51
|
Keeler BE, Baran CA, Brewer KL, Clemens S. Increased excitability of spinal pain reflexes and altered frequency-dependent modulation in the dopamine D3-receptor knockout mouse. Exp Neurol 2012; 238:273-83. [DOI: 10.1016/j.expneurol.2012.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/22/2012] [Accepted: 09/09/2012] [Indexed: 12/29/2022]
|
52
|
Viisanen H, Ansah OB, Pertovaara A. The role of the dopamine D2 receptor in descending control of pain induced by motor cortex stimulation in the neuropathic rat. Brain Res Bull 2012; 89:133-43. [DOI: 10.1016/j.brainresbull.2012.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 12/31/2022]
|
53
|
|
54
|
Kawamoto K, Otsuguro K, Ishizuka M, Ito S. Inhibitory effects of dopamine on spinal synaptic transmission via dopamine D1-like receptors in neonatal rats. Br J Pharmacol 2012; 166:788-800. [PMID: 22168428 DOI: 10.1111/j.1476-5381.2011.01815.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Dopamine released from the endings of descending dopaminergic nerve fibres in the spinal cord may be involved in modulating functions such as locomotion and nociception. Here, we examined the effects of dopamine on spinal synaptic transmissions in rats. EXPERIMENTAL APPROACH Spinal reflex potentials, monosynaptic reflex potential (MSR) and slow ventral root potential (sVRP), were measured in the isolated spinal cord of the neonatal rat. Dopamine release was measured by HPLC. KEY RESULTS Dopamine at lower concentrations (<1 µM) depressed sVRP, which is a C fibre-evoked polysynaptic response and believed to reflect nociceptive transmission. At higher concentrations (>1 µM), in addition to a potent sVRP depression, dopamine depolarized baseline potential and slightly depressed MSR. Depression of sVRP by dopamine was partially reversed by dopamine D(1) -like but not by D(2) -like receptor antagonists. SKF83959 and SKF81297, D(1) -like receptor agonists, and methamphetamine, an endogenous dopamine releaser, also caused the inhibition of sVRP. Methamphetamine also depressed MSR, which was inhibited by ketanserin, a 5-HT(2A/2C) receptor antagonist. Methamphetamine induced the release of dopamine and 5-HT from spinal cords, indicating that the release of endogenous dopamine and 5-HT depresses sVRP and MSR respectively. CONCLUSION AND IMPLICATIONS These results suggested that dopamine at lower concentrations preferentially inhibited sVRP, which is mediated via dopamine D(1) -like and other unidentified receptors. The dopamine-evoked depression is involved in modulating the spinal functions by the descending dopaminergic pathways.
Collapse
Affiliation(s)
- K Kawamoto
- Laboratories of Pharmacology Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
55
|
SCHOMBURG ED, DIBAJ P, STEFFENS H. Role of L-DOPA in Spinal Nociceptive Reflex Activity: Higher Sensitivity of Aδ Versus C Fibre-Evoked Nociceptive Reflexes to L-DOPA. Physiol Res 2011; 60:701-3. [DOI: 10.33549/physiolres.932104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The role of L-DOPA in spinal nociceptive reflex activity has been re-evaluated. In high spinal cats, with supraspinal loops being excluded, the onset of reflex facilitation induced by noxious radiant heat is delayed after injection of L-DOPA by 4 to 10 s, i.e. the early component of nociceptive reflex facilitation is blocked, while the late component persisted. Further investigations have shown that the early component of reflex facilitation induced by noxious radiant heat is mediated by Aδ-fibres and the late component by C-fibres. Therefore, it can be assumed that L-DOPA, like opioids, preferentially blocks the transmission in nociceptive reflex pathways from Aδ-fibres.
Collapse
Affiliation(s)
- E. D. SCHOMBURG
- Institute of Physiology, University of Göttingen, Göttingen, Germany
| | | | | |
Collapse
|
56
|
Tonic and phasic descending dopaminergic controls of nociceptive transmission in the medullary dorsal horn. Pain 2011; 152:1821-1831. [DOI: 10.1016/j.pain.2011.03.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 12/27/2022]
|
57
|
Hache G, Coudore F, Gardier AM, Guiard BP. Monoaminergic Antidepressants in the Relief of Pain: Potential Therapeutic Utility of Triple Reuptake Inhibitors (TRIs). Pharmaceuticals (Basel) 2011. [PMCID: PMC4053958 DOI: 10.3390/ph4020285] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Over 75% of depressed patients suffer from painful symptoms predicting a greater severity and a less favorable outcome of depression. Imaging, anatomical and functional studies have demonstrated the existence of common brain structures, neuronal pathways and neurotransmitters in depression and pain. In particular, the ascending serotonergic and noradrenergic pathways originating from the raphe nuclei and the locus coeruleus; respectively, send projections to the limbic system. Such pathways control many of the psychological functions that are disturbed in depression and in the perception of pain. On the other hand, the descending pathways, from monoaminergic nuclei to the spinal cord, are specifically implicated in the inhibition of nociception providing rationale for the use of serotonin (5-HT) and/or norepinephrine (NE) reuptake inhibitors (SSRIs, NRIs, SNRIs), in the relief of pain. Compelling evidence suggests that dopamine (DA) is also involved in the pathophysiology and treatment of depression. Indeed, recent insights have demonstrated a central role for DA in analgesia through an action at both the spinal and suprasinal levels including brain regions such as the periaqueductal grey (PAG), the thalamus, the basal ganglia and the limbic system. In this context, dopaminergic antidepressants (i.e., containing dopaminergic activity), such as bupropion, nomifensine and more recently triple reuptake inhibitors (TRIs), might represent new promising therapeutic tools in the treatment of painful symptoms with depression. Nevertheless, whether the addition of the dopaminergic component produces more robust effects than single- or dual-acting agents, has yet to be demonstrated. This article reviews the main pathways regulating pain transmission in relation with the monoaminergic systems. It then focuses on the current knowledge regarding the in vivo pharmacological properties and mechanism of action of monoaminergic antidepressants including SSRIs, NRIs, SNRIs and TRIs. Finally, a synthesis of the preclinical studies supporting the efficacy of these antidepressants in analgesia is also addressed in order to highlight the relative contribution of 5-HT, NE and DA to nociception.
Collapse
Affiliation(s)
- Guillaume Hache
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: 011-331-46-83-53-61
| | | | | | | |
Collapse
|
58
|
Yin H, Park SA, Han SK, Park SJ. Effects of 5-hydroxytryptamine on substantia gelatinosa neurons of the trigeminal subnucleus caudalis in immature mice. Brain Res 2010; 1368:91-101. [PMID: 20971089 DOI: 10.1016/j.brainres.2010.10.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 10/11/2010] [Accepted: 10/14/2010] [Indexed: 12/21/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is involved in the descending modulation of nociceptive transmission in the spinal dorsal horn. The trigeminal subnucleus caudalis (Vc; medullary dorsal horn) processes nociceptive input from the orofacial region, and 5-HT-containing axons are numerous in the superficial layers of the Vc. This study examined the actions of 5-HT on the substantia gelatinosa (SG) neurons of the Vc, using gramicidin-perforated patch-clamp recording in brainstem slice preparations from immature mice. In order to clarify the possible mechanisms underlying 5-HT actions in the SG of the Vc, the direct membrane effects of 5-HT and effects of 5-HT receptor subtype agonists were examined. 5-HT induced a hyperpolarization in the majority (64/115, 56%) of the SG neurons tested. Thirty nine (34%) SG neurons showed no response, and 12 (10%) neurons responded with depolarization. The hyperpolarizing response to 5-HT was concentration-dependent (0.1-30 μM; n=7), not desensitized by repeated application (n=22), and significantly attenuated by Ba(2+) (K(+) channel blocker; n=8). The 5-HT-induced hyperpolarization was maintained in the presence of TTX (Na(+) channel blocker), CNQX (non-NMDA glutamate receptor antagonist), AP5 (NMDA glutamate receptor antagonist), picrotoxin (GABA(A) receptor antagonist), and strychnine (glycine receptor antagonist), indicating direct postsynaptic action of 5-HT on SG neurons (n=7). The 5-HT-induced hyperpolarizing effects were mimicked by 8-OH-DPAT (5-HT(1A) receptor agonist) and α-methyl-5-HT (5-HT(2) receptor agonist) and blocked by WAY-100635 (5-HT(1A) receptor antagonist) and ketanserin (5-HT(2) receptor antagonist). Single-cell RT-PCR also revealed the presence of mRNA for 5-HT(1A) and 5-HT(2C) subtypes in the SG neurons. These results suggest that 5-HT acts directly on SG neurons and 5-HT-induced hyperpolarization is mediated, in part, by 5-HT(1A) receptors and 5-HT(2) receptors, as well as by the activation of K(+) channels, indicating an important role for 5-HT in the modulation of orofacial nociceptive processing at the level of the SG of the Vc in mice.
Collapse
Affiliation(s)
- Hua Yin
- Department of Oral Physiology and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea
| | | | | | | |
Collapse
|
59
|
Taniguchi W, Nakatsuka T, Miyazaki N, Yamada H, Takeda D, Fujita T, Kumamoto E, Yoshida M. In vivo patch-clamp analysis of dopaminergic antinociceptive actions on substantia gelatinosa neurons in the spinal cord. Pain 2010; 152:95-105. [PMID: 21050660 DOI: 10.1016/j.pain.2010.09.034] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 09/21/2010] [Accepted: 09/29/2010] [Indexed: 10/18/2022]
Abstract
To elucidate the mechanisms of antinociception mediated by the dopaminergic descending pathway in the spinal cord, we investigated the actions of dopamine (DA) on substantia gelatinosa (SG) neurons by in vivo whole-cell patch-clamp methods. In the voltage-clamp mode (V(H)=-70mV), the application of DA induced outward currents in about 70% of SG neurons tested. DA-induced outward current was observed in the presence of either Na(+) channel blocker, tetrodotoxin (TTX) or a non-NMDA receptor antagonist, CNQX, and was inhibited by either GDP-β-S in the pipette solution or by perfusion of a non-selective K(+) channel blocker, Ba(2+). The DA-induced outward currents were mimicked by a selective D2-like receptor agonist, quinpirole and attenuated by a selective D2-like receptor antagonist, sulpiride, indicating that the DA-induced outward current is mediated by G-protein-activated K(+) channels through D2-like receptors. DA significantly suppressed the frequency and amplitude of glutamatergic spontaneous excitatory postsynaptic currents (EPSCs). DA also significantly decreased the frequency of miniature EPSCs in the presence of TTX. These results suggest that DA has both presynaptic and postsynaptic inhibitory actions on synaptic transmission in SG neurons. We showed that DA produced direct inhibitory effects in SG neurons to both noxious and innocuous stimuli to the skin. Furthermore, electrical stimulation of dopaminergic diencephalic spinal neurons (A11), which project to the spinal cord, induced outward current and suppressed the frequency and amplitude of EPSCs. We conclude that the dopaminergic descending pathway has an antinociceptive effect via D2-like receptors on SG neurons in the spinal cord.
Collapse
Affiliation(s)
- Wataru Taniguchi
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama 641-810, Japan Pain Research Center, Kansai University of Health Sciences, Kumatori, Osaka 590-0482, Japan Department of Physiology, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Neuroanatomical study of the A11 diencephalospinal pathway in the non-human primate. PLoS One 2010; 5:e13306. [PMID: 20967255 PMCID: PMC2954154 DOI: 10.1371/journal.pone.0013306] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 09/21/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The A11 diencephalospinal pathway is crucial for sensorimotor integration and pain control at the spinal cord level. When disrupted, it is thought to be involved in numerous painful conditions such as restless legs syndrome and migraine. Its anatomical organization, however, remains largely unknown in the non-human primate (NHP). We therefore characterized the anatomy of this pathway in the NHP. METHODS AND FINDINGS In situ hybridization of spinal dopamine receptors showed that D1 receptor mRNA is absent while D2 and D5 receptor mRNAs are mainly expressed in the dorsal horn and D3 receptor mRNA in both the dorsal and ventral horns. Unilateral injections of the retrograde tracer Fluoro-Gold (FG) into the cervical spinal enlargement labeled A11 hypothalamic neurons quasi-exclusively among dopamine areas. Detailed immunohistochemical analysis suggested that these FG-labeled A11 neurons are tyrosine hydroxylase-positive but dopa-decarboxylase and dopamine transporter-negative, suggestive of a L-DOPAergic nucleus. Stereological cell count of A11 neurons revealed that this group is composed by 4002±501 neurons per side. A 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) intoxication with subsequent development of a parkinsonian syndrome produced a 50% neuronal cell loss in the A11 group. CONCLUSION The diencephalic A11 area could be the major source of L-DOPA in the NHP spinal cord, where it may play a role in the modulation of sensorimotor integration through D2 and D3 receptors either directly or indirectly via dopamine formation in spinal dopa-decarboxylase-positives cells.
Collapse
|
61
|
Levodopa analgesia in experimental neuropathic pain. Brain Res Bull 2010; 83:304-9. [PMID: 20813171 DOI: 10.1016/j.brainresbull.2010.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/19/2010] [Accepted: 08/24/2010] [Indexed: 01/22/2023]
Abstract
Levodopa has been shown to produce analgesia in various clinical and experimental settings, but its use for chronic pain treatment has not been established. We have undertaken a study of the antiallodynic actions of levodopa in a rat model of painful mononeuropathy. When administered systemically, levodopa produced a decrease in tactile and cold allodynia lasting at least 3h. Direct intrathecal (i.t.) levodopa injection at lumbar levels produced a similar, though shorter, antiallodynic effect. This effect was blocked by the D2-type receptor antagonist sulpiride, which supports the involvement of the spinal dopaminergic system in the analgesic action of levodopa on neuropathic pain. These results provide experimental support on the antiallodynic effect of levodopa in neuropathic pain and suggest that at least part of the analgesic action takes place in the spinal cord and involves dopaminergic D2-type receptors.
Collapse
|
62
|
Choi IS, Cho JH, Jang IS. Dopamine inhibition of glycine release in the rat trigeminal nucleus pars caudalis: possible involvement of trace amine receptors. J Neurochem 2010; 114:1639-50. [DOI: 10.1111/j.1471-4159.2010.06870.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
63
|
Wu HC, Chiu CH, Tung KC, Chen GD, Peng HY, Lin TB. Dopaminergic D2 receptors activate PKA to inhibit spinal pelvic-urethra reflex in rats. Am J Physiol Renal Physiol 2010; 299:F681-6. [PMID: 20554643 DOI: 10.1152/ajprenal.00090.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To clarify the role of descending dopaminergic innervation in reflexive urethral closure, the impacts of dopaminergic D2 receptor (DR2)-selective agonists and antagonists on repetitive stimulation-induced pelvic-to-urethra spinal reflex potentiation (SRP) were tested using in vivo rat preparations. Pelvic afferent nerve test stimulation (TS; 1 pulse/30 s for 30 min) evoked baseline reflex activity with single spikes in the external urethral sphincter electromyogram (EUSE), whereas, repetitive stimulation (RS; 1 pulse/s for 30 min) induced SRP. Intrathecal application of quinelorane dihydrochloride (Q110; 10, 30, and 100 nM, 10 μl, a selective DR2 agonist) dose dependently inhibited the RS-induced SRP. Pretreatment with L135 (100 nM, 10 μL it, a selective DR2 antagonist) antagonized the Q110-dependent inhibition (100 nM, 10 μl it). Intrathecal AMPA (10 μM, 10 μl, a selective glutamatergic AMPA receptor agonist), and NMDA (10 μM, 10 μl, a selective glutamatergic NMDA receptor agonist) reversed the Q110-dependent inhibition. Intrathecal forskolin (100 nM, 10 μl, a PKA activator) prevented the Q110-dependent inhibition that was reversed by CNQX (10 μM, 10 μl it, a selective glutamate AMPA receptor antagonist) and APV (10 μM, 10 μl it , a selective glutamate NMDA receptor antagonist). Our results suggest that DR2 activation, which inactivates intracellular PKA, may be involved in descending dopaminergic inhibition of NMDA/AMPA receptor-dependent SRP at the lumbosacral spinal cord, which is thought to be involved in reflexive urethral closure.
Collapse
Affiliation(s)
| | - Chun-Hsien Chiu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, and
| | - Kwong-Chung Tung
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, and
| | - Gin-Den Chen
- Department of Obstetrics and Gynecology, Chung-Shan Medical University Hospital, Chung-Shan Medical University, Taichung; and
| | - Hsien-Yu Peng
- Department of Physiology,
- Department of Urology, China Medical University Hospital, China Medical University,
| | - Tzer-Bin Lin
- Department of Physiology,
- Department of Urology, China Medical University Hospital, China Medical University,
- Department of Obstetrics and Gynecology, Chung-Shan Medical University Hospital, Chung-Shan Medical University, Taichung; and
| |
Collapse
|
64
|
|
65
|
Abstract
Preterm and critically ill newborns admitted to a NICU undergo repeated skin-breaking procedures that are necessary for their survival. Sucrose is rapidly becoming the accepted clinical standard nonpharmacologic intervention for managing acute procedural pain for these infants. Although shown to be safe in single doses, only 4 studies have evaluated the effects of repeated doses of sucrose over relatively short periods of time. None has examined the use of sucrose throughout the NICU stay, and only 1 study evaluated the neurodevelopmental outcomes after repeated doses of sucrose. In that study, infants born at <31 weeks' gestational age and exposed to >10 doses per day in the first week of life were more likely to show poorer attention and motor development in the early months after discharge from the NICU. Results of studies in animal models have suggested that the mechanism of action of sucrose is through opioid pathways; however, in human infants, little has been done to examine the physiologic mechanisms involved, and the findings reported thus far have been ambiguous. Drawing from the growing animal literature of research that has examined the effects of chronic sugar exposure, we describe alternative amine and hormone pathways that are common to the processing of sucrose, attention, and motor development. In addition, a review of the latest research to examine the effects of repeated sucrose on pain processing is presented. These 2 literatures each can inform the other and can provide an impetus to initiate research to examine not only the mechanisms involved in the calming mechanisms of sucrose but also in the long-term neurodevelopmental effects of repeated sucrose in those infants born extremely preterm or critically ill.
Collapse
Affiliation(s)
- Liisa Holsti
- Developmental Neurosciences and Child Health, Child and Family Research Institute, Vancouver, British Columbia, Canada.
| | - Ruth E. Grunau
- Developmental Neurosciences and Child Health, Child and Family Research Institute, Vancouver, British Columbia, Canada, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
66
|
Cobacho N, Serrano AB, Casarejos MJ, Mena MA, Paíno CL. Use of Transduced Adipose Tissue Stromal Cells as Biologic Minipumps to Deliver Levodopa for the Treatment of Neuropathic Pain: Possibilities and Limitations. Cell Transplant 2009; 18:1341-58. [DOI: 10.3727/096368909x12483162197367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Subarachnoidal grafting of monoamine-producing cells has been used with success to treat chronic pain in animal models. In the search for a source of autologous transplantable cells, capable of delivering neuroactive substances to the cerebrospinal fluid (CSF) to treat pain, we have tested adipose tissue-derived stromal cells (ADSCs) transduced to produce levodopa. Intrathecally grafted ADSCs survive for long term adhered to spinal cord and nerve root meninges. Cultured ADSCs were retrovirally transduced with tyrosine hydroxylase (TH) and/or GTP cyclohydroxylase 1 (GCH1) genes and stably expressed them for at least 6 weeks in culture. Singly transduced cultures did not produce measurable levodopa but doubly transduced or a mixture of singly transduced ADSCs were able to efficiently synthesize and release levodopa. When 0.5–1 × 106 TH-and GCH1-expressing ADSCs were intrathecally grafted in rats, elevated levels of levodopa and dopamine metabolites were found in CSF at 3 days, although at lower concentrations than expected. Unexpectedly, no levodopa was measurable in CSF at 6 days. In a rat model of neuropathic pain, intrathecal grafting of doubly transduced cells did not produce antiallodynic effects at 2 or 6 days, even when histological analysis revealed the presence of weak TH-immunoreactive subarachnoidal cell clusters. These results suggested that doubly transduced cells could indeed function as biological minipumps to enhance the dopaminergic neurotransmission at the spinal cord level but transgenes were rapidly silenced after intrathecal grafting. Transgene silencing was mimicked in culture by serum deprivation for 3 days. Serum addition at this point recovered trans-gene expression in just 6 h, as did, to a smaller degree, dbcAMP or histone deacetylase inhibitors. Transgene expression silencing in serum deprivation conditions was prevented by 5′-terminal IRES sequences. The present study does not discard the use of transduced cells as a strategy to treat chronic pain but shows that controlling transgene silencing in implanted cells needs to be achieved first.
Collapse
Affiliation(s)
- Nuria Cobacho
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Ana Belén Serrano
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Maria José Casarejos
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Mari Angeles Mena
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Carlos Luis Paíno
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, 28034 Madrid, Spain
| |
Collapse
|
67
|
Neurons of the dopaminergic/calcitonin gene-related peptide A11 cell group modulate neuronal firing in the trigeminocervical complex: an electrophysiological and immunohistochemical study. J Neurosci 2009; 29:12532-41. [PMID: 19812328 DOI: 10.1523/jneurosci.2887-09.2009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Activation of spinal trigeminal afferents innervating the cranial vasculature is likely to play a role in migraine, although some parts of the clinical presentation may have a dopaminergic basis. The A11 nucleus, located in the posterior hypothalamus, provides the only known source of descending dopaminergic innervation for the spinal gray matter. Extracellular recordings were made in the trigeminocervical complex (TCC) in response to electrical stimulation of the dura mater. Receptive fields were characterized by mechanical noxious and innocuous stimulation of the ipsilateral ophthalmic dermatome. Stimulation of the A11 significantly inhibited peri-middle meningeal artery dural and noxious pinch evoked firing of neurons in the TCC. This inhibition was reversed by the D(2) receptor antagonist eticlopride. Lesioning of the A11 significantly facilitated dural and noxious pinch and innocuous brush evoked firing from the TCC. In previous work using immunohistofluorescence, it was shown that D(1) and D(2) receptors were found in the rat TCC, and here we report, in addition, that D(4) and D(5) dopamine receptors are also present, whereas D(3) receptors are not. No dopamine receptors were present in the A11 nucleus itself. However, the A11 does contain dopamine and calcitonin gene-related peptide (CGRP) and, by this combination, is distinct from the neighboring CGRPergic subparafascicular nucleus. Exploration of dopaminergic influences and mechanisms in migraine may open up an almost untapped opportunity to pursue potential new therapeutic options for the disorder.
Collapse
|
68
|
Nagakura Y, Oe T, Aoki T, Matsuoka N. Biogenic amine depletion causes chronic muscular pain and tactile allodynia accompanied by depression: A putative animal model of fibromyalgia. Pain 2009; 146:26-33. [DOI: 10.1016/j.pain.2009.05.024] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/28/2009] [Accepted: 05/27/2009] [Indexed: 12/30/2022]
|
69
|
Neurobiology of migraine. Neuroscience 2009; 161:327-41. [DOI: 10.1016/j.neuroscience.2009.03.019] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 02/28/2009] [Accepted: 03/04/2009] [Indexed: 01/27/2023]
|
70
|
D2 dopamine receptor activation facilitates endocannabinoid-mediated long-term synaptic depression of GABAergic synaptic transmission in midbrain dopamine neurons via cAMP-protein kinase A signaling. J Neurosci 2009; 28:14018-30. [PMID: 19109485 DOI: 10.1523/jneurosci.4035-08.2008] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Endocannabinoid (eCB) signaling mediates short-term and long-term synaptic depression (LTD) in many brain areas. In the ventral tegmental area (VTA) and striatum, D(2) dopamine receptors cooperate with group I metabotropic glutamate receptors (mGluRs) to induce eCB-mediated LTD of glutamatergic excitatory and GABAergic inhibitory (I-LTD) synaptic transmission. Because D(2) receptors and group I mGluR agonists are capable of inducing the release of eCBs, the predominant hypothesis is that the cooperation between these receptors to induce eCB-mediated synaptic depression results from the combined activation of type I cannabinoid (CB(1)) receptors by the eCBs. By determining the downstream effectors for D(2) receptor and group I mGluR activation in VTA dopamine neurons, we show that group I mGluR activation contributes to I-LTD induction by enhancing eCB release and CB(1) receptor activation. However, D(2) receptor activation does not enhance CB(1) receptor activation, but facilitates I-LTD induction via direct inhibition of cAMP-dependent protein kinase A (PKA) signaling. We further demonstrate that cAMP/PKA signaling pathway is the downstream effector for CB(1) receptors and is required for eCB-mediated I-LTD induction. Our results suggest that D(2) receptors and CB(1) receptors target the same downstream effector cAMP/PKA signaling pathway to induce I-LTD and D(2) receptor activation facilitates eCB-mediated I-LTD in dopamine neurons not by enhancing CB(1) receptor activation, but by enhancing its downstream effects.
Collapse
|
71
|
Takagi T, Nakamura M, Yamada M, Hikishima K, Momoshima S, Fujiyoshi K, Shibata S, Okano HJ, Toyama Y, Okano H. Visualization of peripheral nerve degeneration and regeneration: Monitoring with diffusion tensor tractography. Neuroimage 2009; 44:884-92. [DOI: 10.1016/j.neuroimage.2008.09.022] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 09/15/2008] [Accepted: 09/17/2008] [Indexed: 12/16/2022] Open
|
72
|
Abe K, Kato G, Katafuchi T, Tamae A, Furue H, Yoshimura M. Responses to 5-HT in morphologically identified neurons in the rat substantia gelatinosa in vitro. Neuroscience 2008; 159:316-24. [PMID: 19141313 DOI: 10.1016/j.neuroscience.2008.12.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 12/10/2008] [Accepted: 12/12/2008] [Indexed: 10/21/2022]
Abstract
Bath application of 5-HT (1-1000 muM) induced a tetrodotoxin (TTX)-resistant outward current at the holding membrane potential (V(H)) of -50 mV in 104/162 (64.2%) of substantia gelatinosa (SG) neurons from the rat spinal cord in vitro. The 5-HT-induced outward current was suppressed by an external solution containing Ba(2+), or a pipette solution containing Cs(2)SO(4) and tetraethylammonium. It was reversed near the equilibrium potential of the K(+) channel. The response to 5-HT was abolished 30 min after patch formation with a pipette solution containing guanosine-5-O-(2-thiodiphosphate)-S. The 5-HT-induced outward current was mimicked by a 5-HT(1A) agonist, (+/-)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide, and suppressed by a 5-HT(1A) antagonist, WAY100635, suggesting the 5HT(1A) receptor-mediated activation of K(+) channels in the outward current. In 11/162 (6.8%) SG neurons, 5-HT produced an inward current, which was mimicked by a 5-HT(3) agonist, 1-(m-chlorophenyl)-biguanide (mCPBG). The 5-HT-induced outward currents were observed in vertical cells (21/34) and small islet cells (11/34), while inward currents were induced in islet cells (1/5) and small islet (4/5) cells, but not in vertical cells. It is known that most vertical cells and islet cells in the SG are excitatory (glutamatergic) and inhibitory interneurons, respectively, while small islet cells consist of both excitatory and inhibitory neurons. Bath application of 5-HT or mCPBG increased the amplitude and the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs), but no neurons showed a decrease in sIPSC. Furthermore, frequency, but not amplitude, of miniature IPSCs increased with perfusion with 5-HT in the presence of TTX. These findings, taken together, suggest that 5-HT induces outward currents through 5-HT(1A) receptors in excitatory SG neurons. These findings also suggest that the inward currents are post- and presynaptically evoked through 5-HT(3) receptors, probably in inhibitory neurons.
Collapse
Affiliation(s)
- K Abe
- Department of Integrative Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
73
|
Nakatsuka T, Fujita T, Inoue K, Kumamoto E. Activation of GIRK channels in substantia gelatinosa neurones of the adult rat spinal cord: a possible involvement of somatostatin. J Physiol 2008; 586:2511-22. [PMID: 18356203 DOI: 10.1113/jphysiol.2007.146076] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent studies have suggested that spinal G-protein-coupled, inwardly rectifying K(+) (GIRK) channels play an important role in thermal nociception and the analgesic actions of morphine and other agents. In this study, we show that spinal GIRK channels are activated by an endogenous neurotransmitter using whole-cell patch-clamp recordings from substantia gelatinosa (SG) neurones in adult rat spinal cord slices. Although repetitive stimuli applied to the dorsal root did not induce any slow responses, ones focally applied to the spinal dorsal horn produced slow inhibitory postsynaptic currents (IPSCs) at a holding potential of -50 mV in about 30% of the SG neurones recorded. The amplitude and duration of slow IPSCs increased with the number of stimuli and decreased with removal of Ca(2+) from the external Krebs solution. Slow IPSCs were associated with an increase in membrane conductance; their polarity was reversed at a potential close to the equilibrium potential for K(+), calculated from the Nernst equation. Slow IPSCs were blocked by addition of GDP-beta-S into the patch-pipette solution, reduced in amplitude in the presence of Ba(2+), and significantly suppressed in the presence of an antagonist of GIRK channels, tertiapin-Q. Somatostatin produced an outward current in a subpopulation of SG neurones and the slow IPSC was occluded during the somatostatin-induced outward current. Moreover, slow IPSCs were significantly inhibited by the somatostatin receptor antagonist cyclo-somatostatin. These results suggest that endogenously released somatostatin may induce slow IPSCs through the activation of GIRK channels in SG neurones; this slow synaptic transmission might play an important role in spinal antinociception.
Collapse
Affiliation(s)
- Terumasa Nakatsuka
- Department of Physiology, Faculty of Medicine, Saga University, Saga 849-8501, Japan.
| | | | | | | |
Collapse
|
74
|
Kawasaki S, Watanabe S, Kimura S, Fujita R, Ochiai J, Sasaki K. Regulation of dopamine-induced Na+ current response by small G-protein RhoB or C and phospholipase D in Aplysia neurons. Neurosci Res 2008; 60:147-55. [DOI: 10.1016/j.neures.2007.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 09/22/2007] [Accepted: 10/15/2007] [Indexed: 12/29/2022]
|
75
|
Munro G. Dopamine D1 and D2 receptor agonism enhances antinociception mediated by the serotonin and noradrenaline reuptake inhibitor duloxetine in the rat formalin test. Eur J Pharmacol 2007; 575:66-74. [PMID: 17725928 DOI: 10.1016/j.ejphar.2007.07.062] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 07/19/2007] [Accepted: 07/23/2007] [Indexed: 11/27/2022]
Abstract
Altered functioning of monoamine-containing pathways descending from supraspinal structures to the spinal dorsal horn contributes to injury-induced sensitization of nociceptive transmission. Antidepressant drugs as typified by the dual serotonin (5-HT) and noradrenaline reuptake inhibitor duloxetine attenuate various signs and symptoms of persistent pain in animals and humans. The current study assessed whether dopamine receptor agonists could further enhance the antinociceptive activity of duloxetine in an animal model of injury-induced central sensitization, the rat formalin test. Duloxetine (3-100 mg/kg, s.c.), the dopamine D(1) receptor agonist SKF-82958 (0.1-1 mg/kg, s.c.) and the dopamine D(2) receptor agonist quinpirole (0.003-0.1 mg/kg, s.c.) all significantly attenuated spontaneous nociceptive behaviours during the second phase of the test; duloxetine and quinpirole also attenuated nociceptive behaviours during first phase and interphase. These antinociceptive actions of SKF-82958 and quinpirole were selectively antagonized by SCH 23390 and eticlopride respectively. Remarkably, when completely inactive doses of duloxetine (3 mg/kg) and SKF-82958 (0.3 mg/kg) were combined, a marked attenuation of second phase nociceptive behaviours occurred (P<0.05 vs vehicle), indicative of analgesic synergy. Similarly, when an active antinociceptive dose of quinpirole (0.03 mg/kg, P<0.05 vs vehicle) was combined with an inactive dose of duloxetine (3 mg/kg), a potentiation of duloxetine-mediated antinociception was observed (P<0.001 vs vehicle). Taken together, these results suggest that antidepressant drugs that can enhance the activity of 5-HT, noradrenaline and dopamine neurotransmission within nociceptive pathways should provide a broader spectrum of antinociception than dual mechanism of action reuptake inhibitors in animal models of injury-induced persistent nociception.
Collapse
Affiliation(s)
- Gordon Munro
- Department of Pharmacology, NeuroSearch A/S, 93 Pederstrupvej, DK-2750, Ballerup, Denmark.
| |
Collapse
|
76
|
Zhu H, Clemens S, Sawchuk M, Hochman S. Expression and distribution of all dopamine receptor subtypes (D(1)-D(5)) in the mouse lumbar spinal cord: a real-time polymerase chain reaction and non-autoradiographic in situ hybridization study. Neuroscience 2007; 149:885-97. [PMID: 17936519 DOI: 10.1016/j.neuroscience.2007.07.052] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Revised: 07/18/2007] [Accepted: 08/06/2007] [Indexed: 12/26/2022]
Abstract
Dopamine is a catecholaminergic neuromodulatory transmitter that acts through five molecularly-distinct G protein-coupled receptor subtypes (D(1)-D(5)). In the mammalian spinal cord, dopaminergic axon collaterals arise predominantly from the A11 region of the dorsoposterior hypothalamus and project diffusely throughout the spinal neuraxis. Dopaminergic modulatory actions are implicated in sensory, motor and autonomic functions in the spinal cord but the expression properties of the different dopamine receptors in the spinal cord remain incomplete. Here we determined the presence and the regional distribution of all dopamine receptor subtypes in mouse spinal cord cells by means of quantitative real time polymerase chain reaction (PCR) and digoxigenin-label in situ hybridization. Real-time PCR demonstrated that all dopamine receptors are expressed in the spinal cord with strongly dominant D(2) receptor expression, including in motoneurons and in the sensory encoding superficial dorsal horn (SDH). Laser capture microdissection (LCM) corroborated the predominance of D(2) receptor expression in SDH and motoneurons. In situ hybridization of lumbar cord revealed that expression for all dopamine receptors was largely in the gray matter, including motoneurons, and distributed diffusely in labeled cell subpopulations in most or all laminae. The highest incidence of cellular labeling was observed for D(2) and D(5) receptors, while the incidence of D(1) and D(3) receptor expression was least. We conclude that the expression and extensive postsynaptic distribution of all known dopamine receptors in spinal cord correspond well with the broad descending dopaminergic projection territory supporting a widespread dopaminergic control over spinal neuronal systems. The dominant expression of D(2) receptors suggests a leading role for these receptors in dopaminergic actions on postsynaptic spinal neurons.
Collapse
Affiliation(s)
- H Zhu
- Emory University School of Medicine, Department of Physiology, 615 Michael Street, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
77
|
Zhao H, Zhu W, Pan T, Xie W, Zhang A, Ondo WG, Le W. Spinal cord dopamine receptor expression and function in mice with 6-OHDA lesion of the A11 nucleus and dietary iron deprivation. J Neurosci Res 2007; 85:1065-76. [PMID: 17342757 DOI: 10.1002/jnr.21207] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is suggested that dysfunction of the diencephalospinal dopaminergic (DAergic) pathway may cause restless legs syndrome. We examined the mRNA and protein levels as well as DA receptor subtypes function within the lumbar spinal cord of an RLS animal model. C57BL/6 male mice with or without iron deprivation were lesioned with 6-hydroxydopamine (6-OHDA) in the bilateral A11 nuclei. Locomotor behaviors were observed. DA concentration, mRNA, and protein levels of D1, D2, and D3 receptors in the lumbar spinal cords were analyzed, and the specific binding of D1, D2, and D3 receptors was determined using [(3)H]SCH23390, [(3)H]Spiperone, and [(3)H]PD128907 radioligands respectively. The behavioral tests showed that the locomotor activities were increased significantly in the mice treated with iron-deficiency (ID) diet and 6-OHDA lesions, which were reversed by the D2/D3 agonist ropinirole. DA in the spinal cord was decreased significantly by 6-OHDA lesioning in A11. D2/D3 mRNA and protein levels as well as their binding capacity in the spinal cord were decreased significantly by 6-OHDA lesions. ID with 6-OHDA lesions produced a synergistic greater decrease of D2 binding. Although ID increased D1 mRNA and protein expression in the spinal cord, it did not significantly change D1 receptor binding. The present study suggests that ID and 6-OHDA lesions in A11 nuclei differentially altered the D1, D2, and D3 receptors expression and binding capacity in the lumbar spinal cord of RLS animal model, which was accompanied by changes in locomotor activities.
Collapse
Affiliation(s)
- Hongru Zhao
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Ansah OB, Leite-Almeida H, Wei H, Pertovaara A. Striatal dopamine D2 receptors attenuate neuropathic hypersensitivity in the rat. Exp Neurol 2007; 205:536-46. [PMID: 17451685 DOI: 10.1016/j.expneurol.2007.03.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 03/13/2007] [Accepted: 03/15/2007] [Indexed: 10/23/2022]
Abstract
Earlier studies indicate that striatal dopamine D(2) receptors are involved in pain regulation in non-neuropathic conditions. We assessed whether striatal dopamine D(2) receptors contribute to pain regulation also in neuropathic conditions. The spared nerve injury model of neuropathy was induced by unilateral ligation of the tibial and common peroneal nerves in the rat. In awake nerve-injured animals, pain-related withdrawal responses to calibrated monofilaments or noxious heating were attenuated following striatal administration of a dopamine D(2) receptor agonist quinpirole. Pain-related responses were attenuated only in the nerve-injured limb ipsilateral to the injection and in the midline (tail). In unoperated controls, striatal administration of quinpirole at an antihypersensitive dose did not influence withdrawal responses to mechanical stimulation. Attenuation of pain-related responses induced by striatal administration of quinpirole was reversed by intrathecal administration of a dopamine D(2) receptor antagonist (eticlopride) or a non-selective 5-HT receptor antagonist (methysergide), but not by an alpha(2)-adrenoceptor antagonist (atipamezole). In the rostroventromedial medulla of lightly anesthetized neuropathic animals, striatal administration of quinpirole significantly decreased the activity of presumably pronociceptive cells that are activated by noxious stimulation. The innocuous H-reflex in lightly anesthetized control animals was not suppressed by striatal administration of quinpirole at an antihypersensitive dose. The results indicate that striatal dopamine D(2) receptors attenuate neuropathic hypersensitivity. The antihypersensitive effect induced by striatal dopamine D(2) receptors in peripheral neuropathy involves suppression of impulse discharge of presumably pronociceptive neurons in the rostroventromedial medulla, and a descending influence acting on spinal 5-HT and dopamine D(2) receptors.
Collapse
Affiliation(s)
- Osei B Ansah
- Biomedicum Helsinki, Institute of Biomedicine/Physiology, POB 63, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | |
Collapse
|
79
|
Kamerman PR, Becker N, Fick LG. Interactions between metoclopramide and morphine: enhanced antinociception and motor dysfunction in rats. Clin Exp Pharmacol Physiol 2007; 34:106-12. [PMID: 17201744 DOI: 10.1111/j.1440-1681.2007.04533.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Opioid analgesics and anti-emetics are often used concomitantly to treat pain and nausea and vomiting in people with malignant disease. We investigated interactions between the opioid analgesic morphine and the anti-emetic metoclopramide, a dopamine D2 receptor antagonist, on nociception and gross motor function. 2. To assess for antinociceptive interactions, 11 Sprague-Dawley rats were injected intraperitoneally with morphine (5.0 mg/kg) or saline in combination with metoclopramide (0.5, 1.5 and 5.0 mg/kg) or saline and, 30 min later, the tail-flick latencies to a noxious thermal stimulus (49 degrees C water) were measured. Immediately thereafter we induced reperfusion hyperalgesia in the rats' tails using a tourniquet cuff and tested nociception again. Because, in addition to its ability to block D2 receptors, metoclopramide is also a weak 5-HT(3) receptor antagonist, we assessed in a further 11 rats whether any antinociceptive interactions occurred between morphine (5.0 mg/kg) and ondansetron (0.2 and 2.0 mg/kg), an anti-emetic that selectively antagonizes 5-HT(3) receptors. To assess for motor interactions, we injected another group of nine rats with morphine (5.0 mg/kg) or saline in combination with metoclopramide (0.5 and 5.0 mg/kg) or saline and tested the ability of the animals to run on an 80 mm diameter rod rotating at 25 r.p.m. for 30 min. 3. Metoclopramide was not inherently analgesic or antihyperalgesic, but the highest dose of metoclopramide (5.0 mg/kg) enhanced the analgesic and antihyperalgesic effects of morphine. Neither dose of ondansetron was analgesic or antihyperalgesic or enhanced the antinociceptive actions of morphine. 4. Only the high dose of metoclopramide compromised running performance when administered with saline. However, coadministering morphine with metoclopramide (both doses) decreased motor performance. 5. Therefore, metoclopramide, possibly through its actions on D2 receptors and not 5-HT(3) receptors, enhances the analgesic and antihyperalgesic effects of morphine, but morphine exacerbates metoclopramide-induced motor dysfunction in rats.
Collapse
Affiliation(s)
- Peter R Kamerman
- School of Physiology, University of the Witwatersrand, Johannesburg, South Africa.
| | | | | |
Collapse
|
80
|
Bergerot A, Storer RJ, Goadsby PJ. Dopamine inhibits trigeminovascular transmission in the rat. Ann Neurol 2007; 61:251-62. [PMID: 17387726 DOI: 10.1002/ana.21077] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Clinical evidence, such as premonitory or postdromal symptoms, indicate involvement of dopamine in the pathophysiology of migraine. METHODS To study the influence of dopamine on nociceptive trigeminovascular neurotransmission, we first determined using immunohistofluorescence that dopamine receptors were present in the rat trigeminocervical complex; then using extracellular recording techniques, we examined whether dopamine modulates cell firing in the trigeminocervical complex. RESULTS We identified a discrete population of D1 receptors (median, 11; interquartile range, 7-30 neurons/hemisection) predominantly located in the deep laminae and a more abundant population of D2 receptors (median,75; interquartile range, 30-99 neurons/hemisection) that were evenly distributed in the trigeminocervical complex. Intravenous dopamine had no effect on trigeminovascular neurons, whereas when dopamine was applied microiontophoretically, a potent reversible inhibition of L-glutamate-evoked firing was observed. The effect of microiontophoretically applied dopamine was dose dependent. Dopamine also strongly inhibited activation of trigeminocervical neurons in response to middle meningeal artery stimulation in vivo with a maximum effect obtained within 10 minutes after the application and return to baseline within 30 minutes. INTERPRETATION We conclude that central dopamine-containing neurons may play a role in modulating trigeminovascular nociception; these neurons offer an important target that will expand our understanding of migraine and may offer new directions for therapy.
Collapse
Affiliation(s)
- Astrid Bergerot
- Headache Group, Institute of Neurology, and National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | | | | |
Collapse
|
81
|
Basile AS, Janowsky A, Golembiowska K, Kowalska M, Tam E, Benveniste M, Popik P, Nikiforuk A, Krawczyk M, Nowak G, Krieter PA, Lippa AS, Skolnick P, Koustova E. Characterization of the Antinociceptive Actions of Bicifadine in Models of Acute, Persistent, and Chronic Pain. J Pharmacol Exp Ther 2007; 321:1208-25. [PMID: 17325229 DOI: 10.1124/jpet.106.116483] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bicifadine (1-p-tolyl-3-azabicyclo[3.1.0]hexane) inhibits monoamine neurotransmitter uptake by recombinant human transporters in vitro with a relative potency of norepinephrine > serotonin > dopamine (approximately 1:2:17). This in vitro profile is supported by microdialysis studies in freely moving rats, where bicifadine (20 mg/kg i.p.) increased extrasynaptic norepinephrine and serotonin levels in the prefrontal cortex, norepinephrine levels in the locus coeruleus, and dopamine levels in the striatum. Orally administered bicifadine is an effective antinociceptive in several models of acute, persistent, and chronic pain. Bicifadine potently suppressed pain responses in both the Randall-Selitto and kaolin models of acute inflammatory pain and in the phenyl-p-quinone-induced and colonic distension models of persistent visceral pain. Unlike many transport inhibitors, bicifadine was potent and completely efficacious in both phases of the formalin test in both rats and mice. Bicifadine also normalized the nociceptive threshold in the complete Freund's adjuvant model of persistent inflammatory pain and suppressed mechanical and thermal hyperalgesia and mechanical allodynia in the spinal nerve ligation model of chronic neuropathic pain. Mechanical hyperalgesia was also reduced by bicifadine in the streptozotocin model of neuropathic pain. Administration of the D(2) receptor antagonist (-)-sulpiride reduced the effects of bicifadine in the mechanical hyperalgesia assessment in rats with spinal nerve ligations. These results indicate that bicifadine is a functional triple reuptake inhibitor with antinociceptive and antiallodynic activity in acute, persistent, and chronic pain models, with activation of dopaminergic pathways contributing to its antihyperalgesic actions.
Collapse
Affiliation(s)
- Anthony S Basile
- DOV Pharmaceutical, Inc., 150 Pierce St., Somerset, NJ 08873-4185, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|