51
|
Wu KC, Sunwoo J, Sheriff F, Farzam P, Farzam PY, Orihuela-Espina F, LaRose SL, Monk AD, Aziz-Sultan MA, Patel N, Vaitkevicius H, Franceschini MA. Validation of diffuse correlation spectroscopy measures of critical closing pressure against transcranial Doppler ultrasound in stroke patients. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200360R. [PMID: 33774980 PMCID: PMC7998065 DOI: 10.1117/1.jbo.26.3.036008] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/08/2021] [Indexed: 05/25/2023]
Abstract
SIGNIFICANCE Intracranial pressure (ICP), variability in perfusion, and resulting ischemia are leading causes of secondary brain injury in patients treated in the neurointensive care unit. Continuous, accurate monitoring of cerebral blood flow (CBF) and ICP guide intervention and ultimately reduce morbidity and mortality. Currently, only invasive tools are used to monitor patients at high risk for intracranial hypertension. AIM Diffuse correlation spectroscopy (DCS), a noninvasive near-infrared optical technique, is emerging as a possible method for continuous monitoring of CBF and critical closing pressure (CrCP or zero-flow pressure), a parameter directly related to ICP. APPROACH We optimized DCS hardware and algorithms for the quantification of CrCP. Toward its clinical translation, we validated the DCS estimates of cerebral blood flow index (CBFi) and CrCP in ischemic stroke patients with respect to simultaneously acquired transcranial Doppler ultrasound (TCD) cerebral blood flow velocity (CBFV) and CrCP. RESULTS We found CrCP derived from DCS and TCD were highly linearly correlated (ipsilateral R2 = 0.77, p = 9 × 10 - 7; contralateral R2 = 0.83, p = 7 × 10 - 8). We found weaker correlations between CBFi and CBFV (ipsilateral R2 = 0.25, p = 0.03; contralateral R2 = 0.48, p = 1 × 10 - 3) probably due to the different vasculature measured. CONCLUSION Our results suggest DCS is a valid alternative to TCD for continuous monitoring of CrCP.
Collapse
Affiliation(s)
- Kuan-Cheng Wu
- Massachusetts General Hospital and Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - John Sunwoo
- Massachusetts General Hospital and Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Faheem Sheriff
- Brigham and Women’s Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - Parisa Farzam
- Massachusetts General Hospital and Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Parya Y. Farzam
- Massachusetts General Hospital and Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Felipe Orihuela-Espina
- Massachusetts General Hospital and Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- National Institute for Astrophysics Optics and Electronics, Department of Computational Sciences, Puebla, Mexico
| | - Sarah L. LaRose
- Brigham and Women’s Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - Andrew D. Monk
- Brigham and Women’s Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - Mohammad A. Aziz-Sultan
- Brigham and Women’s Hospital, Department of Neurosurgery, Boston, Massachusetts, United States
| | - Nirav Patel
- Brigham and Women’s Hospital, Department of Neurosurgery, Boston, Massachusetts, United States
| | - Henrikas Vaitkevicius
- Brigham and Women’s Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital and Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| |
Collapse
|