51
|
Deán-Ben XL, Gottschalk S, Mc Larney B, Shoham S, Razansky D. Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chem Soc Rev 2017; 46:2158-2198. [PMID: 28276544 PMCID: PMC5460636 DOI: 10.1039/c6cs00765a] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Visualization of dynamic functional and molecular events in an unperturbed in vivo environment is essential for understanding the complex biology of living organisms and of disease state and progression. To this end, optoacoustic (photoacoustic) sensing and imaging have demonstrated the exclusive capacity to maintain excellent optical contrast and high resolution in deep-tissue observations, far beyond the penetration limits of modern microscopy. Yet, the time domain is paramount for the observation and study of complex biological interactions that may be invisible in single snapshots of living systems. This review focuses on the recent advances in optoacoustic imaging assisted by smart molecular labeling and dynamic contrast enhancement approaches that enable new types of multiscale dynamic observations not attainable with other bio-imaging modalities. A wealth of investigated new research topics and clinical applications is further discussed, including imaging of large-scale brain activity patterns, volumetric visualization of moving organs and contrast agent kinetics, molecular imaging using targeted and genetically expressed labels, as well as three-dimensional handheld diagnostics of human subjects.
Collapse
Affiliation(s)
- X L Deán-Ben
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - S Gottschalk
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - B Mc Larney
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. and Faculty of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - S Shoham
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - D Razansky
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. and Faculty of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
52
|
Liang Y, Jin L, Wang L, Bai X, Cheng L, Guan BO. Fiber-Laser-Based Ultrasound Sensor for Photoacoustic Imaging. Sci Rep 2017; 7:40849. [PMID: 28098201 PMCID: PMC5241646 DOI: 10.1038/srep40849] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/12/2016] [Indexed: 01/15/2023] Open
Abstract
Photoacoustic imaging, especially for intravascular and endoscopic applications, requires ultrasound probes with miniature size and high sensitivity. In this paper, we present a new photoacoustic sensor based on a small-sized fiber laser. Incident ultrasound waves exert pressures on the optical fiber laser and induce harmonic vibrations of the fiber, which is detected by the frequency shift of the beating signal between the two orthogonal polarization modes in the fiber laser. This ultrasound sensor presents a noise-equivalent pressure of 40 Pa over a 50-MHz bandwidth. We demonstrate this new ultrasound sensor on an optical-resolution photoacoustic microscope. The axial and lateral resolutions are 48 μm and 3.3 μm. The field of view is up to 1.57 mm2. The sensor exhibits strong resistance to environmental perturbations, such as temperature changes, due to common-mode cancellation between the two orthogonal modes. The present fiber laser ultrasound sensor offers a new tool for all-optical photoacoustic imaging.
Collapse
Affiliation(s)
- Yizhi Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Long Jin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Lidai Wang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Xue Bai
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Linghao Cheng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
53
|
Wang D, Wang Y, Wang W, Luo D, Chitgupi U, Geng J, Zhou Y, Wang L, Lovell JF, Xia J. Deep tissue photoacoustic computed tomography with a fast and compact laser system. BIOMEDICAL OPTICS EXPRESS 2017; 8:112-123. [PMID: 28101405 PMCID: PMC5231285 DOI: 10.1364/boe.8.000112] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/02/2016] [Accepted: 12/04/2016] [Indexed: 05/04/2023]
Abstract
Photoacoustic computed tomography (PACT) holds great promise for biomedical imaging, but wide-spread implementation is impeded by the bulkiness of flash-lamp-pumped laser systems, which typically weigh between 50 - 200 kg, require continuous water cooling, and operate at a low repetition rate. Here, we demonstrate that compact lasers based on emerging diode technologies are well-suited for preclinical and clinical PACT. The diode-pumped laser used in this study had a miniature footprint (13 × 14 × 7 cm3), weighed only 1.6 kg, and outputted up to 80 mJ per pulse at 1064 nm. In vitro, the laser system readily provided over 4 cm PACT depth in chicken breast tissue. In vivo, in addition to high resolution, non-invasive brain imaging in living mice, the system can operate at 50 Hz, which enabled high-speed cross-sectional imaging of murine cardiac and respiratory function. The system also provided high quality, high-frame rate, and non-invasive three-dimensional mapping of arm, palm, and breast vasculature at multi centimeter depths in living human subjects, demonstrating the clinical viability of compact lasers for PACT.
Collapse
Affiliation(s)
- Depeng Wang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
| | - Yuehang Wang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
| | - Weiran Wang
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - Dandan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
| | - Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
| | - Jumin Geng
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
| | - Yang Zhou
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Lidai Wang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
| |
Collapse
|
54
|
Laviña B. Brain Vascular Imaging Techniques. Int J Mol Sci 2016; 18:ijms18010070. [PMID: 28042833 PMCID: PMC5297705 DOI: 10.3390/ijms18010070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/13/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022] Open
Abstract
Recent major improvements in a number of imaging techniques now allow for the study of the brain in ways that could not be considered previously. Researchers today have well-developed tools to specifically examine the dynamic nature of the blood vessels in the brain during development and adulthood; as well as to observe the vascular responses in disease situations in vivo. This review offers a concise summary and brief historical reference of different imaging techniques and how these tools can be applied to study the brain vasculature and the blood-brain barrier integrity in both healthy and disease states. Moreover, it offers an overview on available transgenic animal models to study vascular biology and a description of useful online brain atlases.
Collapse
Affiliation(s)
- Bàrbara Laviña
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden.
| |
Collapse
|
55
|
Zou C, Wu B, Dong Y, Song Z, Zhao Y, Ni X, Yang Y, Liu Z. Biomedical photoacoustics: fundamentals, instrumentation and perspectives on nanomedicine. Int J Nanomedicine 2016; 12:179-195. [PMID: 28053532 PMCID: PMC5191855 DOI: 10.2147/ijn.s124218] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Photoacoustic imaging (PAI) is an integrated biomedical imaging modality which combines the advantages of acoustic deep penetration and optical high sensitivity. It can provide functional and structural images with satisfactory resolution and contrast which could provide abundant pathological information for disease-oriented diagnosis. Therefore, it has found vast applications so far and become a powerful tool of precision nanomedicine. However, the investigation of PAI-based imaging nanomaterials is still in its infancy. This perspective article aims to summarize the developments in photoacoustic technologies and instrumentations in the past years, and more importantly, present a bright outlook for advanced PAI-based imaging nanomaterials as well as their emerging biomedical applications in nanomedicine. Current challenges and bottleneck issues have also been discussed and elucidated in this article to bring them to the attention of the readership.
Collapse
Affiliation(s)
- Chunpeng Zou
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University
| | - Beibei Wu
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University
| | - Yanyan Dong
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University
| | - Zhangwei Song
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University
| | - Yaping Zhao
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University
| | - Xianwei Ni
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University
| | - Yan Yang
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University
| | - Zhe Liu
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, Wenzhou, People’s Republic of China
| |
Collapse
|
56
|
Stammes MA, Maeda A, Bu J, Scollard DA, Kulbatski I, Medeiros PJ, Sinisi R, Dubikovskaya EA, Snoeks TJA, van Beek ER, Chan AB, Löwik CWGM, DaCosta RS. The Necrosis-Avid Small Molecule HQ4-DTPA as a Multimodal Imaging Agent for Monitoring Radiation Therapy-Induced Tumor Cell Death. Front Oncol 2016; 6:221. [PMID: 27818949 PMCID: PMC5073092 DOI: 10.3389/fonc.2016.00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/05/2016] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Most effective antitumor therapies induce tumor cell death. Non-invasive, rapid and accurate quantitative imaging of cell death is essential for monitoring early response to antitumor therapies. To facilitate this, we previously developed a biocompatible necrosis-avid near-infrared fluorescence (NIRF) imaging probe, HQ4, which was radiolabeled with 111Indium-chloride (111In-Cl3) via the chelate diethylene triamine pentaacetic acid (DTPA), to enable clinical translation. The aim of the present study was to evaluate the application of HQ4-DTPA for monitoring tumor cell death induced by radiation therapy. Apart from its NIRF and radioactive properties, HQ4-DTPA was also tested as a photoacoustic imaging probe to evaluate its performance as a multimodal contrast agent for superficial and deep tissue imaging. MATERIALS AND METHODS Radiation-induced tumor cell death was examined in a xenograft mouse model of human breast cancer (MCF-7). Tumors were irradiated with three fractions of 9 Gy each. HQ4-DTPA was injected intravenously after the last irradiation, NIRF and photoacoustic imaging of the tumors were performed at 12, 20, and 40 h after injection. Changes in probe accumulation in the tumors were measured in vivo, and ex vivo histological analysis of excised tumors was performed at experimental endpoints. In addition, biodistribution of radiolabeled [111In]DTPA-HQ4 was assessed using hybrid single-photon emission computed tomography-computed tomography (SPECT-CT) at the same time points. RESULTS In vivo NIRF imaging demonstrated a significant difference in probe accumulation between control and irradiated tumors at all time points after injection. A similar trend was observed using in vivo photoacoustic imaging, which was validated by ex vivo tissue fluorescence and photoacoustic imaging. Serial quantitative radioactivity measurements of probe biodistribution further demonstrated increased probe accumulation in irradiated tumors. CONCLUSION HQ4-DTPA has high specificity for dead cells in vivo, potentiating its use as a contrast agent for determining the relative level of tumor cell death following radiation therapy using NIRF, photoacoustic imaging and SPECT in vivo. Initial preclinical results are promising and indicate the need for further evaluation in larger cohorts. If successful, such studies may help develop a new multimodal method for non-invasive and dynamic deep tissue imaging of treatment-induced cell death to quantitatively assess therapeutic response in patients.
Collapse
Affiliation(s)
- Marieke A. Stammes
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
- Percuros BV, Enschede, Netherlands
| | - Azusa Maeda
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jiachuan Bu
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | | | - Iris Kulbatski
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Philip J. Medeiros
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Riccardo Sinisi
- LCBIM, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology of Lausanne (EPFL), Lausanne, Switzerland
| | - Elena A. Dubikovskaya
- LCBIM, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology of Lausanne (EPFL), Lausanne, Switzerland
| | - Thomas J. A. Snoeks
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Ermond R. van Beek
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Ralph S. DaCosta
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Techna Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
57
|
Mehta A, Ghaghada K, Mukundan S. Molecular Imaging of Brain Tumors Using Liposomal Contrast Agents and Nanoparticles. Magn Reson Imaging Clin N Am 2016; 24:751-763. [PMID: 27742115 DOI: 10.1016/j.mric.2016.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The first generation of cross-sectional brain imaging using computed tomography (CT), ultrasonography, and eventually MR imaging focused on determining structural or anatomic changes associated with brain disorders. The current state-of-the-art imaging, functional imaging, uses techniques such as CT and MR perfusion that allow determination of physiologic parameters in vivo. In parallel, tissue-based genomic, transcriptomic, and proteomic profiling of brain tumors has created several novel and exciting possibilities for molecular targeting of brain tumors. The next generation of imaging translates these molecular in vitro techniques to in vivo, noninvasive, targeted reconstruction of tumors and their microenvironments.
Collapse
Affiliation(s)
- Arnav Mehta
- Medical Scientist Training Program, David Geffen School of Medicine at UCLA, 757 Westwood Plaza, Los Angeles, CA 90095, USA; Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ketan Ghaghada
- Edward B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, 1102 Bates Street, Suite 850, Houston, TX 77030, USA; Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Srinivasan Mukundan
- Division of Neuroradiology, Department of Radiology, Brigham and Woman's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
58
|
Wang D, Wang Y, Zhou Y, Lovell JF, Xia J. Coherent-weighted three-dimensional image reconstruction in linear-array-based photoacoustic tomography. BIOMEDICAL OPTICS EXPRESS 2016; 7:1957-65. [PMID: 27231634 PMCID: PMC4871094 DOI: 10.1364/boe.7.001957] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 05/20/2023]
Abstract
While the majority of photoacoustic imaging systems used custom-made transducer arrays, commercially-available linear transducer arrays hold the benefits of affordable price, handheld convenience and wide clinical recognition. They are not widely used in photoacoustic imaging primarily because of the poor elevation resolution. Here, without modifying the imaging geometry and system, we propose addressing this limitation purely through image reconstruction. Our approach is based on the integration of two advanced image reconstruction techniques: focal-line-based three-dimensional image reconstruction and coherent weighting. We first numerically validated our approach through simulation and then experimentally tested it in phantom and in vivo. Both simulation and experimental results proved that the method can significantly improve the elevation resolution (up to 4 times in our experiment) and enhance object contrast.
Collapse
Affiliation(s)
- Depeng Wang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
| | - Yuehang Wang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
| | - Yang Zhou
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
| |
Collapse
|