51
|
Baptista M, Di Maria S, Barros S, Figueira C, Sarmento M, Orvalho L, Vaz P. Dosimetric characterization and organ dose assessment in digital breast tomosynthesis: Measurements and Monte Carlo simulations using voxel phantoms. Med Phys 2015; 42:3788-800. [DOI: 10.1118/1.4921362] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
52
|
Sechopoulos I, Sabol JM, Berglund J, Bolch WE, Brateman L, Christodoulou E, Flynn M, Geiser W, Goodsitt M, Jones AK, Lo JY, Maidment ADA, Nishino K, Nosratieh A, Ren B, Segars WP, Von Tiedemann M. Radiation dosimetry in digital breast tomosynthesis: report of AAPM Tomosynthesis Subcommittee Task Group 223. Med Phys 2015; 41:091501. [PMID: 25186375 DOI: 10.1118/1.4892600] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The radiation dose involved in any medical imaging modality that uses ionizing radiation needs to be well understood by the medical physics and clinical community. This is especially true of screening modalities. Digital breast tomosynthesis (DBT) has recently been introduced into the clinic and is being used for screening for breast cancer in the general population. Therefore, it is important that the medical physics community have the required information to be able to understand, estimate, and communicate the radiation dose levels involved in breast tomosynthesis imaging. For this purpose, the American Association of Physicists in Medicine Task Group 223 on Dosimetry in Tomosynthesis Imaging has prepared this report that discusses dosimetry in breast imaging in general, and describes a methodology and provides the data necessary to estimate mean breast glandular dose from a tomosynthesis acquisition. In an effort to maximize familiarity with the procedures and data provided in this Report, the methodology to perform the dose estimation in DBT is based as much as possible on that used in mammography dose estimation.
Collapse
Affiliation(s)
- Ioannis Sechopoulos
- Departments of Radiology and Imaging Sciences, Hematology and Medical Oncology and Winship Cancer Institute, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322
| | - John M Sabol
- GE Healthcare, Global Diagnostic X-Ray, Mailstop W-701, 3000 North Grandview Boulevard, Waukesha, Wisconsin 53188
| | - Johan Berglund
- Research and Development, Philips Women's Healthcare, Solna, Sweden
| | - Wesley E Bolch
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
| | | | - Emmanuel Christodoulou
- Department of Radiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109
| | - Michael Flynn
- Department of Radiology, Henry Ford Health System, Radiology Research 2F, 1 Ford Place, Detroit, Michigan 48202
| | - William Geiser
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009
| | - Mitchell Goodsitt
- Department of Radiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109
| | - A Kyle Jones
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Joseph Y Lo
- Department of Radiology, Medical Physics Graduate Program, and Department of Biomedical Engineering, Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705
| | - Andrew D A Maidment
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-4206
| | | | - Anita Nosratieh
- Biomedical Engineering Graduate Group, Department of Radiology, University of California, Davis, California 95817
| | - Baorui Ren
- Hologic, Inc., 35 Crosby Drive, Bedford, Massachusetts 01730
| | - W Paul Segars
- Department of Radiology, Medical Physics Graduate Program, and Department of Biomedical Engineering, Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705
| | | |
Collapse
|
53
|
Qin X, Wang S, Shen M, Zhang X, Lerakis S, Wagner MB, Fei B. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2015; 9415. [PMID: 26855466 DOI: 10.1117/12.2082317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases.
Collapse
Affiliation(s)
- Xulei Qin
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
| | - Silun Wang
- Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Ming Shen
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA
| | - Xiaodong Zhang
- Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Stamatios Lerakis
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA; Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
| | - Mary B Wagner
- Department of Pediatrics, Emory University, Atlanta, GA
| | - Baowei Fei
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA; Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
54
|
Qin X, Wang S, Shen M, Zhang X, Lerakis S, Wagner MB, Fei B. 3D in vivo imaging of rat hearts by high frequency ultrasound and its application in myofiber orientation wrapping. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2015; 9419. [PMID: 26412926 DOI: 10.1117/12.2082326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Cardiac ultrasound plays an important role in the imaging of hearts in basic cardiovascular research and clinical examinations. 3D ultrasound imaging can provide the geometry or motion information of the heart. Especially, the wrapping of cardiac fiber orientations to the ultrasound volume could supply useful information on the stress distributions and electric action spreading. However, how to acquire 3D ultrasound volumes of the heart of small animals in vivo for cardiac fiber wrapping is still a challenging problem. In this study, we provide an approach to acquire 3D ultrasound volumes of the rat hearts in vivo. The comparison between both in vivo and ex vivo geometries indicated 90.1% Dice similarity. In this preliminary study, the evaluations of the cardiac fiber orientation wrapping errors were 24.7° for the acute angle error and were 22.4° for the inclination angle error. This 3D ultrasound imaging and fiber orientation estimation technique have potential applications in cardiac imaging.
Collapse
Affiliation(s)
- Xulei Qin
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
| | - Silun Wang
- Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Ming Shen
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA
| | - Xiaodong Zhang
- Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Stamatios Lerakis
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA ; Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
| | - Mary B Wagner
- Department of Pediatrics, Emory University, Atlanta, GA
| | - Baowei Fei
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA ; Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
55
|
Evans JD, Whiting BR, O'Sullivan JA, Politte DG, Klahr PH, Yu Y, Williamson JF. Prospects for in vivo estimation of photon linear attenuation coefficients using postprocessing dual-energy CT imaging on a commercial scanner: comparison of analytic and polyenergetic statistical reconstruction algorithms. Med Phys 2014; 40:121914. [PMID: 24320525 DOI: 10.1118/1.4828787] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Accurate patient-specific photon cross-section information is needed to support more accurate model-based dose calculation for low energy photon-emitting modalities in medicine such as brachytherapy and kilovoltage x-ray imaging procedures. A postprocessing dual-energy CT (pDECT) technique for noninvasive in vivo estimation of photon linear attenuation coefficients has been experimentally implemented on a commercial CT scanner and its accuracy assessed in idealized phantom geometries. METHODS Eight test materials of known composition and density were used to compare pDECT-estimated linear attenuation coefficients to NIST reference values over an energy range from 10 keV to 1 MeV. As statistical image reconstruction (SIR) has been shown to reconstruct images with less random and systematic error than conventional filtered backprojection (FBP), the pDECT technique was implemented with both an in-house polyenergetic SIR algorithm, alternating minimization (AM), as well as a conventional FBP reconstruction algorithm. Improvement from increased spectral separation was also investigated by filtering the high-energy beam with an additional 0.5 mm of tin. The law of propagated uncertainty was employed to assess the sensitivity of the pDECT process to errors in reconstructed images. RESULTS Mean pDECT-estimated linear attenuation coefficients for the eight test materials agreed within 1% of NIST reference values for energies from 1 MeV down to 30 keV, with mean errors rising to between 3% and 6% at 10 keV, indicating that the method is unbiased when measurement and calibration phantom geometries are matched. Reconstruction with FBP and AM algorithms conferred similar mean pDECT accuracy. However, single-voxel pDECT estimates reconstructed on a 1 × 1 × 3 mm(3) grid are shown to be highly sensitive to reconstructed image uncertainty; in some cases pDECT attenuation coefficient estimates exhibited standard deviations on the order of 20% around the mean. Reconstruction with the statistical AM algorithm led to standard deviations roughly 40% to 60% less than FBP reconstruction. Additional tin filtration of the high energy beam exhibits similar pDECT estimation accuracy as the unfiltered beam, even when scanning with only 25% of the dose. Using the law of propagated uncertainty, low Z materials are found to be more sensitive to image reconstruction errors than high Z materials. Furthermore, it is estimated that reconstructed CT image uncertainty must be limited to less than 0.25% to achieve a target linear-attenuation coefficient estimation uncertainty of 3% at 28 keV. CONCLUSIONS That pDECT supports mean linear attenuation coefficient measurement accuracies of 1% of reference values for energies greater than 30 keV is encouraging. However, the sensitivity of the pDECT measurements to noise and systematic errors in reconstructed CT images warrants further investigation in more complex phantom geometries. The investigated statistical reconstruction algorithm, AM, reduced random measurement uncertainty relative to FBP owing to improved noise performance. These early results also support efforts to increase DE spectral separation, which can further reduce the pDECT sensitivity to measurement uncertainty.
Collapse
Affiliation(s)
- Joshua D Evans
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298
| | | | | | | | | | | | | |
Collapse
|
56
|
Sechopoulos I, Bliznakova K, Fei B. Power spectrum analysis of the x-ray scatter signal in mammography and breast tomosynthesis projections. Med Phys 2014; 40:101905. [PMID: 24089907 DOI: 10.1118/1.4820442] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To analyze the frequency domain characteristics of the signal in mammography images and breast tomosynthesis projections with patient tissue texture due to detected scattered x-rays. METHODS Acquisitions of x-ray projection images of 19 different patient breasts were simulated using previously acquired volumetric patient images. Acquisition of these images was performed with a dedicated breast CT prototype system, and the images were classified into voxels representing skin, adipose, and glandular tissue with a previously validated automated algorithm. The classified three dimensional images then underwent simulated mechanical compression representing that which is performed during acquisition of mammography and breast tomosynthesis images. The acquisition of projection images of each patient breast was simulated using Monte Carlo methods with each simulation resulting in two images: one of the primary (non-scattered) signal and one of the scatter signal. To analyze the scatter signal for both mammography and breast tomosynthesis, two projections images of each patient breast were simulated, one with the x-ray source positioned at 0° (mammography and central tomosynthesis projection) and at 30° (wide tomosynthesis projection). The noise power spectra (NPS) for both the scatter signal alone and the total signal (primary + scatter) for all images were obtained and the combined results of all patients analyzed. The total NPS was fit to the expected power-law relationship NPS(f) = k/f β and the results were compared with those previously published on the power spectrum characteristics of mammographic texture. The scatter signal alone was analyzed qualitatively and a power-law fit was also performed. RESULTS The mammography and tomosynthesis projections of three patient breasts were too small to analyze, so a total of 16 patient breasts were analyzed. The values of β for the total signal of the 0° projections agreed well with previously published results. As expected, the scatter power spectrum reflected a fast drop-off with increasing spatial frequency, with a reduction of four orders of magnitude by 0.1 lp/mm. The β values for the scatter signal were 6.14 and 6.39 for the 0° and 30° projections, respectively. CONCLUSIONS Although the low-frequency characteristics of scatter in mammography and breast tomosynthesis were known, a quantitative analysis of the frequency domain characteristics of this signal was needed in order to optimize previously proposed software-based x-ray scatter reduction algorithms for these imaging modalities.
Collapse
Affiliation(s)
- Ioannis Sechopoulos
- Departments of Radiology and Imaging Sciences, Hematology and Medical Oncology and Winship Cancer Institute, Emory University, 1701 Upper Gate Drive NE, Suite 5018, Atlanta, Georgia 30322
| | | | | |
Collapse
|
57
|
Qin X, Lu G, Sechopoulos I, Fei B. Breast Tissue Classification in Digital Tomosynthesis Images Based on Global Gradient Minimization and Texture Features. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2014; 9034:90341V. [PMID: 25426271 PMCID: PMC4241347 DOI: 10.1117/12.2043828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Digital breast tomosynthesis (DBT) is a pseudo-three-dimensional x-ray imaging modality proposed to decrease the effect of tissue superposition present in mammography, potentially resulting in an increase in clinical performance for the detection and diagnosis of breast cancer. Tissue classification in DBT images can be useful in risk assessment, computer-aided detection and radiation dosimetry, among other aspects. However, classifying breast tissue in DBT is a challenging problem because DBT images include complicated structures, image noise, and out-of-plane artifacts due to limited angular tomographic sampling. In this project, we propose an automatic method to classify fatty and glandular tissue in DBT images. First, the DBT images are pre-processed to enhance the tissue structures and to decrease image noise and artifacts. Second, a global smooth filter based on L0 gradient minimization is applied to eliminate detailed structures and enhance large-scale ones. Third, the similar structure regions are extracted and labeled by fuzzy C-means (FCM) classification. At the same time, the texture features are also calculated. Finally, each region is classified into different tissue types based on both intensity and texture features. The proposed method is validated using five patient DBT images using manual segmentation as the gold standard. The Dice scores and the confusion matrix are utilized to evaluate the classified results. The evaluation results demonstrated the feasibility of the proposed method for classifying breast glandular and fat tissue on DBT images.
Collapse
Affiliation(s)
- Xulei Qin
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
| | - Guolan Lu
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA
| | - Ioannis Sechopoulos
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
- Winship Cancer Institute, Emory University, Atlanta, GA
| | - Baowei Fei
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA
- Department of Mathematics & Computer Science, Emory University, Atlanta, GA
- Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
58
|
Qin X, Wang S, Shen M, Zhang X, Wagner MB, Fei B. Mapping Cardiac Fiber Orientations from High-Resolution DTI to High-Frequency 3D Ultrasound. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2014; 9036:90361O. [PMID: 25328641 DOI: 10.1117/12.2043821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The orientation of cardiac fibers affects the anatomical, mechanical, and electrophysiological properties of the heart. Although echocardiography is the most common imaging modality in clinical cardiac examination, it can only provide the cardiac geometry or motion information without cardiac fiber orientations. If the patient's cardiac fiber orientations can be mapped to his/her echocardiography images in clinical examinations, it may provide quantitative measures for diagnosis, personalized modeling, and image-guided cardiac therapies. Therefore, this project addresses the feasibility of mapping personalized cardiac fiber orientations to three-dimensional (3D) ultrasound image volumes. First, the geometry of the heart extracted from the MRI is translated to 3D ultrasound by rigid and deformable registration. Deformation fields between both geometries from MRI and ultrasound are obtained after registration. Three different deformable registration methods were utilized for the MRI-ultrasound registration. Finally, the cardiac fiber orientations imaged by DTI are mapped to ultrasound volumes based on the extracted deformation fields. Moreover, this study also demonstrated the ability to simulate electricity activations during the cardiac resynchronization therapy (CRT) process. The proposed method has been validated in two rat hearts and three canine hearts. After MRI/ultrasound image registration, the Dice similarity scores were more than 90% and the corresponding target errors were less than 0.25 mm. This proposed approach can provide cardiac fiber orientations to ultrasound images and can have a variety of potential applications in cardiac imaging.
Collapse
Affiliation(s)
- Xulei Qin
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
| | - Silun Wang
- Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Ming Shen
- Department of Pediatrics, Emory University, Atlanta, GA
| | - Xiaodong Zhang
- Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Mary B Wagner
- Department of Pediatrics, Emory University, Atlanta, GA
| | - Baowei Fei
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA ; Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
59
|
|
60
|
Liaparinos P, Bliznakova K. Monte Carlo performance on the x-ray converter thickness in digital mammography using software breast models. Med Phys 2012; 39:6638-51. [DOI: 10.1118/1.4757919] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|