51
|
Zhang P, Happersett L, Hunt M, Jackson A, Zelefsky M, Mageras G. Volumetric modulated arc therapy: planning and evaluation for prostate cancer cases. Int J Radiat Oncol Biol Phys 2009; 76:1456-62. [PMID: 19540062 DOI: 10.1016/j.ijrobp.2009.03.033] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/19/2009] [Accepted: 03/23/2009] [Indexed: 11/16/2022]
Abstract
PURPOSE To develop an optimization method using volumetric modulated arc therapy (VMAT) and evaluate VMAT plans relative to the standard intensity-modulated radiotherapy (IMRT) approach in prostate cancer. METHODS AND MATERIALS A single gantry rotation was modeled using 177 equispaced beams. Multileaf collimator apertures and dose rates were optimized with respect to gantry angle subject to dose-volume-based objectives. Our VMAT implementation used conjugate gradient descent to optimize dose rate, and stochastic sampling to find optimal multileaf collimator leaf positions. A treatment planning study of 11 prostate cancer patients with a prescription dose of 86.4 Gy was performed to compare VMAT with a standard five-field IMRT approach. Plan evaluation statistics included the percentage of planning target volume (PTV) receiving 95% of prescribed dose (V95), dose to 95% of PTV (D95), mean PTV dose, tumor control probability, and dosimetric endpoints of normal organs, whereas monitor unit (MU) and delivery time were used to assess delivery efficiency. RESULTS Patient-averaged PTV V95, D95, mean dose, and tumor control probability in VMAT plans were 96%, 82.6 Gy, 88.5 Gy, and 0.920, respectively, vs. 97%, 84.0 Gy, 88.9 Gy, and 0.929 in IMRT plans. All critical structure dose requirements were met. The VMAT plans presented better rectal wall sparing, with a reduction of 1.5% in normal tissue complication probability. An advantage of VMAT plans was that the average number of MUs (290 MU) was less than for IMRT plans (642 MU). CONCLUSION The VMAT technique can reduce beam on time by up to 55% while maintaining dosimetric quality comparable to that of the standard IMRT approach.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
52
|
Oliver M, Jensen M, Chen J, Wong E. Evaluation of optimization strategies and the effect of initial conditions on IMAT optimization using a leaf position optimization algorithm. Phys Med Biol 2009; 54:3543-61. [DOI: 10.1088/0031-9155/54/11/018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
53
|
Létourneau D, Publicover J, Kozelka J, Moseley DJ, Jaffray DA. Novel dosimetric phantom for quality assurance of volumetric modulated arc therapy. Med Phys 2009; 36:1813-21. [PMID: 19544800 DOI: 10.1118/1.3117563] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Daniel Létourneau
- Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada.
| | | | | | | | | |
Collapse
|
54
|
Yu CX, Amies CJ, Svatos M. Planning and delivery of intensity-modulated radiation therapy. Med Phys 2009; 35:5233-41. [PMID: 19175082 DOI: 10.1118/1.3002305] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intensity modulated radiation therapy (IMRT) is an advanced form of external beam radiation therapy. IMRT offers an additional dimension of freedom as compared with field shaping in three-dimensional conformal radiation therapy because the radiation intensities within a radiation field can be varied according to the preferences of locations within a given beam direction from which the radiation is directed to the tumor. This added freedom allows the treatment planning system to better shape the radiation doses to conform to the target volume while sparing surrounding normal structures. The resulting dosimetric advantage has shown to translate into clinical advantages of improving local and regional tumor control. It also offers a valuable mechanism for dose escalation to tumors while simultaneously reducing radiation toxicities to the surrounding normal tissue and sensitive structures. In less than a decade, IMRT has become common practice in radiation oncology. Looking forward, the authors wonder if IMRT has matured to such a point that the room for further improvement has diminished and so it is pertinent to ask what the future will hold for IMRT. This article attempts to look from the perspective of the current state of the technology to predict the immediate trends and the future directions. This article will (1) review the clinical experience of IMRT; (2) review what we learned in IMRT planning; (3) review different treatment delivery techniques; and finally, (4) predict the areas of advancements in the years to come.
Collapse
Affiliation(s)
- Cedric X Yu
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | |
Collapse
|
55
|
Quality Control of Portal Imaging with PTW EPID QC PHANTOM. Strahlenther Onkol 2009; 185:56-60. [PMID: 19224148 DOI: 10.1007/s00066-009-1905-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE Quality assurance (QA) and quality control (QC) of different electronic portal imaging devices (EPID) and portal images with the PTW EPID QC PHANTOM. MATERIAL AND METHODS Characteristic properties of images of different file formats were measured on Siemens OptiVue500aSi, Siemens BeamView Plus, Elekta iView, and Varian PortalVision and analyzed with the epidSoft 2.0 program in four radiation therapy centers. The portal images were taken with Kodak X-OMAT V and the Kodak Portal Localisation ReadyPack films and evaluated with the same program. RESULTS The optimal exposition both for EPIDs and portal films of different kind was determined. For double exposition, the 2+1 MU values can be recommended in the case of Siemens OptiVue500aSi Elekta iView and Kodak Portal Localisation ReadyPack films, while for Siemens BeamView Plus, Varian PortalVision and Kodak X-OMAT V film 7+7 MU is recommended. CONCLUSION The PTW EPID QC PHANTOM can be used not only for amorphous silicon EPIDs but also for images taken with a video-based system or by using an ionization chamber matrix or for portal film. For analysis of QC tests, a standardized format (used at the acceptance test) should be applied, as the results are dependent on the file format used.
Collapse
|
56
|
Oliver M, Gladwish A, Staruch R, Craig J, Gaede S, Chen J, Wong E. Experimental measurements and Monte Carlo simulations for dosimetric evaluations of intrafraction motion for gated and ungated intensity modulated arc therapy deliveries. Phys Med Biol 2008; 53:6419-36. [PMID: 18941277 DOI: 10.1088/0031-9155/53/22/010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Respiratory gated radiation therapy allows for a smaller margin expansion for the planning target volume (PTV) to account for respiratory induced motion and is emerging as a common method to treat lung and liver tumors. We investigated the dosimetric effect of free motion and gated delivery for intensity modulated arc therapy (IMAT) with experimental measurements and Monte Carlo simulations. The impact of PTV margin and duty cycle for gated delivery is studied with Monte Carlo simulations. A motion phantom is used for this study. Two sets of contours were drawn on the mid-inspiration CT scan of this motion phantom. For each set of contours, an IMAT plan to be delivered with constant dose rate was created. The plans were generated on a CT scan of the phantom in the static condition with 3 mm PTV margin and applied to the motion phantom under four conditions: static, full superior-inferior (SI) motion (A = 1 cm, T = 4 s) and gating conditions (25% and 50% duty cycles) with full SI motion. A 6 by 15 cm piece of radiographic film was placed in the sagittal plane of the phantom and then irradiated under all measurement conditions. Film calibration was performed with a step-wedge method to convert optical density to dose. Gated IMAT delivery was first validated in 2D by comparing static film with that from gating and full motion. A previously verified simulation tool for IMRT that takes the log files from the multileaf collimator (MLC) controller and the gating system were adapted to simulate the delivered IMAT treatment for full 3D dosimetric analysis. The IMAT simulations were validated against the 2D film measurements. The resultant IMAT simulations were evaluated with dose criteria, dose-volume histograms and 3D gamma analysis. We validated gated IMAT deliveries when we compared the static film with the one from gating using 25% duty cycle using 2D gamma analysis. Within experimental and setup uncertainties, film measurements agreed with their corresponding simulated plans using 2D gamma analysis. Finally, when planning with margins designed for gating with 25% duty cycle and applying 50% or no gating during treatment, the dose differences in D(min,) D(99%) and D(95%) of the clinical target volume can be up to 27 cGy, 20 cGy and 18 cGy, respectively, for a plan with 200 cGy prescription dose. We have experimentally delivered gated IMAT with constant dose rate to a motion phantom and assessed their accuracies with film dosimetry and Monte Carlo simulations. Film dosimetry demonstrated that 25% gating and static plans are within 2%, 2 mm. The Monte Carlo simulation method was employed to generate dose delivered in 3D to a motion phantom, and the dosimetric results were reported. Since our film measurements agreed well with Monte Carlo simulations, we can reliably use this simulation tool to further study the dosimetric effects of target motion and effectiveness of gating for IMAT deliveries.
Collapse
Affiliation(s)
- Mike Oliver
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
57
|
Commissioning and Quality Assurance of RapidArc Radiotherapy Delivery System. Int J Radiat Oncol Biol Phys 2008; 72:575-81. [PMID: 18793960 DOI: 10.1016/j.ijrobp.2008.05.060] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 05/22/2008] [Accepted: 05/30/2008] [Indexed: 11/23/2022]
|
58
|
Tang G, Earl MA, Luan S, Wang C, Cao D, Yu CX, Naqvi SA. Stochastic versus deterministic kernel-based superposition approaches for dose calculation of intensity-modulated arcs. Phys Med Biol 2008; 53:4733-46. [DOI: 10.1088/0031-9155/53/17/018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
59
|
Oliver M, Gladwish A, Craig J, Chen J, Wong E. Incorporating geometric ray tracing to generate initial conditions for intensity modulated arc therapy optimization. Med Phys 2008; 35:3137-50. [DOI: 10.1118/1.2937650] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
60
|
Dose-volume and biological-model based comparison between helical tomotherapy and (inverse-planned) IMAT for prostate tumours. Radiother Oncol 2008; 88:34-45. [PMID: 18395811 DOI: 10.1016/j.radonc.2008.03.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 03/06/2008] [Accepted: 03/06/2008] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND PURPOSE Helical tomotherapy (HT) and intensity-modulated arc therapy (IMAT) are two arc-based approaches to the delivery of intensity-modulated radiotherapy (IMRT). Through plan comparisons we have investigated the potential of IMAT, both with constant (conventional or IMAT-C) and variable (non-conventional or IMAT-NC, a theoretical exercise) dose-rate, to serve as an alternative to helical tomotherapy. MATERIALS AND METHODS Six patients with prostate tumours treated by HT with a moderately hypo-fractionated protocol, involving a simultaneous integrated boost, were re-planned as IMAT treatments. A method for IMAT inverse-planning using a commercial module for static IMRT combined with a multi-leaf collimator (MLC) arc-sequencing was developed. IMAT plans were compared to HT plans in terms of dose statistics and radiobiological indices. RESULTS Concerning the planning target volume (PTV), the mean doses for all PTVs were similar for HT and IMAT-C plans with minimum dose, target coverage, equivalent uniform dose (EUD) and tumour control probability (TCP) values being generally higher for HT; maximum dose and degree of heterogeneity were instead higher for IMAT-C. In relation to organs at risk, mean doses and normal tissue complication probability (NTCP) values were similar between the two modalities, except for the penile bulb where IMAT was significantly better. Re-normalizing all plans to the same rectal toxicity (NTCP=5%), the HT modality yielded higher TCP than IMAT-C but there was no significant difference between HT and IMAT-NC. The integral dose with HT was higher than that for IMAT. CONCLUSIONS with regards to the plan analysis, the HT is superior to IMAT-C in terms of target coverage and dose homogeneity within the PTV. Introducing dose-rate variation during arc-rotation, not deliverable with current linac technology, the simulations result in comparable plan indices between (IMAT-NC) and HT.
Collapse
|
61
|
Bichay T, Cao D, Orton CG. Helical tomotherapy will ultimately replace linear accelerator based IMRT as the best way to deliver conformal radiotherapy. Med Phys 2008; 35:1625-8. [DOI: 10.1118/1.2885365] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
62
|
Affiliation(s)
- Karl Otto
- Vancouver Cancer Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 4E6, Canada.
| |
Collapse
|
63
|
Van Esch A, Clermont C, Devillers M, Iori M, Huyskens DP. On-line quality assurance of rotational radiotherapy treatment delivery by means of a 2D ion chamber array and the Octavius phantom. Med Phys 2007; 34:3825-37. [PMID: 17985628 DOI: 10.1118/1.2777006] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Ann Van Esch
- Clinique Ste Elisabeth, Place L. Godin 15, 5000 Namur, Belgium.
| | | | | | | | | |
Collapse
|
64
|
Cao D, Holmes TW, Afghan MKN, Shepard DM. Comparison of Plan Quality Provided by Intensity-Modulated Arc Therapy and Helical Tomotherapy. Int J Radiat Oncol Biol Phys 2007; 69:240-50. [PMID: 17707278 DOI: 10.1016/j.ijrobp.2007.04.073] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 04/12/2007] [Accepted: 04/24/2007] [Indexed: 11/29/2022]
Abstract
PURPOSE Intensity-modulated arc therapy (IMAT) is an arc-based approach to intensity-modulated radiotherapy (IMRT) that can be delivered on a conventional linear accelerator using a conventional multileaf collimator. In a previous work, we demonstrated that our arc-sequencing algorithm can produce highly conformal IMAT plans. Through plan comparisons, we explored the ability of IMAT to serve as an alternative to helical tomotherapy. METHODS AND MATERIALS The IMAT plans were created for 10 patients previously treated with helical tomotherapy. Treatment plan comparisons, according to the target dose coverage and critical structure sparing, were performed to determine whether similar plan quality could be achieved using IMAT. RESULTS In 8 of 10 patient cases, IMAT was able to provide plan quality comparable to that of helical tomotherapy. In 2 of these 8 cases, the use of non-axial coplanar or non-coplanar arcs in IMAT planning led to significant improvements in normal tissue sparing. The remaining 2 cases posed particular dosimetric challenges. In 1 case, the target was immediately adjacent to a spinal cord that had received previous irradiation. The second case involved multiple target volumes and multiple prescription levels. Both IMAT and tomotherapy were able to produce clinically acceptable plans. Tomotherapy, however, provided a more uniform target dose and improved critical structure sparing. CONCLUSIONS For most cases, IMAT can provide plan qualities comparable to that of helical tomotherapy. For some intracranial tumors, IMAT's ability to deliver non-coplanar arcs led to significant dosimetric improvements. Helical tomotherapy, however, can provide improved dosimetric results in the most complex cases.
Collapse
Affiliation(s)
- Daliang Cao
- Swedish Cancer Institute, Seattle, WA 98104, USA
| | | | | | | |
Collapse
|
65
|
Ulrich S, Nill S, Oelfke U. Development of an optimization concept for arc-modulated cone beam therapy. Phys Med Biol 2007; 52:4099-119. [PMID: 17664597 DOI: 10.1088/0031-9155/52/14/006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this paper, we propose an optimization concept for a rotation therapy technique which is referred to as arc-modulated cone beam therapy (AMCBT). The aim is a reduction of the treatment time while achieving a treatment plan quality equal to or better than that of IMRT. Therefore, the complete dose is delivered in one single gantry rotation and the beam is modulated by a multileaf collimator. The degrees of freedom are the field shapes and weights for a predefined number of beam directions. In the new optimization loop, the beam weights are determined by a gradient algorithm and the field shapes by a tabu search algorithm. We present treatment plans for AMCBT for two clinical cases. In comparison to step-and-shoot IMRT treatment plans, it was possible by AMCBT to achieve dose distributions with a better dose conformity to the target and a lower mean dose for the most relevant organ at risk. Furthermore, the number of applied monitor units was reduced for AMCBT in comparison to IMRT treatment plans.
Collapse
Affiliation(s)
- Silke Ulrich
- Department of Medical Physics in Radiation Therapy, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
66
|
Mahesh M, Detorie N, Yu C. Intensity-Modulated Arc Therapy: New Developments on an Old Idea. J Am Coll Radiol 2007; 4:419-21. [PMID: 17544145 DOI: 10.1016/j.jacr.2007.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Indexed: 10/23/2022]
|