complete overlap between PC cells recorded in dichromatic and trichromatic marmosets. These data indicate that transmission of red-green colour signals has been enabled by centre-surround receptive fields of PC cells, and has not altered the capacity of PC cells to serve high-acuity vision at high stimulus contrast.
Collapse
Affiliation(s)
- Paul R Martin
- Department of Ophthalmology and Save Sight Institute, University of Sydney Eye Hospital Campus, GPO Box 4337, Sydney, NSW 2001, Australia.
| | | | | | | | | |
Collapse
|
70
|
Lee BB. Visual pathways and psychophysical channels in the primate. J Physiol 2011; 589:41-7. [PMID: 20724364 PMCID: PMC3039258 DOI: 10.1113/jphysiol.2010.192658] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 08/16/2010] [Indexed: 11/08/2022] Open
Abstract
The main cell systems of the retina that provide input to the striate cortex are now well described, although certain aspects of their anatomy and physiology remain contentious. Under simple stimulus conditions and in a threshold context psychophysical performance can often be assigned to one or other of these systems, and an identification of psychophysical channels with afferent pathways is justifiable. However, results from psychophysical studies using more complex stimulus conditions are more difficult to relate to 'front end' channels, and it is more difficult to separate the physiological contributions of afferent pathways from those of cortical mechanisms, in particular the separation of dorsal and ventral streams.
Collapse
Affiliation(s)
- Barry B Lee
- SUNY Optometry, 33 W. 42nd St, New York, NY 10036, USA.
| |
Collapse
|
71
|
Field GD, Gauthier JL, Sher A, Greschner M, Machado TA, Jepson LH, Shlens J, Gunning DE, Mathieson K, Dabrowski W, Paninski L, Litke AM, Chichilnisky EJ. Functional connectivity in the retina at the resolution of photoreceptors. Nature 2010; 467:673-7. [PMID: 20930838 PMCID: PMC2953734 DOI: 10.1038/nature09424] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 08/11/2010] [Indexed: 11/09/2022]
Abstract
To understand a neural circuit requires knowing its connectivity. This paper reports measurements of functional connectivity between the input and ouput layers of the retina at single cell resolution and its implications for color vision. Multi-electrode technology was employed to record simultaneously from complete populations of the retinal ganglion cell types (midget, parasol, small bistratified) that transmit high-resolution visual signals to the brain. Fine-grained visual stimulation was used to identify the location, type and strength of the functional input of each cone photoreceptor to each ganglion cell. The populations of ON and OFF midget and parasol cells each sampled the complete population of long and middle wavelength sensitive cones. However, only OFF midget cells frequently received strong input from short wavelength sensitive cones. ON and OFF midget cells exhibited a small non-random tendency to selectively sample from either long or middle wavelength sensitive cones, to a degree not explained by clumping in the cone mosaic. These measurements reveal computations in a neural circuit at the elementary resolution of individual neurons.
Collapse
Affiliation(s)
- Greg D Field
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
The general principles of retinal organization are now well known. It may seem surprising that retinal organization in the primate, which has a complex visual behavioral repertoire, appears relatively simple. In this review, we primarily consider retinal structure and function in primate species. Photoreceptor distribution and connectivity are considered as are connectivity in the outer and inner retina. One key issue is the specificity of retinal connections; we suggest that the retina shows connectional specificity but this is seldom complete, and we consider here the functional consequences of imprecise wiring. Finally, we consider how retinal systems can be linked to psychophysical descriptions of different channels, chromatic and luminance, which are proposed to exist in the primate visual system.
Collapse
Affiliation(s)
- Barry B Lee
- SUNY College of Optometry, New York 10036, USA.
| | | | | |
Collapse
|
73
|
Lee BB, Sun H, Valberg A. Segregation of chromatic and luminance signals using a novel grating stimulus. J Physiol 2010; 589:59-73. [PMID: 20937716 DOI: 10.1113/jphysiol.2010.188862] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Segregation of chromatic and luminance signals in afferent pathways are investigated with a grating stimulus containing luminance and chromatic components of different spatial frequencies. Ganglion cell recordings were obtained from the retinae of macaques (Macaca fascicularis). Cell responses to the 'compound' gratings were compared to responses to standard chromatic and luminance gratings. Parvocellular (PC) pathway cell responses to compound and chromatic gratings were very similar, as were magnocellular (MC) cell responses to compound and luminance gratings. This was the case over a broad range of spatial and temporal frequencies and contrasts. In psychophysical experiments with human observers, discrimination between grating types was possible close to detection threshold. These results are consistent with chromatic and luminance structure in complex patterns being strictly localized in different afferent pathways. This novel stimulus may prove useful in identifying afferent inputs to cortical neurons.
Collapse
Affiliation(s)
- Barry B Lee
- SUNY Optometry, 33 W. 42nd St, New York, NY 10036, USA.
| | | | | |
Collapse
|
74
|
Hopf JM, Boehler CN, Schoenfeld MA, Heinze HJ, Tsotsos JK. The spatial profile of the focus of attention in visual search: insights from MEG recordings. Vision Res 2010; 50:1312-20. [PMID: 20117126 DOI: 10.1016/j.visres.2010.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
Abstract
The spatial focus of attention has been suggested to resemble a spotlight, a zoom-lens, a simple gradient, or even a more complex center-surround profile. Here we review evidence from neuromagnetic recordings indicating that the spatial profile is not fixed but depends on the particular perceptual demands of the attention task. We show that visual search requiring spatial scrutiny for target discrimination produces a zone of neural attenuation in the target's immediate surround, whereas search permitting target discrimination without spatial scrutiny is associated with a simple gradient. We provide new evidence indicating that increasing the demands on target discrimination without changing the spatial scale of discrimination does not influence surround attenuation, and that surround attenuation is also not influenced by the type of features involved in forward processing, that is whether the target location is defined by color or luminance contrast in visual search. An assessment of the time-course of attentional selection reveals that, when present, surround attenuation onsets with a substantial delay relative to the initial feed-forward sweep of processing in the visual system. The reported observations together suggest that the more complex center-surround profile arises as a consequence of top-down attentional selection in the visual system. The reviewed neuromagnetic evidence is discussed with respect to key notions of the Selective Tuning model of visual attention for which strong support is provided.
Collapse
Affiliation(s)
- Jens-Max Hopf
- Department of Neurology, Otto-von-Guericke University and Leibniz Institute for Neurobiology, Magdeburg 39120, Germany.
| | | | | | | | | |
Collapse
|
75
|
Abstract
PURPOSE It is widely accepted that pupil responses to visual stimuli are determined by the ambient illuminance, and recently it has been shown that changes in stimulus color also contributes to a pupillary control mechanism. However, the role of pupillary responses to chromatic stimuli is not clear. The aim of this study was to investigate how color and luminance signals contribute to the pupillary control mechanism. METHODS We measured pupillary iso-response contours in M-and L-cone contrast space. The iso-response contours in cone-contrast space have been determined to examine what mechanisms contribute to the pupillary pathway. The shapes of the iso-response contour change when different mechanisms determine the response. RESULTS It was shown that for all subjects, the pupillary iso-response contours form an ellipse with positive slope in cone-contrast space, indicating that the sensitivities to the chromatic stimuli are higher than those for the luminance stimuli. The pupil responds maximally to a grating that has a stronger L-cone modulation than the red-green isoluminant grating. CONCLUSIONS The sensitivity of the chromatic pathway, in terms of pupillary response, is three times larger than that of the luminance pathway, a property that might have utility in clinical applications.
Collapse
Affiliation(s)
- Sei-ichi Tsujimura
- Department of Bioengineering, Kagoshima University, 1-21-40 Koorimoto, Kagoshima 890-0065, Japan.
| | | | | |
Collapse
|
76
|
Lee BB, Sun H. The chromatic input to cells of the magnocellular pathway of primates. J Vis 2009; 9:15.1-18. [PMID: 19271925 DOI: 10.1167/9.2.15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 12/15/2008] [Indexed: 11/24/2022] Open
Abstract
Parasol ganglion cells of the magnocellular (MC) pathway form the physiological substrate of a luminance channel underlying photometric tasks, but they also respond weakly to red-green chromatic modulation. This may take the form of a first-harmonic (1F) response to chromatic modulation at low temporal frequencies, and/or a second-harmonic (2F) response that is more marked at higher frequencies. It is shown here that both these responses originate from a receptive field component that is intermediate in size between center and surround, i.e., a discrete, chromatic receptive field is superimposed upon an achromatic center-surround structure. Its size is similar to the receptive field (center plus surround) of midget, parvocellular cells from the same retinal eccentricity. A 2F MC cell chromatic response component is shown to be present under cone silent substitution conditions, when only the middle- (M) or long-wavelength (L) cone is modulated. This and other features suggest it is a rectified response to a chromatic signal rather than a consequence of non-linear summation of M- and L-cone signals. A scheme is presented which could give rise to such responses. It is suggested that this chromatic input to MC cells can enhance motion signals to red-green borders close to equiluminance.
Collapse
Affiliation(s)
- Barry B Lee
- SUNY College of Optometry, New York, NY 10036, USA.
| | | |
Collapse
|
77
|
The smooth monostratified ganglion cell: evidence for spatial diversity in the Y-cell pathway to the lateral geniculate nucleus and superior colliculus in the macaque monkey. J Neurosci 2009; 28:12654-71. [PMID: 19036959 DOI: 10.1523/jneurosci.2986-08.2008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the primate visual system approximately 20 morphologically distinct pathways originate from retinal ganglion cells and project in parallel to the lateral geniculate nucleus (LGN) and/or the superior colliculus. Understanding of the properties of these pathways and the significance of such extreme early pathway diversity for later visual processing is limited. In a companion study we found that the magnocellular LGN-projecting parasol ganglion cells also projected to the superior colliculus and showed Y-cell receptive field structure supporting the hypothesis that the parasol cells are analogous to the well studied alpha-Y cell of the cat's retina. We here identify a novel ganglion cell class, the smooth monostratified cells, that share many properties with the parasol cells. Smooth cells were retrogradely stained from tracer injections made into either the LGN or superior colliculus and formed inner-ON and outer-OFF populations with narrowly monostratified dendritic trees that surprisingly appeared to perfectly costratify with the dendrites of parasol cells. Also like parasol cells, smooth cells summed input from L- and M-cones, lacked measurable S-cone input, showed high spike discharge rates, high contrast and temporal sensitivity, and a Y-cell type nonlinear spatial summation. Smooth cells were distinguished from parasol cells however by smaller cell body and axon diameters but approximately 2 times larger dendritic tree and receptive field diameters that formed a regular but lower density mosaic organization. We suggest that the smooth and parasol populations may sample a common presynaptic circuitry but give rise to distinct, parallel achromatic spatial channels in the primate retinogeniculate pathway.
Collapse
|
78
|
Hashemi-Nezhad M, Blessing EM, Dreher B, Martin PR. Segregation of short-wavelength sensitive (“blue”) cone signals among neurons in the lateral geniculate nucleus and striate cortex of marmosets. Vision Res 2008; 48:2604-14. [DOI: 10.1016/j.visres.2008.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 11/25/2022]
|
79
|
Nieuwenhuis S, Jepma M, La Fors S, Olivers CNL. The role of the magnocellular and parvocellular pathways in the attentional blink. Brain Cogn 2008; 68:42-8. [PMID: 18359543 DOI: 10.1016/j.bandc.2008.02.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 02/19/2008] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
Abstract
The attentional blink refers to the transient impairment in perceiving the 2nd of two targets presented in close temporal proximity in a rapid serial visual presentation (RSVP) stream. The purpose of this study was to examine the effect on human attentional-blink performance of disrupting the function of the magnocellular pathway--a major visual-processing pathway specialized in temporal segregation. The study was motivated by recent theories that relate the attentional blink to the limited temporal resolution of attentional responses, and by a number of poorly understood empirical findings, including the effects on the attentional blink of luminance adaptation and distraction. The attentional blink was assessed for stimuli on a red background (Experiment 1), stimuli on an equiluminant background (Experiment 2), and following flicker or motion adaptation (Experiment 3), three psychophysical manipulations known to disrupt magnocellular function. Contrary to our expectations, the attentional blink was not affected by these manipulations, suggesting no specific relationship between the attentional blink and magnocellular and/or parvocellular processing.
Collapse
Affiliation(s)
- Sander Nieuwenhuis
- Department of Cognitive Psychology, Leiden University, Wassenaarseweg 52, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
80
|
Abstract
Neural models of retinal processing provide an important tool for analyzing retinal signals and their functional significance. However, it is here argued that in biological reality, retinal connectivity is unlikely to be as specific as ideal neural models might suggest. The retina is thought to provide functionally specific signals, but this specificity is unlikely to be anatomically complete. This is illustrated by examples of cone connectivity to macaque ganglion cells. For example, cells of the magnocellular pathway appear to avoid short-wavelength cone input, so that such input is negligible under normal conditions. However, there is anatomical, physiological, and psychophysical evidence that under special conditions, weak input may be revealed. Second, ideal models of how retinal information is centrally utilized have to take into account the biological reality of retinal signals. The stochastic nature of impulse trains modifies signal-to-noise ratio in unexpected ways. Also, non-linearities in cell responses make, for example, multiplexing of luminance and chromatic signals in the parvocellular pathway impracticable. The purpose of this analysis is to show than ideal neural models must confront an often more complex and nuanced physiological reality.
Collapse
|
81
|
Constructing isoluminant stimuli for word recognition research: A precautionary study. Behav Res Methods 2007; 39:494-501. [DOI: 10.3758/bf03193018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
82
|
Seitz AR, Nanez JE, Holloway SR, Watanabe T. Perceptual learning of motion leads to faster flicker perception. PLoS One 2006; 1:e28. [PMID: 17183655 PMCID: PMC1762365 DOI: 10.1371/journal.pone.0000028] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 10/05/2006] [Indexed: 11/30/2022] Open
Abstract
Critical flicker fusion thresholds (CFFT) describe when quick amplitude modulations of a light source become undetectable as the frequency of the modulation increases. The threshold at which CFF occurs has been shown to remain constant under repeated testing. Additionally, CFF thresholds are correlated with various measures of intelligence, and have been regarded by clinicians as a general measure of cortical processing capacity. For these reasons, CFF is used as a cognitive indicator in drug studies, as a measure of fatigue, and has been suggested as a diagnostic measure for various brain diseases. Here we report that CFFT increases dramatically in subjects who are trained with a motion-direction learning procedure. Control tasks demonstrate that CFFT changes are tightly coupled with improvements in discriminating the direction of motion stimuli, and are likely related to plasticity in low-level visual areas that are specialized to process motion signals. This plasticity is long-lasting and is retained for at least one year after training. Combined, these results show that CFFT relates to a specialized sensory process and bring into question that CFFT is a measure of high-level, or general, processes.
Collapse
Affiliation(s)
- Aaron R Seitz
- Department of Psychology, Boston University, Massachusetts, United States of America.
| | | | | | | |
Collapse
|
83
|
Zaidi Q, Li A. Three-dimensional shape perception from chromatic orientation flows. Vis Neurosci 2006; 23:323-30. [PMID: 16961963 PMCID: PMC2843152 DOI: 10.1017/s0952523806233170] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 01/03/2006] [Indexed: 11/06/2022]
Abstract
The role of chromatic information in 3-D shape perception is controversial. We resolve this controversy by showing that chromatic orientation flows are sufficient for accurate perception of 3-D shape. Chromatic flows required less cone contrast to convey shape than did achromatic flows, thus ruling out luminance artifacts as a problem. Luminance artifacts were also ruled out by a protanope's inability to see 3-D shape from chromatic flows. Since chromatic orientation flows can only be extracted from retinal images by neurons that are responsive to color modulations and selective for orientation, the psychophysical results also resolve the controversy over the existence of such neurons. In addition, we show that identification of 3-D shapes from chromatic flows can be masked by luminance modulations, indicating that it is subserved by orientation-tuned neurons sensitive to both chromatic and luminance modulations.
Collapse
Affiliation(s)
- Qasim Zaidi
- SUNY College of Optometry, Department of Vision Sciences, New York, New York 10036, USA.
| | | |
Collapse
|
84
|
Characterising mesopic spectral sensitivity from reaction times. Vision Res 2006; 46:4232-43. [PMID: 17014885 DOI: 10.1016/j.visres.2006.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2006] [Revised: 08/06/2006] [Accepted: 08/08/2006] [Indexed: 11/21/2022]
Abstract
The spectral sensitivity of the eye was investigated using reaction times to broadband chromatic stimuli over a range of background luminances. Relative sensitivity was determined from the nonlinear reaction time curve by converting reaction times to a linear measure that was independent of spectral sensitivity. Two models for mesopic spectral sensitivity were compared. The first was a linear combination of V(lambda) and V'(lambda), and the second included input from the L-M colour-opponent mechanism and the S-cones. The second model produced a significantly better fit to the data. The chromatic mechanisms appear to contribute to reaction time when there is an appreciable chromatic signal but luminance contrast is low.
Collapse
|
85
|
Sun H, Smithson HE, Zaidi Q, Lee BB. Specificity of cone inputs to macaque retinal ganglion cells. J Neurophysiol 2006; 95:837-49. [PMID: 16424455 PMCID: PMC2843159 DOI: 10.1152/jn.00714.2005] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The specificity of cone inputs to ganglion cells has implications for the development of retinal connections and the nature of information transmitted to higher areas of the brain. We introduce a rapid and precise method for measuring signs and magnitudes of cone inputs to visual neurons. Colors of stimuli are modulated around circumferences of three color planes in clockwise and counterclockwise directions. For each neuron, the projection of the preferred vector in each plane was estimated by averaging the response phases to clockwise and counterclockwise modulation. The signs and weights of cone inputs were derived directly from the preferred vectors. The efficiency of the method enables us to measure cone inputs at different temporal frequencies and short-wavelength-sensitive (S) cone adaptation levels. The results show that S-cone inputs to the parvocellular and magnocellular ganglion cells are negligible, which implies underlying connectional specificity in the retinal circuitry.
Collapse
Affiliation(s)
- Hao Sun
- State University of New York, State College of Optometry, New York, NY 10036, USA.
| | | | | | | |
Collapse
|
86
|
Shapley R. Specificity of cone connections in the retina and color vision. Focus on "specificity of cone inputs to macaque retinal ganglion cells". J Neurophysiol 2006; 95:587-8. [PMID: 16424450 PMCID: PMC2598394 DOI: 10.1152/jn.01054.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
87
|
Rudvin I, Valberg A. Visual evoked potentials for red–green gratings reversing at
different temporal frequencies: Asymmetries with respect to
isoluminance. Vis Neurosci 2006; 22:735-47. [PMID: 16469184 DOI: 10.1017/s0952523805226056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 04/26/2005] [Indexed: 11/05/2022]
Abstract
Human visual evoked potentials (VEPs) were recorded for abrupt
reversals of 2 cycles/deg (c/deg) square-wave gratings combining
high red–green contrast with different levels of luminance contrast.
Response characteristics—2nd harmonic amplitudes and peak latencies
as a function of luminance contrast—were compared for four different
reversal rates ranging from 6.25 Hz to 12.5 Hz. At every reversal
frequency, the VEP amplitude and latency plots were nonsymmetrical with
respect to isoluminance. The amplitude dropped to a minimum within a
region of rapid phase change, always at a red–green luminance
contrast for which the green color had the higher luminance, at about 40%
or 50% Michelson luminance contrast. The rapid phase shift around this
contrast suggested a sudden change in the relative impact of VEP
generators with different latencies, possibly dominated by parvocellular
or magnocellular input. The most prominent VEP waveform through most of
the luminance contrast range, P110, is interpreted in terms of a
parvo-mediated response that is attenuated with increasing reversal
frequency. Contrast-dependent changes in the P110 amplitude appear to be
responsible for the VEP asymmetries reported here.
Collapse
Affiliation(s)
- Inger Rudvin
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | | |
Collapse
|
88
|
Lennie P, Movshon JA. Coding of color and form in the geniculostriate visual pathway (invited review). JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2005; 22:2013-33. [PMID: 16277273 DOI: 10.1364/josaa.22.002013] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We review how neurons in the principal pathway connecting the retina to the visual cortex represent information about the chromatic and spatial characteristics of the retinal image. Our examination focuses particularly on individual neurons: what are their visual properties, how might these properties arise, what do these properties tell us about visual signal transformations, and how might these properties be expressed in perception? Our discussion is inclined toward studies on old-world monkeys and where possible emphasizes quantitative work that has led to or illuminates models of visual signal processing.
Collapse
Affiliation(s)
- Peter Lennie
- Center for Neural Science, New York University, New York, New York 10003, USA.
| | | |
Collapse
|
89
|
Gunther KL, Dobkins KR. Induction effects for heterochromatic brightness matching, heterochromatic flicker photometry, and minimally distinct border: implications for the neural mechanisms underlying induction. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2005; 22:2182-96. [PMID: 16277287 DOI: 10.1364/josaa.22.002182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Brightness induction refers to the finding that the apparent brightness of a stimulus changes when surrounded by a black versus a white stimulus. In the current study, we investigated the effects of black/white surrounding stimuli on settings made between red and green stimuli on three different tasks: heterochromatic brightness matching (HBM), heterochromatic flicker photometry (HFP), and minimally distinct border (MDB). For HBM, subjects varied the relative luminance between the red and green stimuli so that the brightness of the two colors appeared equal. For the two other tasks, matches were made based on minimizing red/green flicker (HFP) or the saliency of a red/green border (MDB). For all three tasks, the presence of black/white surrounding stimuli significantly altered red/green settings, demonstrating the existence of induction effects. These results are discussed in terms of which underlying color pathways (L+ M versus L-M) may contribute to induction effects for the different tasks.
Collapse
Affiliation(s)
- Karen L Gunther
- Department of Neuroscience, Oberlin College, Ohio 44074, USA
| | | |
Collapse
|
90
|
Kuriki I, Sadamoto K, Takeda T. MEG recording from the human ventro-occipital cortex in response to
isoluminant color stimulation. Vis Neurosci 2005; 22:283-93. [PMID: 16079004 DOI: 10.1017/s0952523805223040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 02/23/2005] [Indexed: 11/06/2022]
Abstract
In contrast to PET and fMRI studies, color-selective responses from
the ventro-occipital area have rarely been reported in MEG studies. We
tried to minimize the stimulation to all areas in the visual system except
the color-processing ones by using a color space based on psychophysical
and physiological knowledge in order to maximize the signal-to-noise ratio
for MEG responses from the ventro-occipital area. MEG obtained from long
intermittent reversals (2.0–3.5 s) of isoluminant chromatic gratings
showed two major peaks at the latencies of approximately 100 and 150 ms.
The estimated location of the equivalent-current dipole for response at
100-ms latency was in the calcarine sulcus and that of the dipole for the
response at 150 ms was in the collateral sulcus in the ventro-occipital
area. The response around 150 ms was uniquely observed in MEG elicited by
chromatic reversals. The average of lags between MEG responses from the
calcarine sulcus and ventro-occipital area was 43 ms, which suggests
sequential processing of color information across the visual cortices.
Collapse
Affiliation(s)
- Ichiro Kuriki
- Human and Information Science Laboratory, NTT Communication Science Laboratories, Kanagawa, Japan.
| | | | | |
Collapse
|
91
|
Sun H, Lee BB. A single mechanism for both luminance and chromatic grating vernier tasks: evidence from temporal summation. Vis Neurosci 2005; 21:315-20. [PMID: 15518206 DOI: 10.1017/s0952523804213232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Vernier thresholds are determined by luminance rather than chromatic contrast when both are present in vernier targets. The role of luminance and chromatic mechanisms in vernier performance under equiluminant conditions remains uncertain. Temporal summation functions for vernier thresholds with luminance and red-green equiluminant gratings were compared to those for detection thresholds with similar stimuli. Vernier thresholds showed similar temporal summation for luminance and chromatic gratings, which is consistent with a single mechanism underlying vernier performance in the two conditions. However, detection thresholds showed a shorter temporal summation duration for luminance gratings than for chromatic gratings, which suggests that two different mechanisms underlie detection thresholds. Analysis of physiological data supports the hypothesis that the frequency-doubled response of ganglion cells in the magnocellular pathway can provide accurate spatiotemporal information for vernier performance at equiluminance.
Collapse
Affiliation(s)
- Hao Sun
- SUNY State College of Optometry, New York, NY 10036, USA.
| | | |
Collapse
|
92
|
Martin PR. Colour through the thalamus. Clin Exp Optom 2004; 87:249-57. [PMID: 15312029 DOI: 10.1111/j.1444-0938.2004.tb05055.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 06/25/2004] [Accepted: 06/29/2004] [Indexed: 11/29/2022] Open
Abstract
Visual perception in humans and other primates depends on the retino-thalamo-cortical pathway. This pathway begins with retinal ganglion cells, which have axonal terminations in the lateral geniculate nucleus (LGN) of the thalamus. Each ganglion cell axon provides input to one or more LGN relay neurones and, in turn, nearly all the LGN relay neurones project to the primary visual cortex. Thus, this pathway forms the dominant functional input to cortical mechanisms for colour vision, as well as for other aspects of conscious visual perception. In this review, recent progress in understanding the transmission of signals for colour vision through the LGN is summarised, with emphasis on studies which provide links between function and structure.
Collapse
Affiliation(s)
- Paul R Martin
- National Vision Research Institute of Australia, Carlton, VIC, Australia
| |
Collapse
|
93
|
Lee BB. Paths to colour in the retina. Clin Exp Optom 2004; 87:239-48. [PMID: 15312028 DOI: 10.1111/j.1444-0938.2004.tb05054.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 06/15/2004] [Accepted: 06/20/2004] [Indexed: 11/27/2022] Open
Abstract
The description of colour pathways in the primate retina has become clearer within the past decade. This review summarises current views on the pathways subserving colour vision in the primate retina, beginning in the receptors and outer retina and leading to the mechanisms in the inner retina that add and subtract the receptor signals. Although the main features of colour pathways are now well-defined, there remains uncertainty about some of the wiring details. In particular, the question of how much connectional specificity is present is unresolved. Finally, means of isolating these pathways by psychophysical tests are considered; some current tests are likely to be less specific than hoped.
Collapse
Affiliation(s)
- Barry B Lee
- State University of New York, College of Optometry, New York 10036, USA
| |
Collapse
|
94
|
Smith VC, Pokorny J. Interactions of chromaticity and luminance in edge identification depend on chromaticity. Vis Neurosci 2004; 21:377-82. [PMID: 15518217 DOI: 10.1017/s0952523804213220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The goal of this work was to study interactions of chromaticity and luminance in edge identification. Two horizontal spatial sawtooth patterns, one with positive and the other with negative harmonics, were compared in a two-alternative forced-choice (2-AFC) procedure. The observer identified which pattern had sharp upper or lower edges. The fundamental frequency was 2 cycles/deg (cpd), with 5 cycles presented in a 2.5-deg square field. The pattern was presented as a 1-s raised temporal cosine, replacing part of an 8-deg background. Stimuli were specified in a cone troland (l, s, Y) chromaticity space, with correction for individual equiluminance at a nominal 115 td, and individual tritan direction. A preliminary set of interleaved staircases established edge identification for the six directions of the (l, s, Y) space. Three compound stimuli combining two orthogonal directions were chosen and included with the end-points in five randomly interleaved staircases. For combinations of Y with l-chromaticity, or l- with s-chromaticity, probability summation was observed. Combinations of Y with s-chromaticity revealed opponency. Data for +s, +Y and -s, -Y were subadditive; data for +s, -Y and -s, +Y were additive. Control studies using detection rather than edge identification revealed probability summation for all combinations. Luminance edges did not enhance stimuli with l-chromaticities. There was an interaction of luminance edges with s-chromaticities. Dim "blues" and bright "yellows" showed linear summation. Bright "blues" and dim "yellows" showed opponency.
Collapse
Affiliation(s)
- Vivianne C Smith
- Visual Science Laboratories, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
95
|
Rucker FJ, Kruger PB. Accommodation responses to stimuli in cone contrast space. Vision Res 2004; 44:2931-44. [PMID: 15380997 DOI: 10.1016/j.visres.2004.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Revised: 11/06/2003] [Indexed: 10/26/2022]
Abstract
The aim was to identify the cone contributions and pathways for reflex accommodation. Twelve illumination conditions were used to test specified locations in cone-contrast space. Accommodation was monitored continuously in a Badal optometer while the grating stimulus (2.2 c/d sine-wave; 0.27 modulation) moved sinusoidally (0.195 Hz) towards and away from the eye from a mean position of 2.00 D (+/-1.00 D). Mean accommodation level and dynamic gain and phase at 0.195 Hz were calculated. Mean accommodation level varied significantly when the long- and middle-wavelength cone contrast ratio was altered in both the luminance and chromatic quadrants of cone-contrast space. This experiment indicates that L- and M-cones contribute to luminance and chromatic signals that produce the accommodation response, most likely through magno-cellular and parvo-cellular pathways, respectively. The L:M cone weighting to the luminance pathway that mediates accommodation is 1.63:1. The amplitude and direction of the response depends on changes in chromatic contrast and luminance contrast signals that result from longitudinal chromatic aberration and defocus of the image.
Collapse
Affiliation(s)
- Frances J Rucker
- Schnurmacher Institute for Vision Research, State University of New York, State College of Optometry, 33 West 42nd Street, NY 10036-8003, USA.
| | | |
Collapse
|
96
|
Li W, DeVries SH. Separate blue and green cone networks in the mammalian retina. Nat Neurosci 2004; 7:751-6. [PMID: 15208635 DOI: 10.1038/nn1275] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Accepted: 05/13/2004] [Indexed: 11/09/2022]
Abstract
The distinct absorbance spectra of the cone photopigments form the basis of color vision, but ultrastructural and physiological evidence shows that mammalian cones are electrically coupled. Coupling between cones of the same spectral type should average voltage noise in adjacent photoreceptors and improve the ability to resolve low-contrast spatial patterns. However, indiscriminate coupling between spectral types could compromise color vision by smearing chromatic information across channels. Here we show, by measuring the junctional conductance between green-green and blue-green cone pairs in slices from the dichromatic ground-squirrel retina, that green-green cone pairs are routinely coupled with an average conductance of 220 pS, whereas coupling is undetectable in blue-green cone pairs. Together with a lack of tracer coupling and the selective localization of connexin proteins, our results show that signals in blue and green cones are processed separately in the photoreceptor layer.
Collapse
Affiliation(s)
- Wei Li
- Department of Ophthalmology, Northwestern University Medical School, 303 East Chicago Avenue, Tarry 5-715, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
97
|
Diller L, Packer OS, Verweij J, McMahon MJ, Williams DR, Dacey DM. L and M cone contributions to the midget and parasol ganglion cell receptive fields of macaque monkey retina. J Neurosci 2004; 24:1079-88. [PMID: 14762126 PMCID: PMC6793593 DOI: 10.1523/jneurosci.3828-03.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Analysis of cone inputs to primate parvocellular ganglion cells suggests that red-green spectral opponency results when connections segregate input from long wavelength (L) or middle wavelength (M) sensitive cones to receptive field centers and surrounds. However, selective circuitry is not an obvious retinal feature. Rather, cone receptive field surrounds and H1 horizontal cells get mixed L and M cone input, likely indiscriminately sampled from the randomly arranged cones of the photoreceptor mosaic. Red-green spectral opponency is consistent with random connections in central retina where the mixed cone ganglion cell surround is opposed by a single cone input to the receptive field center, but not in peripheral retina where centers get multiple cone inputs. The selective and random connection hypotheses might be reconciled if cone type selective circuitry existed in inner retina. If so, the segregation of L and M cone inputs to receptive field centers and surrounds would increase from horizontal to ganglion cell, and opponency would remain strong in peripheral retina. We measured the relative strengths of L and M cone inputs to H1 horizontal cells and parasol and midget ganglion cells by recording intracellular physiological responses from morphologically identified neurons in an in vitro preparation of the macaque monkey retina. The relative strength of L and M cone inputs to H1 and ganglion cells at the same locations matched closely. Peripheral midget cells were nonopponent. These results suggest that peripheral H1 and ganglion cells inherit their L and M cone inputs from the photoreceptor mosaic unmodified by selective circuitry.
Collapse
Affiliation(s)
- Lisa Diller
- Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
98
|
Silveira LC, Saito CA, Lee BB, Kremers J, da Silva Filho M, Kilavik BE, Yamada ES, Perry VH. Morphology and physiology of primate M- and P-cells. PROGRESS IN BRAIN RESEARCH 2004; 144:21-46. [PMID: 14650838 DOI: 10.1016/s0079-6123(03)14402-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Catarrhines and platyrrhines, the so-called Old- and New-World anthropoids, have different cone photopigments. Postreceptoral mechanisms must have co-evolved with the receptors to provide trichromatic color vision, and so it is important to compare postreceptoral processes in these two primate groups, both from anatomical and physiological perspectives. The morphology of ganglion cells has been studied in the retina of catarrhines such as the diurnal and trichromatic Macaca, as well as platyrrhines such as the diurnal, di- or trichromatic Cebus, and the nocturnal, monochromatic Aotus. Diurnal platyrrhines, both di- and trichromats, have ganglion cell classes very similar to those found in catarrhines: M (parasol), P (midget), small-field bistratified, and several classes of wide-field ganglion cells. In the fovea of all diurnal anthropoids, P-cell dendritic trees contact single midget bipolars, which contact single cones. The Aotus retina has far fewer cones than diurnal species, but M- and P-cells are similar to those in diurnal primates although of larger size. As in diurnal anthropoids, in the Aotus, the majority of midget bipolar cells, found in the central 2 mm of eccentricity, receive input from a single cone and the sizes of their axon terminals match the sizes of P-cell dendritic fields in the same region. The visual responses of retinal ganglion cells of these species have been studied using single-unit electrophysiological recordings. Recordings from retinal ganglion cells in Cebus and Aotus showed that they have very similar properties as those in the macaque, except that P-cells of mono- and dichromatic animals lack cone opponency. Whatever the original role of the M- and P-cells was, they are likely to have evolved prior to the divergence of catarrhines and platyrrhines. M- and P-cell systems thus appear to be strongly conserved in the various primate species. The reasons for this may lie in the roles of these systems for both achromatic and chromatic vision.
Collapse
Affiliation(s)
- Luiz Carlos Silveira
- Department of Physiology, Biological Science Center, Federal University of Pará, 66075-900 Belém, Pará, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
Color vision starts with the absorption of light in the retinal cone photoreceptors, which transduce electromagnetic energy into electrical voltages. These voltages are transformed into action potentials by a complicated network of cells in the retina. The information is sent to the visual cortex via the lateral geniculate nucleus (LGN) in three separate color-opponent channels that have been characterized psychophysically, physiologically, and computationally. The properties of cells in the retina and LGN account for a surprisingly large body of psychophysical literature. This suggests that several fundamental computations involved in color perception occur at early levels of processing. In the cortex, information from the three retino-geniculate channels is combined to enable perception of a large variety of different hues. Furthermore, recent evidence suggests that color analysis and coding cannot be separated from the analysis and coding of other visual attributes such as form and motion. Though there are some brain areas that are more sensitive to color than others, color vision emerges through the combined activity of neurons in many different areas.
Collapse
Affiliation(s)
- Karl R Gegenfurtner
- Department of Psychology, Giessen University, Otto-Behaghel-Strasse 10, 35394 Giessen, Germany.
| | | |
Collapse
|
100
|
Affiliation(s)
- Karl R Gegenfurtner
- Department of Psychology, Giessen University, Otto-Behaghel-Strasse 10, 35394 Giessen, Germany.
| |
Collapse
|