51
|
Abstract
Chemokines and their receptors have a multifaceted role in tumor biology and are implicated in nearly all aspects of cancer growth, survival and dissemination. Modulation of the interaction between chemokines and their cell surface receptor is, therefore, a promising area for the development of new cancer medicines. In this review, we look at the compelling evidence that is emerging to support targeting CXC chemokines, also known as family α chemokines, as novel therapeutic strategies in the treatment of cancer.
Collapse
|
52
|
Quick ML, Mukherjee S, Rudick CN, Done JD, Schaeffer AJ, Thumbikat P. CCL2 and CCL3 are essential mediators of pelvic pain in experimental autoimmune prostatitis. Am J Physiol Regul Integr Comp Physiol 2012; 303:R580-9. [PMID: 22814670 DOI: 10.1152/ajpregu.00240.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experimental autoimmune prostatitis (EAP) is a murine model of chronic prostatitis/chronic pelvic pain syndrome (CPPS) in men, a syndrome characterized by chronic pelvic pain. We have demonstrated that chemokine ligands CCL2 and CCL3 are biomarkers that correlate with pelvic pain symptoms. We postulated that CCL2 and CCL3 play a functional role in CPPS and therefore examined their expression in EAP. Upon examination of the prostate 5 days after induction of EAP, CCL2 mRNA was elevated 2- to 3-fold, CCL8 by 15-fold, CCL12 by 12- to 13-fold, and CXCL9 by 2- to 4-fold compared with control mice. At 10 days the major chemokines were CXCL13 and CXCL2; at 20 days CCL2 (1- to 2-fold), CCL3 (2- to 3-fold) and CCL11 (2- to 3-fold); and at 30 days, CCL12 (20- to 35-fold) and smaller increases in CCL2, CCL3, and XCL1. Chemokine elevations were accompanied by increases in mast cells and B cells at 5 days, monocytes and neutrophils at day 10, CD4+ T cells at day 20, and CD4+ and CD8+ T cells at day 30. Anti-CCL2 and anti-CCL3 neutralizing antibodies administered at EAP onset attenuated pelvic pain development, but only anti-CCL2 antibodies were effective therapeutically. CCL2- and its cognate receptor CCR2-deficient mice were completely protected from development of pain symptoms but assumed susceptibility after reconstitution with wild-type bone marrow. CCL3-deficient mice showed resistance to the maintenance of pelvic pain while CCR5-deficient mice did not show any lessening of pelvic pain severity. These results suggest that the CCL2-CCR2 axis and CCL3 are important mediators of chronic pelvic pain in EAP.
Collapse
Affiliation(s)
- Marsha L Quick
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
53
|
Translation of drug effects from experimental models of neuropathic pain and analgesia to humans. Drug Discov Today 2012; 17:837-49. [PMID: 22445930 DOI: 10.1016/j.drudis.2012.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/31/2012] [Accepted: 02/21/2012] [Indexed: 11/22/2022]
Abstract
Neuropathic pain research remains a challenging undertaking owing to: (i) the lack of understanding about the underlying disease processes; and (ii) poor predictive validity of the current models of evoked pain used for the screening of novel compounds. Common consensus is that experimental models replicate symptoms (i.e. have face validity but no construct validity). Another issue that requires attention is the sensitivity of endpoints to discriminate drug effects that are relevant to the disease in humans. In this paper we provide an overview of the pre-clinical models that can be used in conjunction with a model-based approach to facilitate the prediction of drug effects in humans. Our review strongly suggests that evidence of the concentration-effect relationship is necessary for translational purposes.
Collapse
|
54
|
The chemokine CCL2 increases Nav1.8 sodium channel activity in primary sensory neurons through a Gβγ-dependent mechanism. J Neurosci 2012; 31:18381-90. [PMID: 22171040 DOI: 10.1523/jneurosci.3386-11.2011] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Changes in function of voltage-gated sodium channels in nociceptive primary sensory neurons participate in the development of peripheral hyperexcitability that occurs in neuropathic and inflammatory chronic pain conditions. Among them, the tetrodotoxin-resistant (TTX-R) sodium channel Na(v)1.8, primarily expressed by small- and medium-sized dorsal root ganglion (DRG) neurons, substantially contributes to the upstroke of action potential in these neurons. Compelling evidence also revealed that the chemokine CCL2 plays a critical role in chronic pain facilitation via its binding to CCR2 receptors. In this study, we therefore investigated the effects of CCL2 on the density and kinetic properties of TTX-R Na(v)1.8 currents in acutely small/medium dissociated lumbar DRG neurons from naive adult rats. Whole-cell patch-clamp recordings demonstrated that CCL2 concentration-dependently increased TTX-resistant Na(v)1.8 current densities in both small- and medium-diameter sensory neurons. Incubation with CCL2 also shifted the activation and steady-state inactivation curves of Na(v)1.8 in a hyperpolarizing direction in small sensory neurons. No change in the activation and inactivation kinetics was, however, observed in medium-sized nociceptive neurons. Our electrophysiological recordings also demonstrated that the selective CCR2 antagonist INCB3344 [N-[2-[[(3S,4S)-1-E4-(1,3-benzodioxol-5-yl)-4-hydroxycyclohexyl]-4-ethoxy-3-pyrrolidinyl]amino]-2-oxoethyl]-3-(trifluoromethyl)benzamide] blocks the potentiation of Na(v)1.8 currents by CCL2 in a concentration-dependent manner. Furthermore, the enhancement in Na(v)1.8 currents was prevented by pretreatment with pertussis toxin (PTX) or gallein (a Gβγ inhibitor), indicating the involvement of Gβγ released from PTX-sensitive G(i/o)-proteins in the cross talk between CCR2 and Na(v)1.8. Together, our data clearly demonstrate that CCL2 may excite primary sensory neurons by acting on the biophysical properties of Na(v)1.8 currents via a CCR2/Gβγ-dependent mechanism.
Collapse
|
55
|
Chemokines and cytokines in neuroinflammation leading to neuropathic pain. Curr Opin Pharmacol 2012; 12:55-61. [DOI: 10.1016/j.coph.2011.10.007] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/05/2011] [Indexed: 12/20/2022]
|
56
|
Chang YW, Winkelstein BA. Schwann Cell Proliferation and Macrophage Infiltration Are Evident at Day 14 after Painful Cervical Nerve Root Compression in the Rat. J Neurotrauma 2011; 28:2429-38. [DOI: 10.1089/neu.2011.1918] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yu-Wen Chang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
57
|
Peripheral nerve injury alters blood-spinal cord barrier functional and molecular integrity through a selective inflammatory pathway. J Neurosci 2011; 31:10819-28. [PMID: 21795534 DOI: 10.1523/jneurosci.1642-11.2011] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Peripheral nerve lesion triggers alterations in the spinal microenvironment that contribute to the pathogenesis of neuropathic pain. While neurons and glia have been implicated in these functional changes, it remains largely underexplored whether the blood-spinal cord barrier (BSCB) is also involved. The BSCB is an important component in the CNS homeostasis, and compromised BSCB has been associated with different pathologies affecting the spinal cord. Here, we demonstrated that a remote injury on the peripheral nerve in rats triggered a leakage of the BSCB, which was independent of spinal microglial activation. The increase of BSCB permeability to different size tracers, such as Evans Blue and sodium fluorescein, was restricted to the lumbar spinal cord and prominent for at least 4 weeks after injury. The spinal inflammatory reaction triggered by nerve injury was a key player in modulating BSCB permeability. We identified MCP-1 as an endogenous trigger for the BSCB leakage. BSCB permeability can also be impaired by circulating IL-1β. In contrast, antiinflammatory cytokines TGF-β1 and IL-10 were able to shut down the openings of the BSCB following nerve injury. Peripheral nerve injury caused a decrease in tight junction and caveolae-associated proteins. Interestingly, ZO-1 and occludin, but not caveolin-1, were rescued by TGF-β1. Furthermore, our data provide direct evidence that disrupted BSCB following nerve injury contributed to the influx of inflammatory mediators and the recruitment of spinal blood borne monocytes/macrophages, which played a major role in the development of neuropathic pain. These findings highlight the importance of inflammation in BSCB integrity and in spinal cord homeostasis.
Collapse
|
58
|
Zhang X, Hufnagel H, Hou C, Opas E, McKenney S, Crysler C, O’Neill J, Johnson D, Sui Z. Design, synthesis and SAR of indazole and benzoisoxazole containing 4-azetidinyl-1-aryl-cyclohexanes as CCR2 antagonists. Bioorg Med Chem Lett 2011; 21:6042-8. [DOI: 10.1016/j.bmcl.2011.08.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 10/17/2022]
|
59
|
Smith AK, Conneely KN, Kilaru V, Mercer KB, Weiss TE, Bradley B, Tang Y, Gillespie CF, Cubells JF, Ressler KJ. Differential immune system DNA methylation and cytokine regulation in post-traumatic stress disorder. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:700-8. [PMID: 21714072 PMCID: PMC3292872 DOI: 10.1002/ajmg.b.31212] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 05/31/2011] [Indexed: 12/15/2022]
Abstract
DNA methylation may mediate persistent changes in gene function following chronic stress. To examine this hypothesis, we evaluated African American subjects matched by age and sex, and stratified into four groups by post-traumatic stress disorder (PTSD) diagnosis and history of child abuse. Total Life Stress (TLS) was also assessed in all subjects. We evaluated DNA extracted from peripheral blood using the HumanMethylation27 BeadChip and analyzed both global and site-specific methylation. Methylation levels were examined for association with PTSD, child abuse history, and TLS using a linear mixed model adjusted for age, sex, and chip effects. Global methylation was increased in subjects with PTSD. CpG sites in five genes (TPR, CLEC9A, APC5, ANXA2, and TLR8) were differentially methylated in subjects with PTSD. Additionally, a CpG site in NPFFR2 was associated with TLS after adjustment for multiple testing. Notably, many of these genes have been previously associated with inflammation. Given these results and reports of immune dysregulation associated with trauma history, we compared plasma cytokine levels in these subjects and found IL4, IL2, and TNFα levels associated with PTSD, child abuse, and TLS. Together, these results suggest that psychosocial stress may alter global and gene-specific DNA methylation patterns potentially associated with peripheral immune dysregulation. Our results suggest the need for further research on the role of DNA methylation in stress-related illnesses.
Collapse
Affiliation(s)
- Alicia K. Smith
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Karen N. Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Varun Kilaru
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | | | - Tamara E. Weiss
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | | | - Yilang Tang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Charles F. Gillespie
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Joseph F. Cubells
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia,Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Kerry J. Ressler
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia,Howard Hughes Medical Institute, Maryland,Yerkes National Primate Research Center, Atlanta, Georgia,Correspondence to: Kerry J. Ressler, M.D., Ph.D., Department of Psychiatry and Behavioral Sciences, Yerkes Research Center, Emory University, 954 Gatewood Dr, Atlanta, GA 30329.
| |
Collapse
|
60
|
Sakai T, Xu Y. Stem cells decreased neuronal cell death after hypoxic stress in primary fetal rat neurons in vitro. Cell Transplant 2011; 21:355-64. [PMID: 21669034 DOI: 10.3727/096368911x580545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To explore stem cell-mediated neuronal protection through extracellular signaling pathways by transplanted stem cells, we sought to identify potential candidate molecules responsible for neuronal protection using an in vitro coculture system. Primary fetal rat hippocampal neurons underwent hypoxia (≤1% oxygen) for 96 h nad then were returned to a normoxic condition. The study group then received rat umbilical cord matrix-derived stem cells, while the control group received fresh media only. The experimental group showed decreased neuronal apoptosis compared to the control group [44.5 ± 1.6% vs. 71.0 ± 4.2% (mean ± SD, p = 0.0005) on day 5] and higher neuronal survival (4.9 ± 1.2 cells/100× field vs. 2.2 ± 0.3, p = 0.02 on day 5). Among 90 proteins evaluated using a protein array, stem cell coculture media showed increased protein secretion of TIMP-1 (5.61-fold), TIMP-2 (4.88), CNTF-Rα (3.42), activin A (2.20), fractalkine (2.04), CCR4 (2.02), and decreased secretion in MIP-2 (0.30-fold), AMPK α1 (0.43), TROY (0.48), and TIMP-3 (0.50). This study demonstrated that coculturing stem cells with primary neurons in vitro decreased neuronal cell death after hypoxia with significantly altered protein secretion. The results suggest that stem cells may offer neuronal protection through extracellular signaling.
Collapse
Affiliation(s)
- Tetsuro Sakai
- Department of Anesthesiology, The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | |
Collapse
|
61
|
Wilson NM, Jung H, Ripsch MS, Miller RJ, White FA. CXCR4 signaling mediates morphine-induced tactile hyperalgesia. Brain Behav Immun 2011; 25:565-73. [PMID: 21193025 PMCID: PMC3039030 DOI: 10.1016/j.bbi.2010.12.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/17/2010] [Accepted: 12/18/2010] [Indexed: 01/15/2023] Open
Abstract
Morphine and related compounds are the first line of therapy in the treatment of moderate to severe pain. Over time, individuals taking opioids can develop an increasing sensitivity to noxious stimuli, even evolving into a painful response to previously non-noxious stimuli (opioid-induced hyperalgesia; OIH). The mechanism underlying OIH is not well understood although complex intracellular neural mechanisms, including opioid receptor desensitization and down-regulation, are believed to be major mechanisms underlying OIH. However, OIH may also be associated with changes in gene expression. A growing body of evidence suggests that cellular exposure to mu agonists upregulate chemokines/receptors and recent work from our laboratory implicates chemokine upregulation in a variety of neuropathic pain behaviors. Here we characterized the degree to which chemokines/receptors signaling is increased in primary afferent neurons of the dorsal root ganglion (DRG) following chronic morphine sulfate treatment and correlated these changes with tactile hyperalgesic behavior in rodents. We demonstrate that mRNA expression of the chemokine, stromal-derived factor-1 (SDF1/CXCL12) is upregulated following morphine treatment in sensory neurons of the rat. The release of SDF1 was found to be constitutive when compared with the activity dependent release of the C-C chemokine, monocyte chemoattractant protein-1 (MCP1/CCL2) in a line of F11 neuroblastoma-sensory neuron hybrid cells. We further determined that there is pronounced CXCR4 expression in satellite glial cells and following morphine treatment, increased functional CXCR4 expression in sensory neurons of the DRG. Moreover, intraperitoneal administration of the specific CXCR4 antagonist, AMD3100, completely reversed OIH in the rat. Taken together; the data suggest that opioid-induced SDF1/CXCR4 signaling is central to the development of long lasting OIH and that receptor antagonists represent a promising novel approach to the management of the side effects associated with the use of opioids for chronic pain management.
Collapse
Affiliation(s)
- Natalie M. Wilson
- Department of Pharmacology, Loyola University, Chicago, Maywood, Illinois 60153
| | - Hosung Jung
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, IL 60611
| | - Matthew S. Ripsch
- Department of Anesthesia, Indiana University, Indianapolis, IN 46208
| | - Richard J. Miller
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, IL 60611
| | - Fletcher A. White
- Department of Anesthesia, Program in Medical Neurosciences, Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN 46208
| |
Collapse
|
62
|
Sandhir R, Gregory E, He YY, Berman NEJ. Upregulation of inflammatory mediators in a model of chronic pain after spinal cord injury. Neurochem Res 2011; 36:856-62. [PMID: 21287269 DOI: 10.1007/s11064-011-0414-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2011] [Indexed: 11/24/2022]
Abstract
Chronic neuropathic pain is a disabling condition observed in large number of individuals following spinal cord injury (SCI). Recent progress points to an important role of neuroinflammation in the pathogenesis of central neuropathic pain. The focus of the present study is to investigate the role of proinflammatory molecules IL-1β, TNF-α, MCP-1, MMP-9 and TIMP-1 in chronic neuropathic pain in a rodent model of SCI. Rats were subjected to spinal cord contusion using a controlled linear motor device with an injury epicenter at T10. The SCI rats had severe impairment in locomotor function at 7 days post-injury as assessed by the BBB score. The locomotor scores showed significant improvement starting at day 14 and thereafter showed no further improvement. The Hargreaves' test was used to assess thermal hyperalgesia for hindpaw, forepaw and tail. A significant reduction in withdrawal latency was observed for forepaw and tail of SCI rats at days 21 and 28, indicating the appearance of thermal hyperalgesia. Changes in expression of mRNAs for IL-1β, TNF-α, MCP-1, MMP-9 and TIMP-1 were assessed using real-time polymerase chain reaction in spinal cord including the injury epicenter along with regions above and below the level of lesion at day 28 post-injury. A significant increase was observed in the expression of MCP-1, TNF-α, TIMP-1 and IL-1β in the injury epicenter, whereas only TIMP-1 was upregulated in the area below the injury epicenter. The results of the study suggest that prolonged upregulation of inflammatory mediators might be involved in chronic neuropathic pain in SCI, and that TIMP-1 may play a role in maintenance of chronic below level pain.
Collapse
Affiliation(s)
- Rajat Sandhir
- Steve Palermo Nerve Regeneration Laboratory, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
63
|
Villa G, Ceruti S, Zanardelli M, Magni G, Jasmin L, Ohara PT, Abbracchio MP. Temporomandibular joint inflammation activates glial and immune cells in both the trigeminal ganglia and in the spinal trigeminal nucleus. Mol Pain 2010; 6:89. [PMID: 21143950 PMCID: PMC3017032 DOI: 10.1186/1744-8069-6-89] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 12/10/2010] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Glial cells have been shown to directly participate to the genesis and maintenance of chronic pain in both the sensory ganglia and the central nervous system (CNS). Indeed, glial cell activation has been reported in both the dorsal root ganglia and the spinal cord following injury or inflammation of the sciatic nerve, but no data are currently available in animal models of trigeminal sensitization. Therefore, in the present study, we evaluated glial cell activation in the trigeminal-spinal system following injection of the Complete Freund's Adjuvant (CFA) into the temporomandibular joint, which generates inflammatory pain and trigeminal hypersensitivity. RESULTS CFA-injected animals showed ipsilateral mechanical allodynia and temporomandibular joint edema, accompanied in the trigeminal ganglion by a strong increase in the number of GFAP-positive satellite glial cells encircling neurons and by the activation of resident macrophages. Seventy-two hours after CFA injection, activated microglial cells were observed in the ipsilateral trigeminal subnucleus caudalis and in the cervical dorsal horn, with a significant up-regulation of Iba1 immunoreactivity, but no signs of reactive astrogliosis were detected in the same areas. Since the purinergic system has been implicated in the activation of microglial cells during neuropathic pain, we have also evaluated the expression of the microglial-specific P2Y12 receptor subtype. No upregulation of this receptor was detected following induction of TMJ inflammation, suggesting that any possible role of P2Y12 in this paradigm of inflammatory pain does not involve changes in receptor expression. CONCLUSIONS Our data indicate that specific glial cell populations become activated in both the trigeminal ganglia and the CNS following induction of temporomandibular joint inflammation, and suggest that they might represent innovative targets for controlling pain during trigeminal nerve sensitization.
Collapse
Affiliation(s)
- Giovanni Villa
- Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| | - Stefania Ceruti
- Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| | - Matteo Zanardelli
- Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| | - Giulia Magni
- Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| | - Luc Jasmin
- Department of Neurosurgery, Cedars Sinai Medical Center, Los Angeles CA 90013, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Peter T Ohara
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Maria P Abbracchio
- Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
64
|
Chang M, Smith S, Thorpe A, Barratt MJ, Karim F. Evaluation of phenoxybenzamine in the CFA model of pain following gene expression studies and connectivity mapping. Mol Pain 2010; 6:56. [PMID: 20846436 PMCID: PMC2949723 DOI: 10.1186/1744-8069-6-56] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 09/16/2010] [Indexed: 11/24/2022] Open
Abstract
Background We have previously used the rat 4 day Complete Freund's Adjuvant (CFA) model to screen compounds with potential to reduce osteoarthritic pain. The aim of this study was to identify genes altered in this model of osteoarthritic pain and use this information to infer analgesic potential of compounds based on their own gene expression profiles using the Connectivity Map approach. Results Using microarrays, we identified differentially expressed genes in L4 and L5 dorsal root ganglia (DRG) from rats that had received intraplantar CFA for 4 days compared to matched, untreated control animals. Analysis of these data indicated that the two groups were distinguishable by differences in genes important in immune responses, nerve growth and regeneration. This list of differentially expressed genes defined a "CFA signature". We used the Connectivity Map approach to identify pharmacologic agents in the Broad Institute Build02 database that had gene expression signatures that were inversely related ('negatively connected') with our CFA signature. To test the predictive nature of the Connectivity Map methodology, we tested phenoxybenzamine (an alpha adrenergic receptor antagonist) - one of the most negatively connected compounds identified in this database - for analgesic activity in the CFA model. Our results indicate that at 10 mg/kg, phenoxybenzamine demonstrated analgesia comparable to that of Naproxen in this model. Conclusion Evaluation of phenoxybenzamine-induced analgesia in the current study lends support to the utility of the Connectivity Map approach for identifying compounds with analgesic properties in the CFA model.
Collapse
Affiliation(s)
- Meiping Chang
- Indications Discovery Research Unit, Pfizer Global Research and Development, Chesterfield, MO 63017, USA
| | | | | | | | | |
Collapse
|
65
|
Insights into the regulation of chemokine receptors by molecular signaling pathways: functional roles in neuropathic pain. Brain Behav Immun 2010; 24:859-65. [PMID: 20347955 PMCID: PMC2897965 DOI: 10.1016/j.bbi.2010.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/15/2010] [Accepted: 03/22/2010] [Indexed: 01/29/2023] Open
Abstract
Inflammation plays a central role in the manner that the nervous system responds to injury. These effects include vasodilatation, increased vascular permeability, plasma extravasation, cell migration, and pain. Extracellular signals associated with inflammation may also lead to increased levels of pro-nociceptive chemokines/receptors that directly contribute to persistent or chronic pain behavior. To date, research focused on improving the treatment of chronic pain has largely ignored the role of inflammation-associated transcription factors such as nuclear transcription factor in activated T cells (NFAT). Herein we discuss the idea that activation of this transcription factor may be responsible for the production of chemokines receptors in both neuronal and non-neuronal cells of the peripheral nervous system. Taken together, a better understanding of the transcription of these pro-nociceptive genes may lead to the development of novel analgesic targets.
Collapse
|
66
|
Acharjee S, Noorbakhsh F, Stemkowski PL, Olechowski C, Cohen EA, Ballanyi K, Kerr B, Pardo C, Smith PA, Power C. HIV-1 viral protein R causes peripheral nervous system injury associated with in vivo neuropathic pain. FASEB J 2010; 24:4343-53. [PMID: 20628092 DOI: 10.1096/fj.10-162313] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Painful peripheral neuropathy has become the principal neurological disorder in HIV/AIDS patients. Herein, we investigated the effects of a cytotoxic HIV-1 accessory protein, viral protein R (Vpr), on the peripheral nervous system (PNS). Host and viral gene expression was investigated in peripheral nerves from HIV-infected individuals and in HIV-infected human dorsal root ganglion (DRG) cultures by RT-PCR and immunocytochemistry. Cytosolic calcium ([Ca(2+)]) fluxes and neuronal membrane responses were analyzed in cultured DRGs. Neurobehavioral responses and cytokine levels were assessed in a transgenic mouse model in which the vpr transgene was expressed in an immunodeficient background (vpr/RAG1(-/-)). Vpr transcripts and proteins were detected in peripheral nerves and DRGs from HIV-infected patients. Exposure of rat or human cultured DRG neurons to Vpr rapidly increased [Ca(2+)] and action potential frequency while increasing input resistance. HIV infection of human DRG cultures caused neurite retraction (P<0.05), accompanied by induction of interferon-α (IFN-α) transcripts (P<0.05). vpr/RAG1(-/-) mice expressed Vpr together with increased IFN-α (P<0.05) in the PNS and also exhibited mechanical allodynia, unlike their vpr/RAG1(-/-) littermates (P<0.05). Herein, Vpr caused DRG neuronal damage, likely through cytosolic calcium activation and cytokine perturbation, highlighting Vpr's contribution to HIV-associated peripheral neuropathy and ensuing neuropathic pain.
Collapse
Affiliation(s)
- Shaona Acharjee
- Department of Medicine,University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|