51
|
Shiau AC, Lai PL, Liang JA, Shueng PW, Chen WL, Kuan WP. Dosimetric verification of surface and superficial doses for head and neck IMRT with different PTV shrinkage margins. Med Phys 2011; 38:1435-43. [PMID: 21520855 DOI: 10.1118/1.3553406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Dosimetric uncertainty in the surface and superficial regions is still a major concern for radiation therapy and becomes more important when using the inverse planning algorithm for IMRT. The purpose of this study was to measure dose distributions and to evaluate the calculation accuracy in the superficial region for different planning target volume (PTV) shrinkage methods for head and neck IMRT plans. METHODS A spherical polystyrene phantom 160 mm in diameter (ball phantom) was used to simulate the shape of the head. Strips of superflab bolus with thicknesses of 3.5 and 7.0 mm were spread on the surface of the ball phantom. Three sets of CT images were acquired for the ball phantom without and with the bolus. The hypothetical clinical target volume (CTV) and critical structures (spinal cord and parotid glands) were outlined on each set of CT images. The PTVs were initially created by expanding an isotropic 3 mm margin from the CTV and then margins of 0, 3, and 5 mm were shrunk from the phantom surface for dosimetric analysis. Seven-field IMRT plans with a prescribed dose of 180 cGy and same dose constraints were designed using an Eclipse treatment planning system. Superficial doses at depths of 0, 3.5, and 7.0 mm and at seven beam axis positions (gantry angles of 0 degrees, 30 degrees, 60 degrees, 80 degrees, 330 degrees, 300 degrees, and 280 degrees) were measured for each PTV shrinkage margin using 0.1 mm ultrathin thermoluminescent dosimeters. For each plan, the measured doses were compared to the calculated doses. RESULTS The PTV without shrinkage had the highest intensity and the steepest dose gradient in the superficial region. The mean measured doses for different positions at depths of 0, 3.5, and 7.0 mm were 106 +/- 18, 185 +/- 16, and 188 +/- 12 cGy, respectively. For a PTV with 3 mm shrinkage, the mean measured doses were 94 +/- 13, 183 +/- 8, and 191 +/- 8 cGy. For a PTV with 5 mm shrinkage, the mean measured doses were 86 +/- 11, 173 +/- 8, and 187 +/- 5 cGy. The comparisons indicated that more than 73.3% of the calculated points are with doses lower than the measured points and the difference of the dose becomes more significant in the shallower region. At 7.0 mm depth, the average difference between calculations and measurements was 2.5% (maximum 5.5%). CONCLUSIONS Application of the PTV shrinkage method should take into account the calculation inaccuracy, tumor coverage, and possible skin reaction. When the tumor does not invade the superficial region, an adequate shrinkage margin from the surface is helpful for reducing the skin reaction. As the tumor invades the superficial region, adding a bolus is a method better than only contouring PTV with skin inclusion.
Collapse
Affiliation(s)
- An-Cheng Shiau
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, 220 Taiwan.
| | | | | | | | | | | |
Collapse
|
52
|
Jin H, Hsi W, Yeung D, Li Z, Mendenhall NP, Marcus RB. Dosimetric characterization of whole brain radiotherapy of pediatric patients using modulated proton beams. J Appl Clin Med Phys 2011; 12:3308. [PMID: 21587172 PMCID: PMC5718672 DOI: 10.1120/jacmp.v12i2.3308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 12/02/2010] [Accepted: 11/29/2010] [Indexed: 12/11/2022] Open
Abstract
This study was designed to investigate dosimetric variations between proton plans with (PPW) and without (PPWO), a compensator for whole brain radiotherapy (WBRT). The retrospective study on PPW and PPWO in Eclipse and XiO systems and photon plans (XP) using controlled segments in Pinnacle system was performed on nine pediatric patients for craniospinal irradiations. DVHs and derived metrics, such as the homogeneity index (HI), the doses to 2%(D2%) and 5%(D5%) volumes, and mean dose (Dmean) of the whole brain (i.e., PTV), and the organs at risk (OARs) such as lens and skull, were obtained. The PPW plans from both Eclipse and XiO systems uncovered the following advantages: (1) encompassing a cribriform plate area with the 100% isodose line was better than either PPWO or XP, according to calculated two‐dimensional distributions of one patient; (2) the mean value of D5% for lens was reduced to 23.6% of DP from 54.1% for PPWO or 41.6% for XP; and (3) the mean value of Dmean for skull was reduced to 94.8% of DP from either 98.4% for PPWO or 98.3% for XP. However, the PPW plans also exposed several disadvantages including: (1) the HI of PTV increased to 7.7 from 4.7 for PPWO or 3.7 for XP; (2) D2% to PTV increased to 108.8% of DP from 104.8% for PPWO or 105.1% for XP; and (3) D5% to the skull increased to 104.9% of DP from 101.6% for PPWO or 103.4% of for XP. One‐half of the observed variations were caused by different penumbra on lateral profiles and distal fall‐off depth doses of protons in Eclipse and XiO. Because the utilization on the sharp proton distal fall‐off was limited for WBRT, the difference between PPW and PPWO or XP indicated no distinguishable improvement by using a compensator in proton plans. PACS number: 87.55.‐x
Collapse
Affiliation(s)
- Hosang Jin
- University of Florida Proton Therapy Institute, Jacksonville, Florida 32206, USA.
| | | | | | | | | | | |
Collapse
|
53
|
Chiu-Tsao ST, Chan MF. Evaluation of two-dimensional bolus effect of immobilization/support devices on skin doses: a radiochromic EBT film dosimetry study in phantom. Med Phys 2010; 37:3611-20. [PMID: 20831069 DOI: 10.1118/1.3439586] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE In this study, the authors have quantified the two-dimensional (2D) perspective of skin dose increase using EBT film dosimetry in phantom in the presence of patient immobilization devices during conventional and IMRT treatments. METHODS For 6 MV conventional photon field, the authors evaluated and quantified the 2D bolus effect on skin doses for six different common patient immobilization/support devices, including carbon fiber grid with Mylar sheet, Orfit carbon fiber base plate, balsa wood board, Styrofoam, perforated AquaPlast sheet, and alpha-cradle. For 6 and 15 MV IMRT fields, a stack of two film layers positioned above a solid phantom was exposed at the air interface or in the presence of a patient alpha-cradle. All the films were scanned and the pixel values were converted to doses based on an established calibration curve. The authors determined the 2D skin dose distributions, isodose curves, and cross-sectional profiles at the surface layers with or without the immobilization/support device. The authors also generated and compared the dose area histograms (DAHs) and dose area products from the 2D skin dose distributions. RESULTS In contrast with 20% relative dose [(RD) dose relative to dmax on central axis] at 0.0153 cm in the film layer for 6 MV 10 x 10 cm2 open field, the average RDs at the same depth in the film layer were 71%, 69%, 55%, and 57% for Orfit, balsa wood, Styrofoam, and alpha-cradle, respectively. At the same depth, the RDs were 54% under a strut and 26% between neighboring struts of a carbon fiber grid with Mylar sheet, and between 34% and 56% for stretched perforated AquaPlast sheet. In the presence of the alpha-cradle for the 6 MV (15 MV) IMRT fields, the hot spot doses at the effective measurement depths of 0.0153 and 0.0459 cm were 140% and 150%, (83% and 89%), respectively, of the isocenter dose. The enhancement factor was defined as the ratio of a given DAH parameter (minimum dose received in a given area) with and without the support device. For 6 MV conventional 10 x 10 cm2 field, the enhancement factor was the highest (3.4) for the Orfit carbon fiber plate. As for the IMRT field, the enhancement factors varied with the size of the area of interest and were as high as 3.8 (4.3) at the hot spot of 5 cm2 area in the top film layer (0.0153 cm) for 6 MV (15 MV) beams. CONCLUSIONS Significant 2D bolus effect on skin dose in the presence of patient support and immobilization devices was confirmed and quantified with EBT film dosimetry. Furthermore, the EBT film has potential application for in vivo monitoring of the 2D skin dose distributions during patient treatments.
Collapse
|
54
|
Oinam AS, Singh L. Verification of IMRT dose calculations using AAA and PBC algorithms in dose buildup regions. J Appl Clin Med Phys 2010; 11:3351. [PMID: 21081894 PMCID: PMC5720424 DOI: 10.1120/jacmp.v11i4.3351] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/17/2010] [Accepted: 06/14/2010] [Indexed: 12/25/2022] Open
Abstract
The purpose of this comparative study was to test the accuracy of anisotropic analytical algorithm (AAA) and pencil beam convolution (PBC) algorithms of Eclipse treatment planning system (TPS) for dose calculations in the low- and high-dose buildup regions. AAA and PBC algorithms were used to create two intensity-modulated radiotherapy (IMRT) plans of the same optimal fluence generated from a clinically simulated oropharynx case in an in-house fabricated head and neck phantom. The TPS computed buildup doses were compared with the corresponding measured doses in the phantom using thermoluminescence dosimeters (TLD 100). Analysis of dose distribution calculated using PBC and AAA shows an increase in gamma value in the dose buildup region indicating large dose deviation. For the surface areas of 1, 50 and 100 cm2, PBC overestimates doses as compared to AAA calculated value in the range of 1.34%-3.62% at 0.6 cm depth, 1.74%-2.96% at 0.4 cm depth, and 1.96%-4.06% at 0.2 cm depth, respectively. In high-dose buildup region, AAA calculated doses were lower by an average of -7.56% (SD = 4.73%), while PBC was overestimated by 3.75% (SD = 5.70%) as compared to TLD measured doses at 0.2 cm depth. However, at 0.4 and 0.6 cm depth, PBC overestimated TLD measured doses by 5.84% (SD = 4.38%) and 2.40% (SD = 4.63%), respectively, while AAA underestimated the TLD measured doses by -0.82% (SD = 4.24%) and -1.10% (SD = 4.14%) at the same respective depth. In low-dose buildup region, both AAA and PBC overestimated the TLD measured doses at all depths except -2.05% (SD = 10.21%) by AAA at 0.2 cm depth. The differences between AAA and PBC at all depths were statistically significant (p < 0.05) in high-dose buildup region, whereas it is not statistically significant in low-dose buildup region. In conclusion, AAA calculated the dose more accurately than PBC in clinically important high-dose buildup region at 0.4 cm and 0.6 cm depths. The use of an orfit cast increases the dose buildup effect, and this buildup effect decreases with depth.
Collapse
Affiliation(s)
- Arun S Oinam
- Department of Radiotherapy, Post Graduate Institute of Medical Education and Research, Chandigarh-160012, India.
| | | |
Collapse
|
55
|
Ashenafi M, Boyd RA, Lee TK, Lo KK, Gibbons JP, Rosen II, Fontenot JD, Hogstrom KR. Feasibility of Postmastectomy Treatment With Helical TomoTherapy. Int J Radiat Oncol Biol Phys 2010; 77:836-42. [PMID: 19879697 DOI: 10.1016/j.ijrobp.2009.06.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 05/30/2009] [Accepted: 06/01/2009] [Indexed: 11/25/2022]
|
56
|
Hsu SH, Moran JM, Chen Y, Kulasekere R, Roberson PL. Dose discrepancies in the buildup region and their impact on dose calculations for IMRT fields. Med Phys 2010; 37:2043-53. [PMID: 20527537 DOI: 10.1118/1.3377769] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Dose accuracy in the buildup region for radiotherapy treatment planning suffers from challenges in both measurement and calculation. This study investigates the dosimetry in the buildup region at normal and oblique incidences for open and IMRT fields and assesses the quality of the treatment planning calculations. METHODS This study was divided into three parts. First, percent depth doses and profiles (for 5 x 5, 10 x 10, 20 x 20, and 30 x 30 cm2 field sizes at 0 degrees, 45 degrees, and 70 degrees incidences) were measured in the buildup region in Solid Water using an Attix parallel plate chamber and Kodak XV film, respectively. Second, the parameters in the empirical contamination (EC) term of the convolution/ superposition (CVSP) calculation algorithm were fitted based on open field measurements. Finally, seven segmental head-and-neck IMRT fields were measured on a flat phantom geometry and compared to calculations using gamma and dose-gradient compensation (C) indices to evaluate the impact of residual discrepancies and to assess the adequacy of the contamination term for IMRT fields. RESULTS Local deviations between measurements and calculations for open fields were within 1% and 4% in the buildup region for normal and oblique incidences, respectively. The C index with 5%/1 mm criteria for IMRT fields ranged from 89% to 99% and from 96% to 98% at 2 mm and 10 cm depths, respectively. The quality of agreement in the buildup region for open and IMRT fields is comparable to that in nonbuildup regions. CONCLUSIONS The added EC term in CVSP was determined to be adequate for both open and IMRT fields. Due to the dependence of calculation accuracy on (1) EC modeling, (2) internal convolution and density grid sizes, (3) implementation details in the algorithm, and (4) the accuracy of measurements used for treatment planning system commissioning, the authors recommend an evaluation of the accuracy of near-surface dose calculations as a part of treatment planning commissioning.
Collapse
Affiliation(s)
- Shu-Hui Hsu
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | |
Collapse
|
57
|
Salguero FJ, Arráns R, Palma BA, Leal A. Intensity- and energy-modulated electron radiotherapy by means of an xMLC for head and neck shallow tumors. Phys Med Biol 2010; 55:1413-27. [PMID: 20150682 DOI: 10.1088/0031-9155/55/5/010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The purpose of this paper is to assess the feasibility of delivering intensity- and energy-modulated electron radiation treatment (MERT) by a photon multileaf collimator (xMLC) and to evaluate the improvements obtained in shallow head and neck (HN) tumors. Four HN patient cases covering different clinical situations were planned by MERT, which used an in-house treatment planning system that utilized Monte Carlo dose calculation. The cases included one oronasal, two parotid and one middle ear tumors. The resulting dose-volume histograms were compared with those obtained from conventional photon and electron treatment techniques in our clinic, which included IMRT, electron beam and mixed beams, most of them using fixed-thickness bolus. Experimental verification was performed with plane-parallel ionization chambers for absolute dose verification, and a PTW ionization chamber array and radiochromic film for relative dosimetry. A MC-based treatment planning system for target with compromised volumes in depth and laterally has been validated. A quality assurance protocol for individual MERT plans was launched. Relative MC dose distributions showed a high agreement with film measurements and absolute ion chamber dose measurements performed at a reference point agreed with MC calculations within 2% in all cases. Clinically acceptable PTV coverage and organ-at-risk sparing were achieved by using the proposed MERT approach. MERT treatment plans, based on delivery of intensity-modulated electron beam using the xMLC, for superficial head and neck tumors, demonstrated comparable or improved PTV dose homogeneity with significantly lower dose to normal tissues. The clinical implementation of this technique will be able to offer a viable alternative for the treatment of shallow head and neck tumors.
Collapse
Affiliation(s)
- Francisco Javier Salguero
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, and Hospital Universitario Virgen Macarena, Sevilla, Spain
| | | | | | | |
Collapse
|
58
|
Gerig LH, Niedbala M, Nyiri BJ. Dose perturbations by two carbon fiber treatment couches and the ability of a commercial treatment planning system to predict these effects. Med Phys 2009; 37:322-8. [DOI: 10.1118/1.3271364] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
59
|
Use of new radiochromic devices for peripheral dose measurement: potential in-vivo dosimetry application. Biomed Imaging Interv J 2009; 5:e16. [PMID: 21610987 PMCID: PMC3097720 DOI: 10.2349/biij.5.4.e16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/23/2009] [Accepted: 06/23/2009] [Indexed: 11/17/2022] Open
Abstract
The authors have studied the feasibility of using three new high-sensitivity radiochromic devices in measuring the doses to peripheral points outside the primary megavoltage photon beams. The three devices were GAFCHROMIC® EBT film, prototype Low Dose (LD) Film, and prototype LD Card. The authors performed point dosimetry using these three devices in water-equivalent solid phantoms at x = 3,5,8,10, and 15 cm from the edge of 6 MV and 15 MV photon beams of 10x10 cm(2), and at depths of 0, 0.5 cm, and depth of maximum dose. A full sheet of EBT film was exposed with 5000 MU. The prototype LD film pieces were 1.5x2 cm(2) in size. Some LD films were provided in the form of a card in 1.8x5 cm(2) holding an active film in 1.8x2 cm(2). These are referred to as "LD dosimeter cards". The small LD films and cards were exposed with 500 MU. For each scanned film, a 6 mm circular area centered at the measurement point was sampled and the mean pixel value was obtained. The calibration curves were established from the calibration data for each combination of film/cards and densitometer/scanner. The doses at the peripheral points determined from the films were compared with those obtained using ion chamber at respective locations in a water phantom and general agreements were found. It is feasible to accurately measure peripheral doses of megavoltage photon beams using the new high-sensitivity radiochromic devices. This near real-time and inexpensive method can be applied in a clinical setting for dose measurements to critical organs and sensitive patient implant devices.
Collapse
|
60
|
Chiu-Tsao ST, Chan MF. Photon beam dosimetry in the superficial buildup region using radiochromic EBT film stack. Med Phys 2009; 36:2074-83. [PMID: 19610296 DOI: 10.1118/1.3125134] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
It has been a challenge to perform accurate 2D or 3D dosimetry in the surface region with steep dose gradient for megavoltage photon beams. We developed a dosimetry method in the superficial buildup region for the 6 and 15 MV photon beams using a radiochromic EBT film stack. Eight radiochromic EBT film strips (3 x 20 x 0.024 cm3) stacked together formed a 3D dosimeter. The film stack was positioned above a polystyrene phantom and surrounded by Solid Water slabs (0.2 cm) with the top film layer at 100 cm SSD. A 10 x 10 cm2 open field was used to irradiate the film stack with 1000 MU. All films were scanned using Epson 4870 flatbed scanner with transmission mode, 48 bit color, and 150 dpi (0.017 cm pixel resolution). The pixel values were converted to doses using an established calibration curve. This method allowed dose measurement for depths from 0.012 to 0.18 cm with fine spatial resolution (0.017 cm horizontally and 0.024 cm vertically). For each energy modality, we obtained both the central axis percent depth doses and the beam profiles along the central line covering the primary field and peripheral region at each depth. The primary field doses varied steeply with depth, while those in the peripheral region were weakly dependent on depth. For the 6 MV and 15 MV photon beams, (1) the central axis percent depth doses in the eight film layers ranged from 22% to 66% and from 15% to 44%, respectively; (2) the extrapolated percent depth doses at d = 0 were 15% and 14%, respectively. Agreement with the previously reported central axis percent depth doses in this region using parallel plate thin window ion chamber and ultrathin TLD was observed. The percent depth doses and beam profiles data can be incorporated in the treatment planning system for more accurate assessment of the doses to skin and shallow tumors to accomplish more accurate calculation results in the clinical usage.
Collapse
|
61
|
Cherpak A, Ding W, Hallil A, Cygler JE. Evaluation of a novel 4D in vivo dosimetry system. Med Phys 2009; 36:1672-9. [PMID: 19544784 DOI: 10.1118/1.3100264] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A prototype of a new 4D in vivo dosimetry system capable of simultaneous real-time position monitoring and dose measurement has been developed. The radiation positioning system (RADPOS) is controlled by a computer and combines two technologies: MOSFET radiation detector coupled with an electromagnetic positioning device. Special software has been developed that allows sampling position and dose either manually or automatically in user-defined time intervals. Preliminary tests of the new device include a dosimetric evaluation of the detector in 60Co, 6 MV, and 18 MV beams and measurements of spatial position stability and accuracy. In addition, the effect of metals and other materials on the performance of the positioning system has been investigated. Results show that the RADPOS system can measure in-air dose profiles that agree, on average, within 3%-5% of diode measurements for the energies tested. The response of the detector is isotropic within 1.6% (1 SD) with a maximum deviation of +/- 4.0% over 360 degrees. The maximum variation in the calibration coefficient over field sizes from 6 x 6 to 25 x 25 cm2 was 2.3% for RADPOS probe with the high sensitivity MOSFET and 4.6% for the probe with the standard sensitivity MOSFET. Of the materials tested, only aluminum, lead, and brass caused shifts in the RADPOS read position. The magnitude of the shift varied between materials and size of the material sample. Nonmagnetic stainless steel (Grade 304) caused a distortion of less than 2 mm when placed within 10 mm of the detector; therefore, it can provide a reasonable alternative to other metals if required. The results of the preliminary tests indicate that the device can be used for in vivo dosimetry in 60Co and high-energy beams from linear accelerators.
Collapse
Affiliation(s)
- A Cherpak
- Carleton University, 1125 Colonel By Drive, Ottawa, Ontario KIS 5B6, Canada
| | | | | | | |
Collapse
|
62
|
Qi ZY, Deng XW, Huang SM, Zhang L, He ZC, Li XA, Kwan I, Lerch M, Cutajar D, Metcalfe P, Rosenfeld A. In vivo verification of superficial dose for head and neck treatments using intensity-modulated techniques. Med Phys 2009; 36:59-70. [PMID: 19235374 DOI: 10.1118/1.3030951] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Skin dose is one of the key issues for clinical dosimetry in radiation therapy. Currently planning computer systems are unable to accurately predict dose in the buildup region, leaving ambiguity as to the dose levels actually received by the patient's skin during radiotherapy. This is one of the prime reasons why in vivo measurements are necessary to estimate the dose in the buildup region. A newly developed metal-oxide-semiconductor-field-effect-transistor (MOSFET) detector designed specifically for dose measurements in rapidly changing dose gradients was introduced for accurate in vivo skin dosimetry. The feasibility of this detector for skin dose measurements was verified in comparison with plane parallel ionization chamber and radiochromic films. The accuracy of a commercial treatment planning system (TPS) in skin dose calculations for intensity-modulated radiation therapy treatment of nasopharyngeal carcinoma was evaluated using MOSFET detectors in an anthropomorphic phantom as well as on the patients. Results show that this newly developed MOSFET detector can provide a minimal but highly reproducible intrinsic buildup of 7 mg cm(-2) corresponding to the requirements of personal surface dose equivalent Hp (0.07). The reproducibility of the MOSFET response, in high sensitivity mode, is found to be better than 2% at the phantom surface for the doses normally delivered to the patients. The MOSFET detector agrees well with the Attix chamber and the EBT Gafchromic film in terms of surface and buildup region dose measurements, even for oblique incident beams. While the dose difference between MOSFET measurements and TPS calculations is within measurement uncertainty for the depths equal to or greater than 0.5 cm, an overestimation of up to 8.5% was found for the surface dose calculations in the anthropomorphic phantom study. In vivo skin dose measurements reveal that the dose difference between the MOSFET results and the TPS calculations was on average -7.2%, ranging from -4.3% to -9.2%. The newly designed MOSFET detector encapsulated into a thin water protective film has a minimal reproducible intrinsic buildup recommended for skin dosimetry. This feature makes it very suitable for routine IMRT QA and accurate in vivo skin dosimetry.
Collapse
Affiliation(s)
- Zhen-Yu Qi
- State Key Laboratory of Oncology in Southern China, Guangzhou 510060, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Andic F, Ors Y, Davutoglu R, Baz Cifci S, Ispir EB, Erturk ME. Evaluation of skin dose associated with different frequencies of bolus applications in post-mastectomy three-dimensional conformal radiotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:41. [PMID: 19317895 PMCID: PMC2739519 DOI: 10.1186/1756-9966-28-41] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 03/24/2009] [Indexed: 11/10/2022]
Abstract
Background The study aimed to calculate chest-wall skin dose associated with different frequencies of bolus applications in post-mastectomy three-dimensional conformal radiotherapy (3D-CRT) and to provide detailed information in the selection of an appropriate bolus regimen in this clinical setting. Methods CT-Simulation scans of 22 post-mastectomy patients were used. Chest wall for clinical target volume (CTV) and a volume including 2-mm surface thickness of the chest wall for skin structures were delineated. Precise PLAN 2.11 treatment planning system (TPS) was used for 3D-CRT planning. 50 Gy in 25 fractions were prescribed using tangential fields and 6-MV photons. Six different frequencies of bolus applications (0, 5, 10, 15, 20, and 25) were administered. Cumulative dose-volume histograms were generated for each bolus regimen. The minimum, maximum and mean skin doses associated with the bolus regimens were compared. To test the accuracy of TPS dose calculations, experimental measurements were performed using EBT gafchromic films. Results The mean, minimum and maximum skin doses were significantly increased with increasing days of bolus applications (p < 0.001). The minimum skin doses for 0, 5, 10, 15, 20, and 25 days of bolus applications were 73.0% ± 2.0%, 78.2% ± 2.0%, 83.3% ± 1.7%, 88.3% ± 1.6%, 92.2% ± 1.7%, and 93.8% ± 1.8%, respectively. The minimum skin dose increments between 20 and 25 (1.6% ± 1.0%), and 15 and 20 (4.0% ± 1.0%) days of bolus applications were significantly lower than the dose increments between 0 and 5 (5.2% ± 0.6%), 5 and 10 (5.1% ± 0.8%), and 10 and 15 (4.9% ± 0.8%) days of bolus applications (p < 0.001). The maximum skin doses for 0, 5, 10, 15, 20, and 25 days of bolus applications were 110.1% ± 1.1%, 110.3% ± 1.1%, 110.5% ± 1.2%, 110.8% ± 1.3%, 111.2% ± 1.5%, and 112.2% ± 1.7%, respectively. The maximum skin dose increments between 20 and 25 (1.0% ± 0.6%), and 15 and 20 (0.4% ± 0.3%) days of bolus applications were significantly higher than the dose increments between 0 and 5 (0.2% ± 0.2%), 5 and 10 (0.2% ± 0.2%), and 10 and 15 (0.2% ± 0.2%) days of bolus applications (p ≤ 0.003). The TPS overestimated the near-surface dose 10.8% at 2-mm below the skin surface. Conclusion In post-mastectomy 3D-CRT, using a 1-cm thick bolus in up to 15 of the total 25 fractions increased minimum skin doses with a tolerable increase in maximum doses.
Collapse
Affiliation(s)
- Fundagul Andic
- Department of Radiation Oncology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey.
| | | | | | | | | | | |
Collapse
|
64
|
Kinhikar RA, Murthy V, Goel V, Tambe CM, Dhote DS, Deshpande DD. Skin dose measurements using MOSFET and TLD for head and neck patients treated with tomotherapy. Appl Radiat Isot 2009; 67:1683-5. [PMID: 19369084 DOI: 10.1016/j.apradiso.2009.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 03/10/2009] [Accepted: 03/10/2009] [Indexed: 11/16/2022]
Abstract
The purpose of this work was to estimate skin dose for the patients treated with tomotherapy using metal oxide semiconductor field-effect transistors (MOSFETs) and thermoluminescent dosimeters (TLDs). In vivo measurements were performed for two head and neck patients treated with tomotherapy and compared to TLD measurements. The measurements were subsequently carried out for five days to estimate the inter-fraction deviations in MOSFET measurements. The variation between skin dose measured with MOSFET and TLD for first patient was 2.2%. Similarly, the variation of 2.3% was observed between skin dose measured with MOSFET and TLD for second patient. The tomotherapy treatment planning system overestimated the skin dose as much as by 10-12% when compared to both MOSFET and TLD. However, the MOSFET measured patient skin doses also had good reproducibility, with inter-fraction deviations ranging from 1% to 1.4%. MOSFETs may be used as a viable dosimeter for measuring skin dose in areas where the treatment planning system may not be accurate.
Collapse
Affiliation(s)
- Rajesh A Kinhikar
- Department of Medical Physics, Tata Memorial Centre, Parel, Mumbai 400012, India.
| | | | | | | | | | | |
Collapse
|
65
|
Roland TF, Stathakis S, Ramer R, Papanikolaou N. Measurement and comparison of skin dose for prostate and head-and-neck patients treated on various IMRT delivery systems. Appl Radiat Isot 2008; 66:1844-9. [DOI: 10.1016/j.apradiso.2008.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Revised: 02/26/2008] [Accepted: 05/09/2008] [Indexed: 11/30/2022]
|
66
|
Roberson PL, Moran JM, Kulasekere R. Radiographic film dosimetry for IMRT fields in the nearsurface buildup region. J Appl Clin Med Phys 2008; 9:87-97. [PMID: 19020480 PMCID: PMC5722348 DOI: 10.1120/jacmp.v9i4.2782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 05/06/2008] [Accepted: 05/06/2008] [Indexed: 11/23/2022] Open
Abstract
Radiographic film dosimetry provides fast, convenient 2‐D dose distributions, but is challenged by the dependence of film response on scatter conditions (i.e., energy dependence). Verification of delivered dose in the surface buildup region is important for intensity modulated radiation therapy (IMRT) when volumes of interest encroach on these regions (e.g., head/neck, breast). The current work demonstrates that film dosimetry can accurately predict the dose in the buildup region for IMRT, since 1) film dosimetry can be performed with sufficient accuracy for small fields and 2) IMRT is delivered by a series of “small” segments (step and shoot IMRT). This work evaluates the accuracy of X‐OMAT V (XV) and Extended Dose Range (EDR) film for measurements from 2 mm to 15 mm depths for small fields and clinical IMRT beams. Film measurements have been compared to single point measurements made with a stereotactic diode and parallel plate ionization chamber (P11) and thermoluminescent dosimeters (TLD) at various depths for square (diode, P11) and IMRT (diode, TLD) fields. Film calibration was performed using an 8‐field step exposure on a single film at 5 cm depth, which has been corrected to represent either small field or large field depth dependent film calibration techniques. Up to 10% correction for film response variation as a function of depth was required for measurements in the buildup region. A depth‐dependent calibration can sufficiently improve the accuracy for IMRT calculation verification (i.e., ≤5% uncertainty). A small field film calibration technique was most appropriate for IMRT field measurements. Improved buildup region dose measurements for clinical IMRT fields promotes improved dose estimation performance for (inverse) treatment planning and allows more quantitative treatment delivery validation. PACS numbers: 87.53.‐j, 87.53.Dq
Collapse
Affiliation(s)
- Peter L Roberson
- Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan, U.S.A
| | - Jean M Moran
- Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan, U.S.A
| | - Ravi Kulasekere
- Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan, U.S.A
| |
Collapse
|
67
|
MOSFET detectors in quality assurance of tomotherapy treatments. Radiother Oncol 2008; 86:242-50. [DOI: 10.1016/j.radonc.2007.10.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 10/09/2007] [Accepted: 10/11/2007] [Indexed: 11/22/2022]
|
68
|
Court LE, Tishler RB, Allen AM, Xiang H, Makrigiorgos M, Chin L. Experimental evaluation of the accuracy of skin dose calculation for a commercial treatment planning system. J Appl Clin Med Phys 2008; 9:29-35. [PMID: 18449168 PMCID: PMC5721536 DOI: 10.1120/jacmp.v9i1.2792] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 11/16/2007] [Indexed: 12/01/2022] Open
Abstract
The present work uses the Eclipse treatment planning system (TPS) to investigate the accuracy of skin dose calculations. Micro‐MOSFETs (metal oxide semiconductor field effect transistors) were used to measure skin dose for a range of irradiation conditions (open fields, physical wedges, dynamic wedges, various source‐to‐surface distances) for 6‐MV and 10‐MV beams, and the results were compared with the calculated mean dose to a “skin” structure 2 mm thick for semi‐cylindrical phantoms (representative of a neck or breast). Agreement between the calculated and measured skin dose values was better than ±20% for 95% of all measured points (6‐MV and 10‐MV X‐ray spectra alike). For a fixed geometry, the TPS correctly calculated relative changes in dose, showing that minimization of skin dose in intensity‐modulated radiation therapy will be effective in Eclipse. PACS numbers: 87.53.Bn, 87.53.Dq, 87.66.Pm, 87.66.Xa
Collapse
Affiliation(s)
- Laurence E Court
- Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts, U.S.A
| | - Roy B Tishler
- Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts, U.S.A
| | - Aaron M Allen
- Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts, U.S.A
| | - Hong Xiang
- Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts, U.S.A
| | - Mike Makrigiorgos
- Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts, U.S.A
| | - Lee Chin
- Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts, U.S.A
| |
Collapse
|
69
|
Chow JCL, Grigorov GN. Surface dosimetry for oblique tangential photon beams: A Monte Carlo simulation study. Med Phys 2007; 35:70-6. [DOI: 10.1118/1.2818956] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
70
|
Court LE, Tishler RB. Experimental evaluation of the impact of different head-and-neck intensity-modulated radiation therapy planning techniques on doses to the skin and shallow targets. Int J Radiat Oncol Biol Phys 2007; 69:607-13. [PMID: 17869674 DOI: 10.1016/j.ijrobp.2007.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 12/01/2006] [Accepted: 03/06/2007] [Indexed: 11/29/2022]
Abstract
PURPOSE To investigate experimentally the impact of different head-and-neck intensity-modulated radiation therapy (IMRT) planning techniques on doses to the skin and shallow targets. METHODS AND MATERIALS A semicylindrical phantom was constructed with micro-MOSFET dosimeters (Thomson-Nielson, Ottawa, Ontario, Canada) at 0-, 3-, 6-, 9-, and 12-mm depths. The planning target volume (PTV) was pulled back 0, 3, or 5 mm from the body contour. The IMRT plans were created to maximize PTV coverage, with one of the following strategies: (a) aim for a maximum 110% hotspot, with 115% allowed; (b) aims for a maximum 105% hotspot; (c) aims for a maximum 105% hotspot and 50% of skin to get a maximum 70% of the prescribed dose; and (d) aim for 99% of the PTV volume to receive 90-93% of prescribed dose, with a maximum 105% hotspot, and with the dose to the skin structure minimized. Doses delivered using a linear accelerator were measured. Setup uncertainty was simulated by intentionally shifting the phantom in a range of +/-8 mm, and calculating the delivered dose for a range of systematic and random uncertainties. RESULTS From lowest to highest skin dose, the planning strategies were in the order of c, d, b, and a, but c showed a tendency to underdose tissues at depth. Delivered doses varied by 10-20%, depending on planning strategy. For typical setup uncertainties, cumulative dose reduction to a point 6 mm deep was <4%. CONCLUSIONS It is useful to use skin as a sensitive structure, but a minimum dose constraint must be used for the PTV if unwanted reductions in dose to nodes near the body surface are to be avoided. Setup uncertainties are unlikely to give excessive reductions in cumulative dose.
Collapse
Affiliation(s)
- Laurence E Court
- Department of Radiation Oncology, Dana-Farber and Brigham and Women's Cancer Center, Boston, MA 02115, USA.
| | | |
Collapse
|
71
|
Ramsey CR, Seibert RM, Robison B, Mitchell M. Helical tomotherapy superficial dose measurements. Med Phys 2007; 34:3286-93. [PMID: 17879792 DOI: 10.1118/1.2757000] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Helical tomotherapy is a treatment technique that is delivered from a 6 MV fan beam that traces a helical path while the couch moves linearly into the bore. In order to increase the treatment delivery dose rate, helical tomotherapy systems do not have a flattening filter. As such, the dose distributions near the surface of the patient may be considerably different from other forms of intensity-modulated delivery. The purpose of this study was to measure the dose distributions near the surface for helical tomotherapy plans with a varying separation between the target volume and the surface of an anthropomorphic phantom. A hypothetical planning target volume (PTV) was defined on an anthropomorphic head phantom to simulate a 2.0 Gy per fraction IMRT parotid-sparing head and neck treatment of the upper neck nodes. A total of six target volumes were created with 0, 1, 2, 3, 4, and 5 mm of separation between the surface of the phantom and the outer edge of the PTV. Superficial doses were measured for each of the treatment deliveries using film placed in the head phantom and thermoluminescent dosimeters (TLDs) placed on the phantom's surface underneath an immobilization mask. In the 0 mm test case where the PTV extends to the phantom surface, the mean TLD dose was 1.73 +/- 0.10 Gy (or 86.6 +/- 5.1% of the prescribed dose). The measured superficial dose decreases to 1.23 +/- 0.10 Gy (61.5 +/- 5.1% of the prescribed dose) for a PTV-surface separation of 5 mm. The doses measured by the TLDs indicated that the tomotherapy treatment planning system overestimates superficial doses by 8.9 +/- 3.2%. The radiographic film dose for the 0 mm test case was 1.73 +/- 0.07 Gy, as compared to the calculated dose of 1.78 +/- 0.05 Gy. Given the results of the TLD and film measurements, the superficial calculated doses are overestimated between 3% and 13%. Without the use of bolus, tumor volumes that extend to the surface may be underdosed. As such, it is recommended that bolus be added for these clinical cases. For cases where the target volume is located 1 to 5 mm below the surface, the tumor volume coverage can be achieved with surface doses ranging from 56% to 93% of the prescribed dose.
Collapse
Affiliation(s)
- Chester R Ramsey
- Department of Radiation Oncology, Thompson Cancer Survival Center, Knoxville, Tennessee 37916, USA.
| | | | | | | |
Collapse
|
72
|
Higgins PD, Han EY, Yuan JL, Hui S, Lee CK. Evaluation of surface and superficial dose for head and neck treatments using conventional or intensity-modulated techniques. Phys Med Biol 2007; 52:1135-46. [PMID: 17264375 DOI: 10.1088/0031-9155/52/4/018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With increased use of intensity-modulated radiation therapy (IMRT) for head and neck treatment questions have arisen as to selection of an optimum treatment approach when either superficial sparing or treatment is desired. Other work has pointed out the increased superficial dose resulting from obliquity effects when multiple tangential beams are applied to head and neck treatment, as is the general case in IMRT planning. Helical tomotherapy might be expected to result in even further enhanced superficial dose compared with conventional bilateral field treatment. We have designed a typical right oropharynx target volume in an anthropomorphic head and neck phantom. Three different treatment techniques have been used to optimally treat this target, including bilateral static fields, eight-field IMRT and helical tomotherapy. The phantom was immobilized in a standard treatment position and treated on a Varian 2300cd linear accelerator and on a Hi-Art Helical Tomotherapy unit. 1 mm3 lithium-fluoride thermoluminescent dosimeters (TLDs) were placed on the surface of the phantom at a number of axial test positions. Film strips (Kodak EDR2) were either wrapped around the surface or sandwiched within the phantom. Measured doses at the surface and as a function of depth are compared with the planning system predictions for each treatment technique. The maximum surface doses on the proximal treatment side, averaged from TLDs and films, were measured to be 69-82% of the target dose with the bilateral fields yielding the lowest surface doses (69%), tomotherapy about 2% more than that (71%) and IMRT 13% more (82%). Anterior to the target volume, doses are always low for bilateral treatment. In this case the minimum anterior surface dose (chin area) was 6% of the prescription dose from that technique as compared with 26% and 35% from the IMRT and tomotherapy methods, respectively. The Eclipse and Tomotherapy planning systems both modelled deep and superficial doses well. Surface doses were better modelled by Eclipse at the test points, while the tomotherapy plans consistently overestimated the measured doses by 10% or more. Depth dose measurements, extracted from embedded films, indicated the depth of dose build-up to >99% to be the shallowest for IMRT (2-5 mm) followed by tomotherapy (5-8 mm) and bilateral fields (10-15 mm). The amount of surface dose is clearly technique dependent and should be taken into account in the planning stage.
Collapse
Affiliation(s)
- P D Higgins
- Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
73
|
Chung H, Jin H, Palta J, Suh TS, Kim S. Dose variations with varying calculation grid size in head and neck IMRT. Phys Med Biol 2006; 51:4841-56. [PMID: 16985274 DOI: 10.1088/0031-9155/51/19/008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ever since the advent and development of treatment planning systems, the uncertainty associated with calculation grid size has been an issue. Even to this day, with highly sophisticated 3D conformal and intensity-modulated radiation therapy (IMRT) treatment planning systems (TPS), dose uncertainty due to grid size is still a concern. A phantom simulating head and neck treatment was prepared from two semi-cylindrical solid water slabs and a radiochromic film was inserted between the two slabs for measurement. Plans were generated for a 5,400 cGy prescribed dose using Philips Pinnacle(3) TPS for two targets, one shallow ( approximately 0.5 cm depth) and one deep ( approximately 6 cm depth). Calculation grid sizes of 1.5, 2, 3 and 4 mm were considered. Three clinical cases were also evaluated. The dose differences for the varying grid sizes (2 mm, 3 mm and 4 mm from 1.5 mm) in the phantom study were 126 cGy (2.3% of the 5,400 cGy dose prescription), 248.2 cGy (4.6% of the 5,400 cGy dose prescription) and 301.8 cGy (5.6% of the 5,400 cGy dose prescription), respectively for the shallow target case. It was found that the dose could be varied to about 100 cGy (1.9% of the 5,400 cGy dose prescription), 148.9 cGy (2.8% of the 5,400 cGy dose prescription) and 202.9 cGy (3.8% of the 5,400 cGy dose prescription) for 2 mm, 3 mm and 4 mm grid sizes, respectively, simply by shifting the calculation grid origin. Dose difference with a different range of the relative dose gradient was evaluated and we found that the relative dose difference increased with an increase in the range of the relative dose gradient. When comparing varying calculation grid sizes and measurements, the variation of the dose difference histogram was insignificant, but a local effect was observed in the dose difference map. Similar results were observed in the case of the deep target and the three clinical cases also showed results comparable to those from the phantom study.
Collapse
Affiliation(s)
- Heeteak Chung
- Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, 32611-8300, USA
| | | | | | | | | |
Collapse
|