51
|
Sukhtankar DD, Lee H, Rice KC, Ko MC. Differential effects of opioid-related ligands and NSAIDs in nonhuman primate models of acute and inflammatory pain. Psychopharmacology (Berl) 2014; 231:1377-87. [PMID: 24217900 PMCID: PMC3954905 DOI: 10.1007/s00213-013-3341-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/09/2013] [Indexed: 11/30/2022]
Abstract
RATIONALE Carrageenan-induced hyperalgesia is a widely used pain model in rodents. However, characteristics of carrageenan-induced hyperalgesia and effects of analgesic drugs under these conditions are unknown in nonhuman primates. OBJECTIVE The aims of this study were to develop carrageenan-induced hyperalgesia in rhesus monkeys and determine the efficacy and potency of agonists selective for the four opioid receptor subtypes in this model versus acute pain, as compared to non-steroidal anti-inflammatory drugs (NSAIDs). RESULTS Tail injection of carrageenan produced long-lasting thermal hyperalgesia in monkeys. Systemically administered agonists selective for opioid receptor subtypes, i.e., fentanyl (mu/MOP), U-50488H (kappa/KOP), SNC80 (delta/DOP) and Ro 64-6198 (nociceptin/orphanin FQ/NOP) dose-dependently attenuated carrageenan-induced thermal hyperalgesia with different potencies. In absence of carrageenan, these agonists, except SNC80, blocked acute thermal nociception. Opioid-related ligands, especially Ro 64-6198, were much more potent for their antihyperalgesic than antinociceptive effects. Both effects were mediated by the corresponding receptor mechanisms. Only fentanyl produced scratching at antihyperalgesic and antinociceptive doses consistent with its pruritic effects in humans, illustrating a translational profile of MOP agonists in nonhuman primates. Similar to SNC80, systemically administered NSAIDs ketorolac and naproxen dose-dependently attenuated carrageenan-induced hyperalgesia but not acute nociception. CONCLUSION Using two different pain modalities in nonhuman primates, effectiveness of clinically available analgesics like fentanyl, ketorolac and naproxen was distinguished and their efficacies and potencies were compared with the selective KOP, DOP, and NOP agonists. The opioid-related ligands displayed differential pharmacological properties in regulating hyperalgesia and acute nociception in the same subjects. Such preclinical primate models can be used to investigate novel analgesic agents.
Collapse
Affiliation(s)
- Devki D. Sukhtankar
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA,Corresponding authors: Dr. D. Sukhtankar () and Dr. H. Lee ()
| | - Heeseung Lee
- Department of Anesthesiology and Pain Medicine, School of Medicine, Ewha Womans University, Seoul 158-710, S. Korea,Corresponding authors: Dr. D. Sukhtankar () and Dr. H. Lee ()
| | - Kenner C. Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse, Bethesda, MD 20892, USA
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA,Center for Comparative Medicine Research, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
52
|
Abstract
The transient receptor potential ankyrin subtype 1 protein (TRPA1) is a nonselective cation channel permeable to Ca(2+), Na(+), and K(+). TRPA1 is a promiscuous chemical nocisensor that is also involved in noxious cold and mechanical sensation. It is present in a subpopulation of Aδ- and C-fiber nociceptive sensory neurons as well as in other sensory cells including epithelial cells. In primary sensory neurons, Ca(2+) and Na(+) flowing through TRPA1 into the cell cause membrane depolarization, action potential discharge, and neurotransmitter release both at peripheral and central neural projections. In addition to being activated by cysteine and lysine reactive electrophiles and oxidants, TRPA1 is indirectly activated by pro-inflammatory agents via the phospholipase C signaling pathway, in which cytosolic Ca(2+) is an important regulator of channel gating. The finding that non-electrophilic compounds, including menthol and cannabinoids, activate TRPA1 may provide templates for the design of non-tissue damaging activators to fine-tune the activity of TRPA1 and raises the possibility that endogenous ligands sharing binding sites with such non-electrophiles exist and regulate TRPA1 channel activity. TRPA1 is promising as a drug target for novel treatments of pain, itch, and sensory hyperreactivity in visceral organs including the airways, bladder, and gastrointestinal tract.
Collapse
Affiliation(s)
- Peter M Zygmunt
- Clinical and Experimental Pharmacology, Clinical Chemistry, Department of Laboratory Medicine, Lund University, Skåne University Hospital, SE-221 85, Lund, Sweden,
| | | |
Collapse
|
53
|
Chambard JM, Tagat E, Boudeau P, Partiseti M. Transforming TRP channel drug discovery using medium-throughput electrophysiological assays. ACTA ACUST UNITED AC 2013; 19:468-77. [PMID: 23954932 DOI: 10.1177/1087057113499632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Since the cloning of its first member in 1998, transient receptor potential (TRP) cation channels have become one of the most studied ion channel families in drug discovery. These channels, almost all calcium permeant, have been studied in many different (patho)-physiological and therapeutic areas as diverse as pain; neurodegenerative, cardiovascular, and inflammatory diseases; and cancer. At the same time, implementation of automated electrophysiology screening platforms has significantly increased the tractability of ion channels, mainly voltage gated, as drug targets. The work presented in this article shows the design and validation of TRP screening assays using the IonWorks Quattro platform (Molecular Devices, Sunnyvale, CA), allowing a significant increase in throughput to support drug discovery programs. This new player has a direct impact on resources and timelines by prioritizing potential candidates and reducing the number of molecules requiring final testing by manual patch-clamp, which is still today the gold standard technology for this challenging drug target class.
Collapse
Affiliation(s)
- Jean-Marie Chambard
- 1Lead Generation to Candidate Realization Department, Lead Identification Technologies, Sanofi, Vitry Sur Seine, France
| | | | | | | |
Collapse
|
54
|
Klement G, Eisele L, Malinowsky D, Nolting A, Svensson M, Terp G, Weigelt D, Dabrowski M. Characterization of a ligand binding site in the human transient receptor potential ankyrin 1 pore. Biophys J 2013; 104:798-806. [PMID: 23442958 DOI: 10.1016/j.bpj.2013.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/07/2012] [Accepted: 01/04/2013] [Indexed: 11/28/2022] Open
Abstract
The pharmacology and regulation of Transient Receptor Potential Ankyrin 1 (TRPA1) ion channel activity is intricate due to the physiological function as an integrator of multiple chemical, mechanical, and temperature stimuli as well as differences in species pharmacology. In this study, we describe and compare the current inhibition efficacy of human TRPA1 on three different TRPA1 antagonists. We used a homology model of TRPA1 based on Kv1.2 to select pore vestibule residues available for interaction with ligands entering the vestibule. Site-directed mutation constructs were expressed in Xenopus oocytes and their functionality and pharmacology assessed to support and improve our homology model. Based on the functional pharmacology results we propose an antagonist-binding site in the vestibule of the TRPA1 ion channel. We use the results to describe the proposed intravestibular ligand-binding site in TRPA1 in detail. Based on the single site substitutions, we designed a human TRPA1 receptor by substituting several residues in the vestibule and adjacent regions from the rat receptor to address and explain observed species pharmacology differences. In parallel, the lack of effect on HC-030031 inhibition by the vestibule substitutions suggests that this molecule interacts with TRPA1 via a binding site not situated in the vestibule.
Collapse
Affiliation(s)
- Göran Klement
- Neuroscience Department, CNS & Pain Innovative Medicines, AstraZeneca R&D Södertälje, Södertälje, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
55
|
de la Roche J, Eberhardt MJ, Klinger AB, Stanslowsky N, Wegner F, Koppert W, Reeh PW, Lampert A, Fischer MJM, Leffler A. The molecular basis for species-specific activation of human TRPA1 protein by protons involves poorly conserved residues within transmembrane domains 5 and 6. J Biol Chem 2013; 288:20280-92. [PMID: 23709225 DOI: 10.1074/jbc.m113.479337] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The surveillance of acid-base homeostasis is concerted by diverse mechanisms, including an activation of sensory afferents. Proton-evoked activation of rodent sensory neurons is mainly mediated by the capsaicin receptor TRPV1 and acid-sensing ion channels. In this study, we demonstrate that extracellular acidosis activates and sensitizes the human irritant receptor TRPA1 (hTRPA1). Proton-evoked membrane currents and calcium influx through hTRPA1 occurred at physiological acidic pH values, were concentration-dependent, and were blocked by the selective TRPA1 antagonist HC030031. Both rodent and rhesus monkey TRPA1 failed to respond to extracellular acidosis, and protons even inhibited rodent TRPA1. Accordingly, mouse dorsal root ganglion neurons lacking TRPV1 only responded to protons when hTRPA1 was expressed heterologously. This species-specific activation of hTRPA1 by protons was reversed in both mouse and rhesus monkey TRPA1 by exchange of distinct residues within transmembrane domains 5 and 6. Furthermore, protons seem to interact with an extracellular interaction site to gate TRPA1 and not via a modification of intracellular N-terminal cysteines known as important interaction sites for electrophilic TRPA1 agonists. Our data suggest that hTRPA1 acts as a sensor for extracellular acidosis in human sensory neurons and should thus be taken into account as a yet unrecognized transduction molecule for proton-evoked pain and inflammation. The species specificity of this property is unique among known endogenous TRPA1 agonists, possibly indicating that evolutionary pressure enforced TRPA1 to inherit the role as an acid sensor in human sensory neurons.
Collapse
Affiliation(s)
- Jeanne de la Roche
- Department of Anesthesia and Critical Care Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Lin AP, Ko MC. The therapeutic potential of nociceptin/orphanin FQ receptor agonists as analgesics without abuse liability. ACS Chem Neurosci 2013; 4:214-24. [PMID: 23421672 DOI: 10.1021/cn300124f] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Although mu opioid (MOP) receptor agonists are the most commonly used analgesics for the treatment of moderate to severe pain in the clinic, the side effects of MOP agonists such as abuse liability limit their value as a medication. Research to identify novel analgesics without adverse effects is pivotal to advance the health care of humans. The nociceptin/orphanin FQ peptide (NOP) receptor, the fourth opioid receptor subtype, mediates distinctive actions in nonhuman primates which suggests the possibility that activity at this receptor may result in strong analgesia in the absence of virtually all of the side effects associated with MOP agonists. The present review highlights the recent progress of pharmacological studies of NOP-related ligands in primates. Selective NOP agonists, either peptidic or nonpeptidic, produce full analgesia in various assays in primates, when delivered systemically or intrathecally. Yet small molecule NOP agonists do not serve as reinforcers, indicating a lack of abuse liability. Given that NOP agonists have low abuse liability and that coactivation of NOP and MOP receptors produces synergistic antinociception, it is worth developing bifunctional NOP/MOP ligands. The outcomes of these studies and recent developments provide new perspectives to establish a translational bridge for understanding the biobehavioral functions of NOP receptors in primates and for facilitating the development of NOP-related ligands as a new generation of analgesics without abuse liability in humans.
Collapse
Affiliation(s)
- Ann P. Lin
- Department of Psychology, School
of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Mei-Chuan Ko
- Department of Pharmacology,
Medical School, University of Michigan,
Ann Arbor, Michigan 48109, United States
| |
Collapse
|
57
|
Hatano N, Suzuki H, Muraki Y, Muraki K. Stimulation of human TRPA1 channels by clinical concentrations of the antirheumatic drug auranofin. Am J Physiol Cell Physiol 2013; 304:C354-61. [DOI: 10.1152/ajpcell.00096.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gold compounds, which were widely used to treat rheumatoid arthritis, have been recently used as experimental agents for tumor treatment. Transient receptor potential (TRP) ankyrin repeat 1 (TRPA1) is a Ca2+-permeable ion channel that senses acute and inflammatory pain signals. Electrophilic compounds such as mustard oil and cinnamaldehyde activate TRPA1 by interacting with TRPA1 cysteine residues. Here we investigate the effects of the gold compound auranofin (AUR) on TRPA1 channels. Intracellular Ca2+ and whole cell patch-clamp recordings were performed on human embryonic kidney cells transiently expressed with TRPA1, TRP melastatin 8 (TRPM8), and vanilloid type TRP (TRPV1–4) channels. AUR stimulated TRPA1 in a concentration-dependent manner with a half-maximum potency of around 1.0 μM. The AUR-induced response was effectively blocked by HC030031, a TRPA1 antagonist. On the other hand, AUR failed to activate TRPM8 and TRPV1–4 channels, which are highly expressed in sensory neurons as nociceptors. The stimulatory effect on TRPA1 channels depended on the C414, C421, C621, and C633 cysteine residues and not on the inhibition of thioredoxin reductase by AUR. Moreover, AUR effectively activated TRPA1 channels expressed in human differentiated neuroblastoma cell lines. The study shows that AUR is a potent stimulator of TRPA1 channels.
Collapse
Affiliation(s)
- Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Hiroka Suzuki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Yukiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| |
Collapse
|
58
|
The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch 2012; 464:425-58. [DOI: 10.1007/s00424-012-1158-z] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
|
59
|
Pan R, Tian Y, Gao R, Li H, Zhao X, Barrett JE, Hu H. Central Mechanisms of Menthol-Induced Analgesia. J Pharmacol Exp Ther 2012; 343:661-72. [DOI: 10.1124/jpet.112.196717] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
60
|
Shakhbazau A, Shcharbin D, Seviaryn I, Goncharova N, Kosmacheva S, Potapnev M, Bryszewska M, Kumar R, Biernaskie J, Midha R. Dendrimer-Driven Neurotrophin Expression Differs in Temporal Patterns between Rodent and Human Stem Cells. Mol Pharm 2012; 9:1521-8. [DOI: 10.1021/mp300041k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Antos Shakhbazau
- Department
of Clinical Neurosciences,
Faculty of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss
Brain Institute, University of Calgary,
Calgary, Canada
| | - Dzmitry Shcharbin
- Institute
of Biophysics and Cell
Engineering, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Ihar Seviaryn
- Republic Centre for Hematology and Transfusiology, Minsk, Belarus
| | | | | | - Mihail Potapnev
- Republic Centre for Hematology and Transfusiology, Minsk, Belarus
| | - Maria Bryszewska
- Department of General Biophysics, University of Lodz, Lodz, Poland
| | - Ranjan Kumar
- Department
of Clinical Neurosciences,
Faculty of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss
Brain Institute, University of Calgary,
Calgary, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Jeffrey Biernaskie
- Hotchkiss
Brain Institute, University of Calgary,
Calgary, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Rajiv Midha
- Department
of Clinical Neurosciences,
Faculty of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss
Brain Institute, University of Calgary,
Calgary, Canada
| |
Collapse
|