51
|
Jhaveri KA, Reichensperger J, Toth LA, Sekino Y, Ramkumar V. Reduced basal and lipopolysaccharide-stimulated adenosine A1 receptor expression in the brain of nuclear factor-kappaB p50-/- mice. Neuroscience 2007; 146:415-26. [PMID: 17350174 PMCID: PMC2034751 DOI: 10.1016/j.neuroscience.2006.12.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 11/17/2006] [Accepted: 12/03/2006] [Indexed: 01/15/2023]
Abstract
Adenosine promotes cytoprotection under conditions of infection, ischemic preconditioning and oxidative stress. Previous studies from our laboratory indicate that the expression of the adenosine A1 receptor (A1AR) is induced by oxidative stress via activation of nuclear factor (NF)-kappaB. The prototypic transcription factor is composed of homo- or heterodimers of p50 and p65 subunits. To determine the role of NF-kappaB in the regulation of the A1AR in vivo, we compared the A1AR RNA and protein levels in the brains of mice lacking the p50 subunit of NF-kappaB (p50-/- mice) and age-matched B6129PF2/J (F2) controls. Radioligand binding assays in the cortex revealed a significantly lower number of A(1)AR (maximal binding capacity, Bmax) in the cortex of p50-/- mice (151+/-62 fmol/mg protein) versus 479+/-181 fmol/mg protein in the F2 (N=5 per strain, P<0.05), but no change in the equilibrium dissociation constant. Similar reductions in A1AR were measured in the hippocampus, brain stem and hypothalamus and in peripheral tissues, such as the adrenal gland, kidney and spleen. Estimation of the A1AR following purification by antibody affinity columns also indicated reduced A1AR in the p50-/- mice cortex, as compared with the F2 mice. A1AR immunocytochemistry indicates distinct neuronal labeling in the F2 cortex, which was substantially reduced in similar sections obtained from p50-/- mice. The p50-/- mice expressed lower levels of A1AR mRNA than F2 mice, as determined by real time PCR. Quantitation of the A1AR transducing G proteins by Western blotting show significantly less Galphai3, no change in Galphai1, but higher levels of Galphao and Gbeta in the cortices of p50-/-, as compared with F2 mice. Administration of bacterial lipopolysaccharide (LPS), an activator of NF-kappaB, increased A1AR expression in the cortices of F2 mice but not p50-/- mice. Cortical neurons cultures prepared from p50-/- mice showed a greater degree of apoptosis, compared with neurons from F2 mice. Activation of the A1AR reduced apoptosis with greater efficacy in cultures from F2 than p50-/- mice. Taken together, these data support a role for NF-kappaB in determining both the basal and LPS-stimulated A1AR expression in vivo which could contribute to neuronal survival.
Collapse
Affiliation(s)
- Krishna A. Jhaveri
- Department of Pharmacology Southern Illinois University School of Medicine PO Box 19629 Springfield, Illinois 62794−9629
| | - Joel Reichensperger
- Department of Pharmacology Southern Illinois University School of Medicine PO Box 19629 Springfield, Illinois 62794−9629
| | - Linda A. Toth
- Department of Pharmacology Southern Illinois University School of Medicine PO Box 19629 Springfield, Illinois 62794−9629
| | - Yuko Sekino
- Division of Neuronal Network Department of Basic Medical Sciences Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Vickram Ramkumar
- Department of Pharmacology Southern Illinois University School of Medicine PO Box 19629 Springfield, Illinois 62794−9629
| |
Collapse
|
52
|
Ramesh V, Thatte HS, McCarley RW, Basheer R. Adenosine and sleep deprivation promote NF-kappaB nuclear translocation in cholinergic basal forebrain. J Neurochem 2007; 100:1351-63. [PMID: 17316404 DOI: 10.1111/j.1471-4159.2006.04314.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In our investigations related to the homeostatic sleep factor adenosine (AD), we previously demonstrated that the DNA-binding activity of the transcription factor NF-kappaB in rat cholinergic basal forebrain increased following 3 h of sleep deprivation (SD). However, the neurotransmitter nature of the cells and the SD-induced stimuli responsible for NF-kappaB activation were not defined. In this report, we demonstrate, using double labeling immunohistochemistry, that nuclear translocation of NF-kappaB occurs almost exclusively in the cholinergic neurons of the basal forebrain following 3 h of SD. Furthermore, cholinergic basal forebrain microinjection of AD (25 nmol/L) or the A(1) receptor agonist N(6)-cyclo-hexyladenosine (100 nmol/L) induced nuclear translocation of NF-kappaB, thus suggesting that SD-induced increased extracellular concentrations of AD, acting via the A(1) AD receptor, may be responsible for the nuclear translocation of NF-kappaB in cholinergic neurons. Moreover, blocking the nuclear translocation of NF-kappaB by injection of inhibitor peptide, SN50, immediately prior to 6 h SD significantly reduced delta activity (1-4 Hz) during the first two hours of recovery sleep. Together, these data suggest a role in sleep homeostasis for the SD-induced activation of NF-kappaB in cholinergic basal forebrain, and that transcription factor NF-kappaB may code for factor(s) that play a role in sleep homeostasis.
Collapse
Affiliation(s)
- Vijay Ramesh
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, Massachusetts, USA
| | | | | | | |
Collapse
|
53
|
Ritchie E, Saka M, MacKenzie C, Drummond R, Wheeler-Jones C, Kanke T, Plevin R. Cytokine upregulation of proteinase-activated-receptors 2 and 4 expression mediated by p38 MAP kinase and inhibitory kappa B kinase beta in human endothelial cells. Br J Pharmacol 2007; 150:1044-54. [PMID: 17339845 PMCID: PMC2013917 DOI: 10.1038/sj.bjp.0707150] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 11/07/2006] [Accepted: 11/20/2006] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Up-regulation of proteinase-activated receptor-2 (PAR2) is a factor in a number of disease states and we have therefore examined the signalling pathways involved in the expression of the receptor. EXPERIMENTAL APPROACH We investigated the effects of tumour necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), trypsin and the PAR2 activating peptide, 2-furoyl(2f)-LIGKV-OH on both mRNA and functional expression of PAR2 in human umbilical vein endothelial cells (HUVECs). The effect of specific chemical inhibitors and dominant negative adenovirus constructs of the mitogen-activated protein kinase (MAPK) cascade and the nuclear factor kappa B (NF-kappaB) signalling pathway was assessed. Methods included semi-quantitative and quantitative RT-PCR, [(3)H]inositol phosphate (IP) accumulation and Ca(2+)-dependent fluorescence. KEY RESULTS The above agonists induced both mRNA and functional expression of PAR2; PAR4 mRNA, but not that for PAR1 or PAR-3, also increased following TNFalpha treatment. Inhibition of p38 MAP kinase reduced PAR2 and PAR4 expression, whilst inhibition of MEK1/ERK/JNK was without effect. A similar dependency upon p38 MAP kinase was observed for the expression of PAR4. TNFalpha -induced enhancement of PAR2 stimulated [(3)H]-inositol phosphate accumulation (IP) and Ca(2+) signalling was abolished following SB203580 pre-treatment. Infection with adenovirus encoding dominant-negative IKKbeta (Ad.IKKbeta(+/-)) and to a lesser extent dominant-negative IKKalpha (Ad.IKKalpha(+/-)), substantially reduced both control and IL-1beta- induced expression of both PAR2 and PAR4 mRNA and enhancement of PAR2-stimulated IP accumulation and Ca(2+) mobilisation. CONCLUSIONS AND IMPLICATIONS These data reveal for the first time the signalling events involved in the upregulation of both PAR2 and PAR4 during pro-inflammatory challenge.
Collapse
Affiliation(s)
- E Ritchie
- The Department of Physiology and Pharmacology, The University of Strathclyde, Strathclyde Institute for Biomedical Sciences Glasgow, UK
| | - M Saka
- Tokyo New Drug Research Laboratories, Kowa Company Limited Higashimurayama, Tokyo, Japan
| | - C MacKenzie
- The Department of Physiology and Pharmacology, The University of Strathclyde, Strathclyde Institute for Biomedical Sciences Glasgow, UK
| | - R Drummond
- The Department of Physiology and Pharmacology, The University of Strathclyde, Strathclyde Institute for Biomedical Sciences Glasgow, UK
| | - C Wheeler-Jones
- Department of Veterinary Basic Sciences, Royal Veterinary College London, UK
| | - T Kanke
- Tokyo New Drug Research Laboratories, Kowa Company Limited Higashimurayama, Tokyo, Japan
| | - R Plevin
- The Department of Physiology and Pharmacology, The University of Strathclyde, Strathclyde Institute for Biomedical Sciences Glasgow, UK
| |
Collapse
|
54
|
Magata S, Taniguchi M, Suzuki T, Shimamura T, Fukai M, Furukawa H, Fujita M, Todo S. The effect of antagonism of adenosine A1 receptor against ischemia and reperfusion injury of the liver. J Surg Res 2007; 139:7-14. [PMID: 17336335 DOI: 10.1016/j.jss.2006.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 09/11/2006] [Accepted: 09/18/2006] [Indexed: 01/22/2023]
Abstract
BACKGROUND Adenosine is known to exert protective roles in hepatic ischemia and reperfusion injury, while all adenosine receptors do not play the cytoprotective roles. We have tested our hypothesis that blockage of adenosine binding to A(1) receptor by its antagonist, KW3902 [8-(noradamantan-3-yl)-1,3-dipropylxanthine] attenuates hepatic ischemia-reperfusion injury. METHODS Adult female beagle dogs underwent a 2 h total hepatic vascular exclusion (THVE) with a venovenous bypass. Nontreated animals that underwent THVE with a venovenous bypass alone were used as the control (Group CT, n=6). KW3902 was given to the animals by continuous intraportal infusion for 60 min before ischemia at a dose of 1 microg/kg/min (Group KW, n=6). Two wk survival, hemodynamics, hepatic tissue blood flow (HTBF), liver function, energy metabolism, cAMP concentration, and histopathological findings were studied. RESULTS Two wk animal survival was significantly improved in group KW compared with that in group CT (group CT: 16.7% versus group KW: 83.3%). HTBF, liver function, and hepatic adenine nucleotide concentration were remarkably better in group KW than group CT. In addition, cAMP concentration in group KW was maintained significantly higher than group CT. Histopathological examination revealed preservation of hepatic architecture and suppression of neutrophil infiltration into hepatic tissue in group KW. CONCLUSION Administration of adenosine A(1) receptor antagonist before ischemia attenuates hepatic ischemia-reperfusion injury. To elicit the beneficial effect of adenosine against ischemia and reperfusion injury of the liver, it is important to oppose adenosine A1 receptor activation.
Collapse
Affiliation(s)
- Shinichiro Magata
- Department of Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Briassouli P, Chan F, Savage K, Reis-Filho JS, Linardopoulos S. Aurora-A regulation of nuclear factor-kappaB signaling by phosphorylation of IkappaBalpha. Cancer Res 2007; 67:1689-95. [PMID: 17308110 DOI: 10.1158/0008-5472.can-06-2272] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Aurora-A/STK15 gene encodes a kinase that is frequently amplified in cancer. Overexpression of Aurora-A in mammalian cells leads to centrosome amplification, genetic instability, and transformation. In this study, we show that Aurora-A activates nuclear factor-kappaB (NF-kappaB) via IkappaBalpha phosphorylation. Inhibition of endogenous Aurora-A reduces tumor necrosis factor alpha (TNFalpha)-induced IkappaBalpha degradation. We analyzed primary human breast cancers, and 13.6% of samples showed Aurora-A gene amplification, all of which exhibited nuclear localization of NF-kappaB. We propose that this subgroup of patients with breast cancer might benefit from inhibiting Aurora-A. We also show that down-regulation of NF-kappaB via Aurora-A depletion can enhance cisplatin-dependent apoptosis. These data define a new role for Aurora-A in regulating IkappaBalpha that is critical for the activation of NF-kappaB-directed gene expression and may be partially responsible for the oncogenic effect of Aurora-A when the gene is amplified and overexpressed in human tumors.
Collapse
Affiliation(s)
- Paraskevi Briassouli
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, United Kingdom
| | | | | | | | | |
Collapse
|
56
|
Jhaveri KA, Toth LA, Sekino Y, Ramkumar V. Nitric oxide serves as an endogenous regulator of neuronal adenosine A1receptor expression. J Neurochem 2006; 99:42-53. [PMID: 16987234 DOI: 10.1111/j.1471-4159.2006.04095.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitric oxide (NO) radicals are produced during normal cellular function, after tissue injury, and in response to immune system activation during infection. The transformation of NO to peroxynitrite is essential for mediating some of its physiological and/or cytotoxic actions. As the expression of the adenosine A1 receptor (A1AR) is regulated by oxidative stress, we evaluated the role of NO in the regulation of A1AR expression, a G protein-coupled receptor involved in cytoprotection in the central nervous system. Administration of the NO donor, S-nitrosylpenicillamine (SNAP), to pheochromocytoma 12 (PC12) cells increased A1AR protein in a time- and dose-dependent manner, with maximal induction observed with 20 microm SNAP at 24 h. The response to SNAP was attenuated by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3 oxide (C-PTIO), and by the inhibition of nuclear factor-kappaB (NF-kappaB), implicating this transcription factor in the regulatory process. In addition SNAP also increased the degradation of Inhibitory kappaB-alpha (IkappaB-alpha), a marker of NF-kappaB activation. Furthermore, the induction of inducible nitric oxide synthase (iNOS) by lipopolysaccharide increased A1AR in PC12 cells and in mice, whereas the inhibition of NOS activity suppressed this response. We conclude that NO, via the activation of NF-kappaB, serves as an endogenous regulator of A1AR, and speculate that the induction of the A1AR could counteract the cytotoxicity of NO.
Collapse
Affiliation(s)
- Krishna A Jhaveri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9629, USA
| | | | | | | |
Collapse
|
57
|
Jajoo S, Mukherjea D, Pingle S, Sekino Y, Ramkumar V. Induction of adenosine A1 receptor expression by pertussis toxin via an adenosine 5'-diphosphate ribosylation-independent pathway. J Pharmacol Exp Ther 2006; 317:1-10. [PMID: 16322354 DOI: 10.1124/jpet.105.096255] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pertussis toxin ADP ribosylates G(i) and G(o) transducing proteins and functionally uncouples adenosine A(1) receptor (A(1)AR) from its effectors. We hypothesized that this loss in receptor coupling could lead to de novo A(1)AR synthesis by the cell in a futile attempt to re-establish normal receptor function. To test this hypothesis, we used hamster ductus deferens tumor (DDT(1) MF-2) cells, a cell culture model for studying A(1)AR, and showed that pertussis toxin (100 ng/ml) produced a time-dependent loss in A(1)AR-G(i) interaction and abolished A(1)AR activation of extracellular signal-regulated kinase 1/2. Interestingly, pertussis toxin increased the expression of A(1)AR, as measured by real-time polymerase chain reaction, immunocytochemistry, and [(3)H]cyclopentyl-1,3-dipropylxanthine (DPCPX) binding, suggesting a compensatory response to G(i) protein inactivation. DDT(1) MF-2 cells exposed to pertussis toxin demonstrated nuclear factor kappaB (NF-kappaB) activation within 30 min of exposure, a time point that preceded the loss of function of the A(1)AR. Inhibition of NF-kappaB attenuated the increase in A(1)AR induced by pertussis toxin. Cells exposed to B-oligomer subunit of pertussis toxin, devoid of significant ADP ribosyltransferase activity, showed increased A(1)AR protein expression, preceded by activation of NF-kappaB. B-Oligomer increased intracellular Ca(2+) in DDT(1) MF-2 cells. Chelation of intracellular Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid or inhibition of protein kinase C (PKC) with bisindolylmaleimide hydrochloride reduced the activation of NF-kappaB and [(3)H]DPCPX binding. We conclude that pertussis toxin promotes de novo A(1)AR synthesis by activating NF-kappaB through an ADP ribosylation-independent mechanism involving intracellular Ca(2+) release and PKC activation.
Collapse
Affiliation(s)
- Sarvesh Jajoo
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9629, USA
| | | | | | | | | |
Collapse
|
58
|
Campbell KJ, Witty JM, Rocha S, Perkins ND. Cisplatin Mimics ARF Tumor Suppressor Regulation of RelA (p65) Nuclear Factor-κB Transactivation. Cancer Res 2006; 66:929-35. [PMID: 16424027 DOI: 10.1158/0008-5472.can-05-2234] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The RelA (p65) nuclear factor-kappaB (NF-kappaB) subunit can contribute towards tumor cell survival through inducing the expression of a variety of antiapoptotic genes. However, the NF-kappaB response can show great diversity and is not always antiapoptotic. Here, we find that cisplatin, a DNA cross-linking agent and commonly used anticancer compound, does not affect RelA nuclear translocation but modulates its transcriptional activity. Similar to other genotoxic agents, such as daunorubicin and UV light, cisplatin treatment in the U-2 OS osteosarcoma cell line represses RelA activity and inhibits expression of the NF-kappaB antiapoptotic target gene Bcl-x(L). The mechanism through which cisplatin achieves these effects is different to daunorubicin and UV light but shows great similarity to the RelA regulatory pathway induced by the ARF tumor suppressor: cisplatin regulation of RelA requires ATR/Chk1 activity, represses Bcl-x(L) but not XIAP expression, and results in phosphorylation of RelA at Thr(505). In contrast to these results, another chemotherapeutic drug etoposide activates NF-kappaB and induces expression of these target genes. Thus, within a single tumor cell line, there is great heterogeneity in the NF-kappaB response to different, commonly used chemotherapeutic drugs. These observations suggest that it might be possible to minimize the ability of RelA to inhibit cancer therapy by diagnostically predicting the type of chemotherapeutic drug most compatible with NF-kappaB functionality in a tumor cell type. Moreover, our data indicate that at least with respect to RelA, cisplatin functions as an ARF mimic. Other drugs capable of mimicking this aspect of ARF function might therefore have therapeutic potential.
Collapse
Affiliation(s)
- Kirsteen J Campbell
- School of Life Sciences, Division of Gene Regulation and Expression, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | |
Collapse
|
59
|
Venkatraman M, Anto RJ, Nair A, Varghese M, Karunagaran D. Biological and chemical inhibitors of NF-kappaB sensitize SiHa cells to cisplatin-induced apoptosis. Mol Carcinog 2005; 44:51-9. [PMID: 16044419 DOI: 10.1002/mc.20116] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cisplatin, a chemotherapeutic agent, is known to induce apoptosis of cancer cells. We examined the role of NF-kappaB during cisplatin-induced apoptosis in two human cervical cancer cell lines, HeLa and SiHa, known to differ in their response to cisplatin treatment. We found that SiHa cells were relatively more resistant than HeLa cells to the cytotoxic effects induced by cisplatin as measured by MTT assays. HeLa cells were more sensitive to the apoptotic effects induced by cisplatin as shown by increases in annexin staining, DNA fragmentation, and loss of mitochondrial membrane potential. Similarly the activities of caspases 3, 8, and 9 and cleavage of PARP induced by cisplatin were more in HeLa than SiHa cells. Cisplatin induced NF-kappaB DNA binding activity in HeLa and SiHa cells but not in primary cervical cells and the active DNA binding complex in SiHa cells consists of p50 and RelA heterodimers. However, when NF-kappaB DNA binding activity was blocked by chemical (curcumin, PDTC, or salicylic acid) or biological inhibitors (NIK-KM or IKK-beta DN), the cell viability was less in SiHa cells with cisplatin treatment, but these effects were not observed in HeLa cells. Similarly upon treatment with cisplatin SiHa cells had more activation of caspases compared to that seen in HeLa cells under conditions of NF-kappaB inhibition by biological or chemical inhibitors. These results suggest that NF-kappaB may contribute to the resistance of human cervical cancer cells to cisplatin and highlight the potential use of combination therapy involving cisplatin and NF-kappaB inhibitors.
Collapse
Affiliation(s)
- Manickam Venkatraman
- Division of Cancer Biology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala, India
| | | | | | | | | |
Collapse
|
60
|
Saad SY, Najjar TAO, Alashari M. Role of non-selective adenosine receptor blockade and phosphodiesterase inhibition in cisplatin-induced nephrogonadal toxicity in rats. Clin Exp Pharmacol Physiol 2005; 31:862-7. [PMID: 15659050 DOI: 10.1111/j.1440-1681.2004.04127.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. It is well documented that cisplatin (CDDP) treatment increases the expression of adenosine A(1) receptors in both kidney and testes. However, the effect of adenosine at these receptors is controversial. Adenosine A(1) receptors have been documented to be involved in either cytoprotection or aggravation of nephrotoxicity. The aim of the present study was to examine the effect of the non-selective adenosine receptor inhibitor theophylline and the phosphodiesterase inhibitor pentoxifylline on CDDP-induced renal and testicular toxicity. 2. Male Wister rats were divided into six groups. Two control groups received plain drinking water and a third control group received theophylline 0.8 mg/mL in the drinking water for 2 weeks. One group of animals drinking plain water was injected intraperitoneally (i.p.) with pentoxifylline 50 mg/kg per day for 2 weeks. The remaining groups were treated in the same manner and received single dose of CDDP 7 mg/kg, i.p., 1 week after starting theophylline and pentoxifylline treatment and all animals were killed 1 week after CDDP treatment. 3. Rats treated with CDDP developed nephrotoxicity, as demonstrated by increased kidney and testes weight as a percentage of total bodyweight, blood urea nitrogen and serum creatinine levels and decreased serum calcium and albumin levels. In addition, CDDP treatment resulted in an increase in the production of malondialdehyde (MDA) and decreases in total nitrate/nitrite levels, as well as depletion of reduced glutathione (GSH) content and glutathione peroxidase (GPX) activity in both the kidney and testes. Administration of theophylline in the drinking water to CDDP-treated rats resulted in exacerbation of the indices of nephrotoxicity, depletion of GSH content and GPX activity levels, with increased MDA production and platinum accumulation in both the kidney and testes. However, pentoxifylline administration reduced CDDP-induced biochemical changes and reduced platinum accumulation in both organs. Histopathological examination of the kidney revealed that CDDP treatment produced multifocal tubular atrophy, atypical reparative changes of the tubular epithelium and marked tubular necrosis. Animals treated with the theophylline/CDDP combination showed extensive widespread damage with intratubular calcification. However, pentoxifylline treatment ameliorated the overt changes induced by CDDP treatment. 4. Theophylline exacerbates the deleterious effects of CDDP on rat kidney and testes. However, pentoxifylline alleviates CDDP-induced renal and testicular toxicity.
Collapse
Affiliation(s)
- Sherif Y Saad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | | | | |
Collapse
|
61
|
Shen J, Halenda SP, Sturek M, Wilden PA. Novel mitogenic effect of adenosine on coronary artery smooth muscle cells: role for the A1 adenosine receptor. Circ Res 2005; 96:982-90. [PMID: 15831818 DOI: 10.1161/01.res.0000165800.81876.52] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adenosine is a vascular endothelial cell mitogen, but anti-mitogenic for aortic smooth muscle cells and fibroblasts when acting via the A2B adenosine receptor. However, we show that adenosine increases porcine coronary artery smooth muscle cell (CASMC) number, cellular DNA content, protein synthesis, and PCNA staining. RT-PCR analysis indicates that porcine CASMC express A1, A2A, A3, and barely detectable levels of A2B receptor mRNAs. The mitogenic effect of adenosine is mimicked by NECA, CCPA, and R-PIA, but not by CGS21680and 2-Cl-IB-MECA, and is inhibited by DPCPX, indicating a prominent role for the A1 receptor. This interpretation is supported by the finding that adenosine- and CCPA-induced DNA synthesis is significantly inhibited by pertussis toxin, but substantially potentiated by PD81723, an allosteric enhancer of the A1 receptor. When a cDNA encoding the porcine A1 receptor was cloned and expressed in COS-1 cells, A1 receptor pharmacology is confirmed. Anti-sense oligonucleotides to the cloned sequence dramatically suppress the mitogenic effect of adenosine and CCPA. Conversely, over-expression of the cloned A1 receptor in CASMC increases adenosine- and CCPA-induced DNA synthesis. Furthermore, stimulation with adenosine or CCPA of intact coronary arteries in an organ culture model of vascular disease increases cellular DNA synthesis, which was abolished by DPCPX. We conclude that adenosine acts as a novel mitogen in porcine CASMC that express the A1 adenosine receptor, possibly contributing to the development of coronary artery disease.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Adenosine A1 Receptor Antagonists
- Amino Acid Sequence
- Animals
- Cell Proliferation/drug effects
- Cells, Cultured
- Cloning, Molecular
- Coronary Vessels/cytology
- Coronary Vessels/metabolism
- DNA/biosynthesis
- Mitogens/pharmacology
- Molecular Sequence Data
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Oligonucleotides, Antisense/pharmacology
- Organ Culture Techniques
- Pertussis Toxin/pharmacology
- Purinergic P1 Receptor Agonists
- Purinergic P1 Receptor Antagonists
- RNA, Messenger/metabolism
- Receptor, Adenosine A1/genetics
- Receptor, Adenosine A1/physiology
- Receptors, Purinergic P1/biosynthesis
- Sus scrofa
- Thiophenes/pharmacology
Collapse
Affiliation(s)
- Jianzhong Shen
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, School of Medicine, Columbia, Mo 65212, USA
| | | | | | | |
Collapse
|
62
|
Lappas CM, Rieger JM, Linden J. A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2005; 174:1073-80. [PMID: 15634932 DOI: 10.4049/jimmunol.174.2.1073] [Citation(s) in RCA: 306] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Incubation of purified C57BL/6 murine CD4(+) T lymphocytes with anti-CD3 mAb serves as a model of TCR-mediated activation and results in increased IFN-gamma production and cell surface expression of CD25 and CD69. We demonstrate here that signaling through the TCR causes a rapid (4-h) 5-fold increase in A(2A) adenosine receptor (AR) mRNA, which is correlated with a significant increase in the efficacy of A(2A)AR-mediated cAMP accumulation in these cells. A(2A)AR activation reduces TCR-mediated production of IFN-gamma by 98% with a potency order of 4-{3-[6-amino-9-(5-ethylcarbamoyl-3,4-dihydroxytetrahydrofuran-2-yl)-9H-purin-2-yl]prop-2-ynyl}cyclohexanecarboxylic acid methyl ester (ATL146e; EC(50) = 0.19 +/- 0.03 nM) > 4-{3-[6-amino-9-(5-cyclopropyl-carbamoyl-3,4-dihydroxytetrahydrofuran-2-yl)-9H-purin-2-yl]prop-2-ynyl}piperidine-1-carboxylic acid methyl ester (ATL313; 0.43 +/- 0.06 nM) > 5'-N-ethylcarboxamidoadenosine (3.5 +/- 0.77 nM) > 2-[4-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamidoadenosine (CGS21680; 7.2 +/- 1.4 nM) >> N(6)-cyclohexyladenosine (110 +/- 33 nM) > 2-chloro-N(6)-(3-iodobenzyl)-5'-N-methylcarboxamide (390 +/- 160 nM), similar to the potency order to compete for radioligand binding to the recombinant murine A(2A)AR but not the A(3)AR. The selective A(2A)AR antagonist, 4-(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl-amino]ethyl)phenol (ZM241385), inhibits the effect of ATL146e with a pA(2) of 0.34 nM and also inhibits the effects of N(6)-cyclohexyl-adenosine and 2-chloro-N(6)-(3-iodobenzyl)-5'-N-methylcarboxamide. In CD4(+) T cells derived from A(2A)AR(-/-) and A(2A)AR(+/-) mice, the IFN-gamma release response to ATL146e is reduced by 100 and 50%, respectively, indicative of a gene dose effect. The response of T cells to the phosphodiesterase inhibitor, 4-(3'-cyclopentyloxy-4'-methoxyphenyl)-2-pyrrolidone (rolipram), is not affected by A(2A)AR deletion. We conclude that the rapid induction of the A(2A)AR mRNA in T cells provides a mechanism for limiting T cell activation and secondary macrophage activation in inflamed tissues.
Collapse
Affiliation(s)
- Courtney M Lappas
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
63
|
Nyce JW. Antisense oligonucleotides: local delivery enhances their therapeutic potential. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.9.3.263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
64
|
Ramkumar V, Whitworth CA, Pingle SC, Hughes LF, Rybak LP. Noise induces A1 adenosine receptor expression in the chinchilla cochlea. Hear Res 2005; 188:47-56. [PMID: 14759570 DOI: 10.1016/s0378-5955(03)00344-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Accepted: 10/16/2003] [Indexed: 01/04/2023]
Abstract
Adenosine plays a major cytoprotective role during ischemia and conditions of oxidative stress. Previous studies in our laboratory indicate that oxidative stress induces expression of the A1 adenosine receptor (A1AR) via activation of nuclear factor (NF)-kappaB. In this study, we tested whether noise exposure could induce oxidative stress and determine whether this induces expression of the A1AR in the chinchilla cochlea. Chinchillas were exposed to a 96 dB 4 kHz octave band of noise for 6 h of daily exposure, followed by an 18 h noise-free period. This noise paradigm resulted in threshold shifts of 10-60 dB over the frequency range (1-16 kHz) tested. Radioligand binding studies for the A1AR indicate a significant increase in receptor ( approximately 2-fold) expression soon after the first noise exposure period (usually within approximately 8 h of the initiation of noise), which gradually returned to basal levels by day 7. The rise in A1AR levels was followed by a significant increase in malondialdehyde levels by day 3, which also recovered by day 7. Assessment of the activity of NADPH oxidase in the cochlea indicates a significant increase in enzyme activity which was evident by approximately 8 h following initiation of noise exposure, and which persisted for at least up to day 3. Electrophoretic mobility shift assays indicate that the increase in A1AR was associated with a significant increase in NF-kappaB activity following noise exposure. We conclude that noise exposure induces A1AR expression, which might be mediated, in part, through generation of reactive oxygen species and activation of NF-kappaB.
Collapse
Affiliation(s)
- Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19620, Springfield, IL 62794-9620, USA.
| | | | | | | | | |
Collapse
|
65
|
Elemento O, Tavazoie S. Fast and systematic genome-wide discovery of conserved regulatory elements using a non-alignment based approach. Genome Biol 2005; 6:R18. [PMID: 15693947 PMCID: PMC551538 DOI: 10.1186/gb-2005-6-2-r18] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 10/29/2004] [Accepted: 12/03/2004] [Indexed: 11/10/2022] Open
Abstract
We describe a powerful new approach for discovering globally conserved regulatory elements between two genomes. The method is fast, simple and comprehensive, without requiring alignments. Its application to pairs of yeasts, worms, flies and mammals yields a large number of known and novel putative regulatory elements. Many of these are validated by independent biological observations, have spatial and/or orientation biases, are co-conserved with other elements and show surprising conservation across large phylogenetic distances.
Collapse
Affiliation(s)
- Olivier Elemento
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Saeed Tavazoie
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
66
|
Shin EJ, Jhoo JH, Kim WK, Jhoo WK, Lee C, Jung BD, Kim HC. Protection against kainate neurotoxicity by pyrrolidine dithiocarbamate. Clin Exp Pharmacol Physiol 2005; 31:320-6. [PMID: 15191405 DOI: 10.1111/j.1440-1681.2004.03990.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The effect of pyrrolidine dithiocarbamate (PDTC) on kainate (KA)-induced neurotoxicity was examined in Sprague-Dawley rats. At 10 mg/kg, i.p., KA produced seizures accompanied by neuronal loss in the hippocampus and increased levels of malondialdehyde (MDA) and protein carbonyl. Pretreatment with PDTC (100 or 200 mg/kg, p.o., every 12 h x 5) blocked KA-induced neurotoxicities (seizures, increases in MDA and protein carbonyl and neuronal losses) in a dose-dependent manner. These effects were counteracted by the adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine (25 or 50 micro g/kg, i.p.), but not by the A(2A) receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (0.5 or 1 mg/kg, i.p.) or the A(2B) receptor antagonist alloxazine (1.5 or 3.0 mg/kg, i.p.). Our results suggest that the anticonvulsant and neuroprotective effects of PDTC are mediated, at least in part, via adenosine A(1) receptor stimulation.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neurotoxicology Program, College of Pharmacy, Kangwon National University, Chunchon, South Korea
| | | | | | | | | | | | | |
Collapse
|
67
|
Diniz C, Fresco P, Leal S, Gonçalves J. Adenosine receptors involved in modulation of noradrenaline release in isolated rat tail artery. Eur J Pharmacol 2004; 504:17-25. [PMID: 15507216 DOI: 10.1016/j.ejphar.2004.09.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 05/16/2004] [Accepted: 09/21/2004] [Indexed: 11/24/2022]
Abstract
Adenosine receptors involved in the modulation of noradrenaline release from postganglionic sympathetic nerves in rat tail artery were characterized by studying the effects of adenosine-receptor agonists and antagonists on electrically evoked tritium overflow (100 pulses, 5 Hz) and by immunohistochemistry. The adenosine A1 receptor-selective agonist N6-cyclopentyladenosine (CPA; 1-100 nM) and the non-selective adenosine receptor agonist N-ethylcarboxamidoadenosine (NECA; 1-10 microM) decreased tritium overflow. These effects were blocked by the adenosine A1 receptor-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 30 nM). The adenosine A(2A) receptor-selective agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamido adenosine (CGS 21680; 1-100 nM) enhanced tritium overflow, an effect blocked by the adenosine A(2A) receptor-selective antagonist 5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH 58261; 20 nM) but not changed by the adenosine A(2B) receptor-selective antagonist N-(4-acetylphenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl) phenoxy]acetamide (MRS 1706; 20 nM). In the presence of DPCPX (30 nM), NECA enhanced tritium overflow, an effect abolished by MRS 1706 but not influenced by SCH 58261. Immunohistochemistry revealed immunoreactivity for all adenosine-receptor subtypes. Areas of co-localization were found for neurofilament with adenosine A1, A(2A) and A(2B) but not A3 receptors. In conclusion, the present study provides functional and morphological evidence for the occurrence of multiple adenosine receptor-mediated modulation of noradrenaline release in the rat tail: inhibition mediated by adenosine A1 receptors and facilitation mediated by both adenosine A(2A) and A(2B) receptors.
Collapse
Affiliation(s)
- Carmen Diniz
- Serviço de Farmacologia, CEQOFFUP, Faculdade de Farmácia, Universidade do Porto, Rua Anibal Cunha, 164, P 4050-047 Porto, Portugal
| | | | | | | |
Collapse
|
68
|
Pingle SC, Mishra S, Marcuzzi A, Bhat SG, Sekino Y, Rybak LP, Ramkumar V. Osmotic Diuretics Induce Adenosine A1 Receptor Expression and Protect Renal Proximal Tubular Epithelial Cells against Cisplatin-mediated Apoptosis. J Biol Chem 2004; 279:43157-67. [PMID: 15272017 DOI: 10.1074/jbc.m405666200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Osmotic diuretics are used successfully to alleviate acute tubular necrosis (ATN) produced by chemotherapeutic agents and aminoglycoside antibiotics. The beneficial action of these agents likely involves rapid elimination of the nephrotoxic agents from the kidney by promoting diuresis. Adenosine A1 receptor (A1AR) subtype present on renal proximal tubular epithelial and cortical collecting duct cells mediates the antidiuretic and cytoprotective actions of adenosine. These receptors are induced by activation of nuclear factor (NF)-kappaB, a transcription factor reported to mediate hyperosmotic stress-induced cytoprotection in renal medullary cells. In this study, we tested the hypothesis that induction of the A1AR in renal proximal tubular cells by NF-kappaB contributes to the cytoprotection afforded by osmotic diuretics. Exposure of porcine renal proximal tubular epithelial (LLC-PK1) cells to mannitol or NaCl produced a significant increase in A1AR. This increase was preceded by adenosine release and NF-kappaB activation. Expression of an IkappaB-alpha mutant, which acts as a superrepressor of NF-kappaB, abrogated the increase in A1AR. Cells exposed to mannitol demonstrated increased reactive oxygen species (ROS) generation, which was attenuated by inhibiting xanthine oxidase with allopurinol. Allopurinol attenuated both the increase in A1AR expression and NF-kappaB activation produced by osmotic diuretics, indicating a role of adenosine metabolites in these processes. Treatment of LLC-PK1 cells with cisplatin (8 microm) resulted in apoptosis, which was attenuated by mannitol but exacerbated by selective A1AR blockade. Administration of mannitol to mice increases A1AR expression and activation of NF-kappaB in renal cortical sections. Taken together, these data provide novel mechanisms of nephroprotection by osmotic diuretics, involving both activation and induction of the A1AR, the latter mediated through activation of a xanthine oxidase pathway leading to ROS generation and promoting activation of NF-kappaB.
Collapse
Affiliation(s)
- Sandeep C Pingle
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62702, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
Reactive oxygen species (ROS) initiate activation of the transcription factor NF-kappaB in a variety of cell systems. Perhaps the most potent biological source of ROS is the NADPH oxidase of phagocytic cells, a multi-component system that catalyzes the formation of superoxide anion. Although phagocytes use this oxidase to kill ingested microorganisms, the products also mediate a broad range of biological oxidation reactions and some evidence exists for activation of NF-kappaB through this mechanism. Moreover, the components of the phagocyte NADPH oxidase are present in certain non-phagocytic cells and recently discovered homologues of the catalytic component gp91(phox) are expressed in a number of tissues. We explored the hypothesis that the products of NADPH oxidases cause the activation of NF-kappaB. K562 human erythrokeukemia cells transfected with constructs for expression of gp91(phox), plus other essential NADPH oxidase components generated substantial amounts of superoxide when activated with phorbol ester, lesser amounts with arachidonic acid exposure, and none with TNFalpha. Gel shift assays demonstrated induction of NF-kappaB in K562 cells exposed to TNFalpha and specificity was shown by oligonucleotide competition. Supershift assays demonstrated the presence in nuclear complexes of the NF-kappaB components p65/RelA and p50. Nuclear complexes of identical electrophoretic mobility were induced in phorbol ester-stimulated K562 cells that expressed the complete NADPH oxidase system, but not in cells lacking one of the essential oxidase components. K562 cells were relatively resistant to NF-kappaB induction by exogenous peroxide, but certain other cell types (HEK293 and HeLaS3) demonstrated such induction upon exposure to reagent hydrogen peroxide or glucose oxidase plus glucose and this was blocked by catalase. Finally, we found a biphasic pattern of gp91(phox) expression in rat liver during aging. High levels observed in young animals decreased in middle age, but increased again in old age. Collectively, these studies demonstrate the potential for NADPH-dependent induction of NF-kappaB and raise the possibility of a role for this pathway in the biology of aging.
Collapse
Affiliation(s)
- Robert A Clark
- Department of Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX 78229-3900, USA.
| | | |
Collapse
|
70
|
Yip L, Leung HCH, Kwok YN. Effect of omeprazole on gastric adenosine A1 and A2A receptor gene expression and function. J Pharmacol Exp Ther 2004; 311:180-9. [PMID: 15155771 DOI: 10.1124/jpet.104.069708] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine has been shown to inhibit immunoreactive gastrin (IRG) release and to stimulate somatostatin-like immunoreactivity (SLI) release by activating adenosine A(1) and A(2A) receptors, respectively. Since the synthesis and release of gastrin and somatostatin are regulated by the acid secretory state of the stomach, the effect of achlorhydria on A(1) and A(2A) receptor gene expression and function was examined. Omeprazole-induced achlorhydria was shown to suppress A(1) and A(2A) receptor gene expression in the antrum and corporeal mucosa, but not in the corporeal muscle. Omeprazole treatment produced reciprocal changes in A(1) receptor and gastrin gene expression, and parallel changes in A(2A) receptor and somatostatin gene expression. The localization of A(1) and A(2A) receptors on gastrinsecreting G-cells and somatostatin-secreting D-cells, respectively, suggests that changes in adenosine receptor expression may modulate the synthesis and release of gastrin and somatostatin. Thus, the effect of omeprazole on adenosine receptor-mediated changes in IRG and SLI release was also examined in the vascularly perfused rat stomach. After omeprazole treatment, the A(1) receptor-mediated inhibition of IRG and SLI release induced by N(6)-cyclopentyladenosine (A(1) receptor-selective agonist) was not altered, but the A(2A) receptor-mediated augmentation of SLI release induced by 2-p-(2-carboxyethyl-)phenethylamino-5'-N-ethylcarboxamidoadenosine (A(2A)-selective agonist) was significantly attenuated. These findings agree well with the corresponding omeprazole-induced decrease in antral A(2A) receptor mRNA expression. Overall, the present study suggests that adenosine receptor gene expression and function may be altered by omeprazole treatment. Acid-dependent changes in adenosine receptor expression may represent a novel purinergic regulatory feedback mechanism in controlling gastric acid secretion.
Collapse
Affiliation(s)
- Linda Yip
- Department of Physiology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
71
|
Gelain DP, De Souza LF, Ribeiro GR, Zim M, Jardim FR, Moreira JCF, Bernard EA. Extracellular inosine is modulated by H2O2 and protects sertoli cells against lipoperoxidation and cellular injury. Free Radic Res 2004; 38:37-47. [PMID: 15061652 DOI: 10.1080/10715760310001629056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Extracellular purines are involved in the regulation of a wide range of physiological processes, including cytoprotection, ischemic preconditioning, and cell death. These actions are usually mediated via triggering of membrane purinergic receptors, which may activate antioxidant enzymes, conferring cytoprotection. Recently, it was demonstrated that the oxidative stress induced by cisplatin up-regulated A1 receptor expression in rat testes, suggesting an involvement of purinergic signaling in the response of testicular cells to oxidant injury. In this article, we report the effect of hydrogen peroxide on purinergic agonist release by cultured Sertoli cells. Extracellular inosine levels are strongly increased in the presence of H2O2, suggesting an involvement of this nucleoside on Sertoli cells response to oxidant treatment. Inosine was observed to decrease H2O2-induced lipoperoxidaton and cellular injury, and it also preserved cellular ATP content during H2O2 exposure. These effects were abolished in the presence of nucleoside uptake inhibitors, indicating that nucleoside internalisation is essential for its action in preventing cell damage.
Collapse
Affiliation(s)
- Daniel Pens Gelain
- Laboratório de Transdução de Sinal em Células Testiculares, Departamento de Bioquímica, Institute de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | |
Collapse
|
72
|
Basheer R, Strecker RE, Thakkar MM, McCarley RW. Adenosine and sleep–wake regulation. Prog Neurobiol 2004; 73:379-96. [PMID: 15313333 DOI: 10.1016/j.pneurobio.2004.06.004] [Citation(s) in RCA: 372] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 06/28/2004] [Indexed: 10/26/2022]
Abstract
This review addresses three principal questions about adenosine and sleep-wake regulation: (1) Is adenosine an endogenous sleep factor? (2) Are there specific brain regions/neuroanatomical targets and receptor subtypes through which adenosine mediates sleepiness? (3) What are the molecular mechanisms by which adenosine may mediate the long-term effects of sleep loss? Data suggest that adenosine is indeed an important endogenous, homeostatic sleep factor, likely mediating the sleepiness that follows prolonged wakefulness. The cholinergic basal forebrain is reviewed in detail as an essential area for mediating the sleep-inducing effects of adenosine by inhibition of wake-promoting neurons via the A1 receptor. The A2A receptor in the subarachnoid space below the rostral forebrain may play a role in the prostaglandin D2-mediated somnogenic effects of adenosine. Recent evidence indicates that a cascade of signal transduction induced by basal forebrain adenosine A1 receptor activation in cholinergic neurons leads to increased transcription of the A1 receptor; this may play a role in mediating the longer-term effects of sleep deprivation, often called sleep debt.
Collapse
Affiliation(s)
- Radhika Basheer
- Neuroscience Laboratory, Department of Psychiatry, Harvard Medical School and Boston VA Healthcare System, Brockton, MA 02301, USA
| | | | | | | |
Collapse
|
73
|
Whitworth CA, Ramkumar V, Jones B, Tsukasaki N, Rybak LP. Protection against cisplatin ototoxicity by adenosine agonists. Biochem Pharmacol 2004; 67:1801-7. [PMID: 15081879 DOI: 10.1016/j.bcp.2004.01.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Accepted: 01/07/2004] [Indexed: 10/26/2022]
Abstract
Cisplatin is a commonly used antineoplastic agent that causes ototoxicity through the formation of reactive oxygen species (ROS). Previous studies have shown that cisplatin causes an upregulation of A(1) adenosine receptor (A(1)AR) in the cochlea, and that application of the adenosine agonist, R-phenylisopropyladenosine (R-PIA), to the round window (RW) results in significant increases in cochlear glutathione peroxidase and superoxide dismutase. These data suggest that adenosine receptors (ARs) are an important part of the cytoprotective system of the cochlea in response to oxidative stress. The purpose of the current study was to investigate the effect of various adenosine agonists on cisplatin ototoxicity using RW application. Auditory brainstem response (ABR) thresholds were recorded in anesthetized chinchillas at 1, 2, 4, 8 and 16kHz. The auditory bullae were surgically opened, and 1mM R-PIA, 10microM 8-cyclopentyl-1,3-dipropylxanthine (DPCPX)/R-PIA (1mM) cocktail, 100microM 2-chloro-N-cyclopentyladenosine (CCPA), 2-[4-(2-p-carboxy-ethyl)phenylamino]-5'-N-ethylcarboxamidoadenosine (CGS) or vehicle were applied to the RW. After 90min, the remaining solution was removed and cisplatin was applied to the RW. The bullae were closed and the animals recovered for 72h, after which, follow-up ABRs were performed. Cochleae were harvested for scanning electron microscopy (SEM) and for lipid peroxides. Pre-administration of the A(1)AR agonists R-PIA or CCPA significantly reduced cisplatin-induced threshold changes at all but the highest test frequency. In addition, A(1)AR agonists protected against cisplatin-induced hair cell damage and significantly reduced cisplatin-induced lipid peroxidation. Co-administration of the A(1)AR antagonist, DPCPX, completely reversed the protective effects of R-PIA. In contrast, pretreatment with CGS-21680, an A(2A) adenosine receptor (A(2A)AR) agonist, significantly increased cisplatin-induced threshold changes. Our findings are consistent with the notion that the A(1)AR contributes significantly to cytoprotection in the cochlea, and thereby protects against hearing loss.
Collapse
Affiliation(s)
- Craig A Whitworth
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL 62794-9230, USA
| | | | | | | | | |
Collapse
|
74
|
Rorke S, Holgate ST. Targeting adenosine receptors: novel therapeutic targets in asthma and chronic obstructive pulmonary disease. ACTA ACUST UNITED AC 2004; 1:99-105. [PMID: 14720064 DOI: 10.1007/bf03256599] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adenosine, an endogenous signaling nucleoside that modulates many physiological processes has been implicated in playing an ever increasingly important role in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD). All cells contain adenosine and adenine nucleotides and the cellular production of adenosine is greatly enhanced under conditions of local hypoxia as may occur in inflammatory conditions such as asthma and COPD. In 1983, it was first reported that inhaled adenosine causes dose-related bronchoconstriction in patients with both allergic and non-allergic asthma but not in healthy volunteers. This hyperresponsiveness was also reported in patients with COPD, with those patients who smoked exhibiting a significantly greater response. This bronchoconstrictor effect of adenosine is orchestrated through the stimulation of specific cell membrane receptors and involves an important inflammatory cell, the mast cell. There is substantial evidence which suggests that mast cell activation is central to this unique response to adenosine. Mast cell mediator release makes a significant contribution towards airflow obstruction and the consequent symptoms in patients with asthma. Over the last two decades, researchers have investigated the effect of mast cell inhibitors as well as mast cell mediator receptor antagonists and their role in attenuating the bronchoconstrictor response to inhaled adenosine 5'-monophosphate (AMP). Promising results have been shown using mast cell stabilizers, histamine H1 receptor antagonists, selective cysteinyl leukotriene-1 receptor antagonists and inhibitors of 5-lipoxygenase and cyclo-oxygenase. Through these findings, the mast cell has been recognized as being a critical inflammatory cell in the adenosine-induced response in patients with asthma and COPD. To date, four subtypes (A1, A2A, A2B, A3) of adenosine receptors have been cloned each with a unique pattern of tissue distribution and signal transduction. Activation of these receptors has pro- and anti-inflammatory consequences making the development of agonists and/or antagonists at these receptor sites a novel approach in the treatment of patients with asthma and COPD. This review highlights the importance of adenosine in the pathophysiology of asthma and COPD, the critical role of the mast cell and the potential to target the adenosine receptor subtype in patients with asthma and COPD. The complete characterization of these adenosine receptor subtypes in terms of their distribution in humans and the development of selective agonists and antagonists, holds the key to our complete understanding of the role of this important mediator in asthma and COPD.
Collapse
Affiliation(s)
- Steuart Rorke
- Division of Respiratory Cell and Molecular Biology, University of Southampton School of Medicine, Southampton General Hospital, Southampton, UK.
| | | |
Collapse
|
75
|
Hammond LC, Bonnet C, Kemp PJ, Yates MS, Bowmer CJ. Chronic hypoxia up-regulates expression of adenosine A1 receptors in DDT1-MF2 cells. Biochem Pharmacol 2004; 67:421-6. [PMID: 15037194 DOI: 10.1016/j.bcp.2003.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Accepted: 09/04/2003] [Indexed: 11/18/2022]
Abstract
As the first step to understand how chronic hypoxia might regulate smooth muscle function in health and disease, we have employed an established immortalised cell model of smooth muscle, DDT1-MF2 cells, to address the hypothesis that adenosine A1 receptor density is modulated by O2 availability. Maximal specific binding (Bmax) of the selective adenosine A1 receptor antagonist, [3H]-DPCPX, to cell membranes increased 3.5-fold from 0.48 +/- 0.02 pmol/mg to 1.7 +/- 0.5 pmol/mg protein after 16 hr of hypoxia and this effect was not accompanied by any statistically significant changes in either binding affinity (0.84 +/- 0.2 nM vs. 1.2 +/- 0.3 nM) or Hill coefficient (1.1 +/- 0.1 vs. 0.99 +/- 0.03). Hypoxia-evoked increases in membrane receptor density were paralleled in intact DDT1-MF2 cells. In addition, the increase in [3H]-DPCPX binding to intact cells was inhibited by co-incubation during hypoxia with the translational inhibitor cycloheximide, the transcriptional blocker actinomycin D and the NFkappaB inhibitor sulphasalazine. Together, these data show that adenosine A1 receptor density is modulated, at least in part, by O2-dependent activation of the transcription factor NFkappaB and adds to the list of processes dynamically regulated by ambient oxygen availability. Since hypoxia is an initiating factor in acute renal failure, similar changes in transcription may account for up-regulation of adenosine A1 receptors noted previously in the renal vasculature of rats with acute renal failure.
Collapse
Affiliation(s)
- Lucy C Hammond
- School of Biomedical Sciences, Worsley Building, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|
76
|
Zafar KS, Siddiqui A, Sayeed I, Ahmad M, Saleem S, Islam F. Protective effect of adenosine in rat model of Parkinson's disease: neurobehavioral and neurochemical evidences. J Chem Neuroanat 2003; 26:143-51. [PMID: 14599664 DOI: 10.1016/j.jchemneu.2003.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Normal cellular metabolism produces oxidants which are neutralized within the cell by antioxidant enzymes and other antioxidants. An imbalance between oxidant and antioxidant has been postulated to lead the degeneration of dopaminergic neurons in Parkinson's disease. In this study, we examined whether adenosine, an antioxidant, can prevent or slowdown neuronal injury in 6-hydroxydopamine (6-OHDA) model of Parkinsonism. Rats were treated with adenosine (500, 250, 125 mg/kg b.wt.) once before surgery and five times after surgery (1 h interval). 2 microl 6-OHDA (12.5 microg in 0.2% ascorbic acid in normal saline) was infused in the right striatum. Two weeks after 6-OHDA infused rats were tested for neurobehavioral activity and sacrificed after 3 weeks of 6-OHDA infusion, for the estimation of glutathione peroxidase, glutathione-S-transferase, glutathione reductase, glutathione content, lipid peroxidation and dopamine and its metabolites. Adenosine was found to be successful in up-regulating the antioxidant status, lowering the dopamine loss and functional recovery returned close to the baseline dose. This study revealed that adenosine, which is an essential part of our body, might be helpful in slowing down the progression of neurodegeneration in Parkinsonism.
Collapse
Affiliation(s)
- Khan Shoeb Zafar
- Department of Medical Elementology and Toxicology, Neurotoxicology Laboratory, Hamdard University, 110062 New Delhi, India.
| | | | | | | | | | | |
Collapse
|
77
|
Yoshida H, Kubota T, Krueger JM. A cyclooxygenase-2 inhibitor attenuates spontaneous and TNF-alpha-induced non-rapid eye movement sleep in rabbits. Am J Physiol Regul Integr Comp Physiol 2003; 285:R99-109. [PMID: 12623776 DOI: 10.1152/ajpregu.00609.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sleep is regulated in part by the brain cytokine network, including tumor necrosis factor-alpha (TNF-alpha). TNF-alpha activates the transcription factor nuclear factor-kappaB, which in turn promotes transcription of many genes, including cyclooxygenase-2 (COX-2). COX-2 is in the brain and is an enzyme responsible for production of prostaglandin D2. The hypothesis that central COX-2 plays a role in the regulation of spontaneous and TNF-alpha-induced sleep was investigated. Three doses (0.5, 5, and 50 microg) of NS-398, a highly selective COX-2 inhibitor, were injected intracerebroventricularly. The highest dose decreased non-rapid eye movement sleep. The intermediate and highest doses decreased electroencephalographic slow-wave activity; the greatest reduction occurred after 50 microg of NS-398 during the first 3-h postinjection period. Rapid eye movement sleep and brain temperature were not altered by any dose of NS-398. Pretreatment of rabbits with 5 or 50 microg of NS-398 blocked the TNF-alpha-induced increases in non-rapid eye movement sleep, electroencephalographic slow-wave activity, and brain temperature. These data suggest that COX-2 is involved in the regulation of spontaneous and TNF-alpha-induced sleep.
Collapse
Affiliation(s)
- Hitoshi Yoshida
- Dept. of VCAPP, PO Box 646520, Washington State University, Pullman, WA 99164-6520, USA
| | | | | |
Collapse
|
78
|
Sundaram U, Hassanain H, Suntres Z, Yu JG, Cooke HJ, Guzman J, Christofi FL. Rabbit chronic ileitis leads to up-regulation of adenosine A1/A3 gene products, oxidative stress, and immune modulation. Biochem Pharmacol 2003; 65:1529-38. [PMID: 12732366 DOI: 10.1016/s0006-2952(03)00067-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A rabbit model of chronic ileitis has helped decipher the mechanism of alteration of multiple electrolyte and nutrient malabsorptions in inflammatory bowel disease (IBD). This study examined alterations in the adenosine A1/A3 receptor, oxidant, antioxidant, and immune-inflammatory pathways in chronic ileitis. Chronic ileal inflammation was induced 13-15 days after infection with 10,000 Eimeria magna oocytes. Quantitative analysis in 16 rabbits was done for oxidants, antioxidants, A1 and A3 transcripts, transport, injury, and inflammatory mediators. Inflamed gut had villus blunting, crypt hyperplasia and fusion, and immune cell infiltration. Alkaline phosphatase and Na-glucose co-transport were reduced by 78% (P=0.001) and 89% (P=0.001), respectively. Real-time fluorescence monitoring (TaqMan)-polymerase chain reaction revealed a transcriptional up-regulation of 1.34-fold for A1 and 5.40-fold for A3 receptors in inflamed gut. Lipid peroxidation increased in the mucosa (78%, P=0.012), longitudinal muscle-myenteric plexus (118%, P=0.042), and plasma (104%, P=0.001). Mucosal antioxidants were altered by inflammation: reductions occurred in superoxide dismutase (32%, P=0.001) and catalase (43%, P=0.001), whereas increases occurred in glutathione (75%, P=0.0271) and glutathione reductase (86%, P=0.0007). Oxidant enzyme activities were elevated by 21% for xanthine oxidase (P=0.004), 172% for chloramine (P=0.022), 47% for gelatinase (P=0.041), and 190% for myeloperoxidase (P=0.002). Mast cell tryptase increased by 79% (P=0.006). Increases occurred in the plasma concentration of leukotriene B(4) (13-fold, P=0.003), thromboxane B(2) (61-fold, P=0.018), and tumor necrosis factor-alpha (9-fold, P=0.002). In conclusion, chronic ileitis and tissue injury are associated with discrete alterations in complex multi-level oxidant, antioxidant, and immune inflammatory components. The rabbit ileitis model is a suitable model to gain further insight into chronic inflammation and IBD. We hypothesize that adenosine A3 and A1 receptors may provide a novel target for therapy in chronic ileitis and perhaps IBD.
Collapse
Affiliation(s)
- Uma Sundaram
- Department of Internal Medicine, Division of Gastroenterology, University of Rochester, Rochester, NY, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Lee YC, Lai HL, Sun CN, Chien CL, Chern Y. Identification of nuclear factor 1 (NF1) as a transcriptional modulator of rat A(2A) adenosine receptor. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 111:61-73. [PMID: 12654506 DOI: 10.1016/s0169-328x(02)00670-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
By a combination of PCR and DNA walking technique, we isolated a 4.8-kb DNA fragment containing a 4.3 kb 5'-flanking region and a 0.5-kb 5'-untranslated region of the rat A(2A) adenosine receptor (A(2A)-R) gene. Various lengths of the 5'-flanking region of the A(2A)-R gene were inserted into an expression vector and transfected into several different cell lines for promoter analysis. Our results reveal that a consensus NF1 element (designated as A(2A)-R/NF1), located between bases -2846 and -2827 of the A(2A)-R gene, functions as a repressor for A(2A)-R promoters in the rat brain-derived type-2 astrocyte cell line (RBA2), which expresses no A(2A)-R. Electrophoretic gel mobility shift assay (EMSA) revealed that two A(2A)-R/NF1-protein complexes of RBA2 nuclear extract were formed. Supershift experiments using an anti-NF1 antibody suggest that NF1 proteins exist in both A(2A)-R/NF1-protein complexes. Furthermore, mutations in the conserved NF1 binding site of this A(2A)-R/NF1 element disturbed DNA-protein formation. Thus, NF1 proteins appear to mediate this cell line-specific suppression of A(2A)-R promoters in RBA2 cells. The importance of NF1 proteins in regulating A(2A)-R promoters was further confirmed in another cell line (Siha) which expresses no endogenous A(2A)-R. Moreover, addition of the A(2A)-R/NF1element upstream of an irrelevant thymidine kinase (TK) promoter suppressed its promoter activity in Siha cells, but not in RBA2 cells. Thus, the NF1-mediated inhibition of the A(2A)-R promoter was promoter- and cell line-specific. In summary, we have defined a distal negative element (A(2A)-R/NF1) that plays a functional role in modulating the expression of A(2A)-R.
Collapse
Affiliation(s)
- Yi Chao Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | |
Collapse
|
80
|
Kim SG, Soltysiak KA, Gao ZG, Chang TS, Chung E, Jacobson KA. Tumor necrosis factor alpha-induced apoptosis in astrocytes is prevented by the activation of P2Y6, but not P2Y4 nucleotide receptors. Biochem Pharmacol 2003; 65:923-31. [PMID: 12623123 PMCID: PMC3402349 DOI: 10.1016/s0006-2952(02)01614-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The physiological role of the uracil nucleotide-preferring P2Y(6) and P2Y(4) receptors is still unclear, although they are widely distributed in various tissues. In an effort to identify their biological functions, we found that activation by UDP of the rat P2Y(6) receptor expressed in 1321N1 human astrocytes significantly reduced cell death induced by tumor necrosis factor alpha (TNF alpha). This effect of UDP was not observed in non-transfected 1321N1 cells. Activation of the human P2Y(4) receptor expressed in 1321N1 cells by UTP did not elicit this protective effect, although both receptors were coupled to phospholipase C. The activation of P2Y(6) receptors prevented the activation of both caspase-3 and caspase-8 resulting from TNF alpha exposure. Even a brief (10-min) incubation with UDP protected the cells against TNF alpha-induced apoptosis. Interestingly, UDP did not protect the P2Y(6)-1321N1 cells from death induced by other methods, i.e. oxidative stress induced by hydrogen peroxide and chemical ischemia. Therefore, it is suggested that P2Y(6) receptors interact rapidly with the TNF alpha-related intracellular signals to prevent apoptotic cell death. This is the first study to describe the cellular protective role of P2Y(6) nucleotide receptor activation.
Collapse
Affiliation(s)
- Seong G. Kim
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 8A, Rm. B1A-19, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Kelly A. Soltysiak
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 8A, Rm. B1A-19, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 8A, Rm. B1A-19, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Tong-Shin Chang
- Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eunju Chung
- Preclinical Development Scientific Core, Medical Oncology Clinical Research Unit, National Cancer Institute, Bethesda, MD 20892, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 8A, Rm. B1A-19, National Institutes of Health, Bethesda, MD 20892-0810, USA
- Corresponding author. Tel.: +1-301-496-9024; fax: +1-301-480-8422. (K.A. Jacobson)
| |
Collapse
|
81
|
Lu K, Liang CL, Chen HJ, Chen SD, Hsu HC, Chen YC, Hsu FF, Cho CL. Nuclear factor-kappaB-regulated cyclooxygenase-2 expression in surgery-associated paraspinal muscle injury in rats. J Neurosurg 2003; 98:181-7. [PMID: 12650403 DOI: 10.3171/spi.2003.98.2.0181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Paraspinal muscle injury is a common but neglected complication of posterior spinal surgery. Evidence suggests that surgical retraction places mechanical and oxidative stress on the paraspinal muscles and that inflammation is a major postoperative pathological finding in the muscles. The roles of cyclooxygenase (COX)-2 and nuclear factor (NF)-kappaB in the inflammatory processes after retraction remain to be clarified. METHODS In the control group, paraspinal muscles were dissected from the spine via a posterior incision and then laterally retracted. Paraspinal muscle specimens were harvested before as well as at designated time points during and after persistent retraction. The time course of NF-kappaB activation was determined by gel shift assay. Expression of COX-2 was examined using Western blot analysis and immunohistochemistry. The severity of inflammation was evaluated based on histopathology and myeloperoxidase (MPO) activity. The NF-kappaB activation was inhibited by the administration of pyrrolidine dithiolcarbamate (PDTC) in the PDTC-treated group. Retraction induced early activation of NF-kappaB in paraspinal muscle cells. The expression of COX-2 could not be detected until 1 day postoperativley, reaching a peak at 3 days. The time course of COX-2 expression correlated with that of inflammatory responses and MPO activity. Pretreatment with PDTC inhibited intraoperative NF-kappaB activation and greatly downregulated postoperative COX-2 expression and inflammation in the muscles. Postinflammation fibrosis was also abolished by PDTC administration. CONCLUSIONS Both NF-kappaB-regulated COX-2 expression and inflammation play an important role in the pathogenesis of surgery-associated paraspinal muscle injury. The therapeutic strategy of NF-kappaB inhibition may be applicable to the prevention of such injury.
Collapse
Affiliation(s)
- Kang Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Majumdar S, Aggarwal BB. Adenosine suppresses activation of nuclear factor-kappaB selectively induced by tumor necrosis factor in different cell types. Oncogene 2003; 22:1206-18. [PMID: 12606947 DOI: 10.1038/sj.onc.1206184] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2002] [Revised: 10/18/2002] [Accepted: 10/23/2002] [Indexed: 11/09/2022]
Abstract
Adenosine is an endogenous immunomodulator that has been shown to exhibit anti-inflammatory and immunosuppressive properties through a mechanism that is not fully established. Owing to the pivotal role of nuclear factor (NF)-kappaB in these responses, we tested the hypothesis that adenosine mediates its effects through suppression of NF-kappaB activation. We investigated the effects of adenosine on NF-kappaB activation induced by various inflammatory agents in human myeloid KBM-5 cells. The treatment of these cells with adenosine suppressed TNF-induced NF-kappaB activation, but had no effect on activation of another redox-sensitive transcription factor, AP-1. These effects were not restricted to myeloid cells, as NF-kappaB activation in other lymphocytic and epithelial cell types was also inhibited. The effect on TNF-induced NF-kappaB activation was selective as adenosine had minimal effect on NF-kappaB activation induced by H(2)O(2), PMA, LPS, okadaic acid, or ceramide, suggesting differences in the pathway leading to NF-kappaB activation by different agents. Adenosine also suppressed NF-kappaB-dependent reporter gene expression activated by TNF or by overexpression of TNFR1, TRAF 2, NIK, and p65 subunit of NF-kappaB. The suppression of TNF-induced NF-kappaB activation by adenosine was found not to be because of inhibition of TNF-induced IkappaBalpha phosphorylation and degradation or IkappaBalpha kinase activation. The suppression of TNF-induced NF-kappaB activation was unique to adenosine, as neither its metabolites (inosine, AMP, and ATP) nor pyrimidines (thymidine and uridine) had any effect. Overall, our results clearly demonstrate that adenosine selectively suppresses TNF-induced NF-kappaB activation, which may contribute to its role in suppression of inflammation and of the immune system.
Collapse
MESH Headings
- Adenosine/pharmacology
- Alkaline Phosphatase/biosynthesis
- Alkaline Phosphatase/genetics
- Antigens, CD/physiology
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Ceramides/pharmacology
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Reporter
- HeLa Cells/drug effects
- HeLa Cells/metabolism
- Humans
- Hydrogen Peroxide/pharmacology
- I-kappa B Kinase
- I-kappa B Proteins/physiology
- Jurkat Cells/drug effects
- Jurkat Cells/metabolism
- Kidney/cytology
- Kidney/embryology
- Leukemia, Myeloid/pathology
- Lipopolysaccharides/pharmacology
- Monocytes/drug effects
- Monocytes/metabolism
- NF-KappaB Inhibitor alpha
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/physiology
- Okadaic Acid/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/physiology
- Proteins/antagonists & inhibitors
- Proteins/physiology
- Purinergic P1 Receptor Agonists
- Receptors, Purinergic P1/physiology
- Receptors, Tumor Necrosis Factor/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type I
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- TNF Receptor-Associated Factor 2
- Tetradecanoylphorbol Acetate/pharmacology
- Thymidine/pharmacology
- Transcription, Genetic/drug effects
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/pharmacology
- Uridine/pharmacology
- NF-kappaB-Inducing Kinase
Collapse
Affiliation(s)
- Sekhar Majumdar
- Cytokine Research Laboratory, Department of Bioimmunotherapy, The University of Texas, TX 77030, USA
| | | |
Collapse
|
83
|
Abstract
Sleep remains an important enigma in neurobiology; it has a robust adaptive value yet its function remains elusive. Changes in sleep are hallmarks of the acute phase response to infectious challenge. The molecular regulation of these responses involves a cytokine cascade within brain, including interleukin-1 and tumor necrosis factor, and several other substances such as growth hormone releasing hormone, prolactin, nitric oxide and nuclear factor kappaB. These substances are also involved in the regulation of normal spontaneous sleep. Fatigue and sleep disturbances are common in cancer patients and in those receiving cytokine therapy. Regardless, the role of sleep in cancer is relatively uninvestigated.
Collapse
Affiliation(s)
- James M Krueger
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, College of Veterinary Medicine, Washington State University, P.O. Box 646520, Pullman 99164-6520, USA.
| | | | | |
Collapse
|
84
|
Diniz C, Leal S, Gonçalves J. Regional differences in the adenosine A(2) receptor-mediated modulation of contractions in rat vas deferens. Eur J Pharmacol 2003; 460:191-9. [PMID: 12559381 DOI: 10.1016/s0014-2999(02)02926-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenosine receptors involved in modulation of contractions were characterized in the bisected rat vas deferens by combining pharmacological and immunohistochemical approaches. In both portions, noradrenaline-elicited contractions were enhanced by the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA), and inhibited by the non-selective adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA) in the presence of the adenosine A(1) receptor antagonist 1,3-dipropyl-8-cyclopentyl-l,3-dipropylxanthine (DPCPX). The adenosine A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethyl-amino-5'-N-ethylcarboxamidoadenosine (CGS 21680) also inhibited noradrenaline-elicited contractions but only in the prostatic portion. Contractions elicited by the stable ATP analogue alpha,beta-methyleneATP (alpha,beta-MeATP) were inhibited only by NECA in the presence of DPCPX and only in the prostatic portion. This study provides functional evidence for the presence, in both portions of the rat vas deferens, of an adenosine A(1) receptor-mediated enhancement and of an adenosine A(2) receptor-mediated inhibition of contractions. The latter effect is mediated by both A(2A) and A(2B) subtypes in the prostatic portion but only by the A(2B) subtype in the epididymal portion. This regional variation is supported by the immunohistochemical results that revealed an adenosine A(2A) receptor immunoreactivity not co-localized with nerve fibres more abundant in the prostatic than in the epididymal portion.
Collapse
Affiliation(s)
- Carmen Diniz
- Laboratório de Farmacologia, CEQOFF/FCT, Faculdade de Farmácia, Universidade do Porto, Rua Anibal Cunha 164, P 4050-047 Porto, Portugal
| | | | | |
Collapse
|
85
|
Haddad JJ. Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal 2002; 14:879-97. [PMID: 12220615 DOI: 10.1016/s0898-6568(02)00053-0] [Citation(s) in RCA: 290] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A progressive rise of oxidative stress due to the altered reduction-oxidation (redox) homeostasis appears to be one of the hallmarks of the processes that regulate gene transcription in physiology and pathophysiology. Reactive oxygen (ROS) and nitrogen (RNS) species serve as signaling messengers for the evolution and perpetuation of the inflammatory process that is often associated with the condition of oxidative stress, which involves genetic regulation. Changes in the pattern of gene expression through ROS/RNS-sensitive regulatory transcription factors are crucial components of the machinery that determines cellular responses to oxidative/redox conditions. Transcription factors that are directly influenced by reactive species and pro-inflammatory signals include nuclear factor-kappaB (NF-kappaB) and hypoxia-inducible factor-1alpha (HIF-1alpha). Here, I describe the basic components of the intracellular oxidative/redox control machinery and its crucial regulation of oxygen- and redox-sensitive transcription factors such as NF-kappaB and HIF-1alpha.
Collapse
Affiliation(s)
- John J Haddad
- Molecular Neuroscience Research Division, Department of Anesthesia and Perioperative Care, University of California at San Francisco, School of Medicine, San Francisco, CA 94143-0542, USA.
| |
Collapse
|
86
|
Abstract
Adenosine is directly linked to the energy metabolism of cells. In the central nervous system an increase in neuronal activity enhances energy consumption as well as extracellular adenosine concentrations. In most brain areas high extracellular adenosine concentrations, through A(1) adenosine receptors, decrease neuronal activity and thus the need for energy. Adenosine seems to act as a direct negative feed-back inhibitor of neuronal activity. Hypoxia and ischemia induce very high extracellular adenosine levels, which may limit further brain damage. In brain areas that regulate cortical vigilance, particularly in the basal forebrain, high extracellular adenosine concentrations, induced by prolonged wakefulness, decrease the activity of presumably cholinergic cells and via this mechanism promote sleep. Our hypothesis is that in the cholinergic basal forebrain prolonged wakefulness induces local energy depletion that generates increases in extracellular adenosine concentrations in this area. In addition to the immediate effects, high extracellular adenosine concentrations also induce intracellular changes in signal transduction and transcription, e.g. increase in A(1) receptor expression and NF-kappaB binding activity. These changes may at least partially mediate the long term effects of prolonged wakefulness. Adenosine may also be a common mediator of the effects of several other sleep-inducing factors.
Collapse
|
87
|
Sandrasagra A, Leonard SA, Tang L, Teng K, Li Y, Ball HA, Mannion JC, Nyce JW. Discovery and development of respirable antisense therapeutics for asthma. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2002; 12:177-81. [PMID: 12162700 DOI: 10.1089/108729002760220770] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Respirable antisense oligonucleotides (RASONs) represent a novel class of respiratory therapeutic molecules with the potential to specifically address the challenges posed by the successes of the Human Genome Program, namely, the need to rapidly identify the critical pulmonary disease-relevant drugable targets from the vast pool of 30,000-40,000 human genes and to discover and develop drugs that specifically attack these targets. We have shown that EPI-2010, a RASON targeting the adenosine A1 receptor, a G-protein coupled receptor that has been implicated in the regulation of three major determinants of asthma, can be delivered directly to the target disease tissue as an aerosol formulation. In vivo efficacy, absorption, distribution, metabolism, and excretion (ADME), and safety studies of inhaled EPI-2010 employing animal models of human asthma suggest that the RASON approach enables the specific delivery of efficacious, safe, and long-acting doses of phosphorothioate oligonucleotides to the respiratory tract. Moreover, these data indicate that RASONs truly have the potential to address the respiratory drug discovery bottleneck of the postgenomic era, that is, the ability to rapidly validate disease targets and develop pulmonary disease therapeutics for these validated targets.
Collapse
|
88
|
Bhat SG, Mishra S, Mei Y, Nie Z, Whitworth CA, Rybak LP, Ramkumar V. Cisplatin up-regulates the adenosine A(1) receptor in the rat kidney. Eur J Pharmacol 2002; 442:251-64. [PMID: 12065079 DOI: 10.1016/s0014-2999(02)01510-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cisplatin, a widely used anticancer drug, produces significant oto- and nephrotoxicity. Previous data from our laboratory, using cultured cell lines, indicated that cisplatin increases the expression of the adenosine A(1) receptor subtype through generation of reactive oxygen species and activation of nuclear factor-kappa B (NF-kappa B). Since the adenosine A(1) receptor plays an important role in normal renal physiology, this study was performed to determine whether cisplatin modulates adenosine A(1) receptor expression in vivo and whether these receptors play a role in the nephrotoxicity. Male Sprague-Dawley rats, treated with cisplatin (8 mg/kg), developed nephrotoxicity within 3 days, as demonstrated by increased serum creatinine and blood urea nitrogen. Cisplatin also produced a significant increase in malondialdehyde, apoptosis and necrosis in the kidney. The above changes were associated with a time-dependent increase in the expression of adenosine A(1) receptor, as determined by radioligand binding assays, Western blotting and immunocytochemistry, and an increase in adenosine A(1) receptor transcripts. Administration of selective and nonselective antagonists of the adenosine A(1) receptor produced either no change or exacerbated the nephrotoxicity produced by cisplatin. These data indicate that cisplatin can regulate the adenosine A(1) receptor in the kidney and suggest a cytoprotective role of this receptor subtype against cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Satyanarayan G Bhat
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62974-1222, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Li G, Sha SH, Zotova E, Arezzo J, Van de Water T, Schacht J. Salicylate protects hearing and kidney function from cisplatin toxicity without compromising its oncolytic action. J Transl Med 2002; 82:585-96. [PMID: 12003999 DOI: 10.1038/labinvest.3780453] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Salicylate has recently been demonstrated to protect against the auditory and vestibular side effects of aminoglycoside antibiotics. Similarities in the toxic mechanisms suggest salicylate as a treatment strategy to prevent the ototoxic side effects of cisplatin (CDDP). We first tested protection of the inner ear in Wistar rats receiving a single infusion of 16 mg CDDP/kg body weight with or without treatment with 100 mg/kg salicylate (bid) for 5 days beginning one day before the CDDP infusion. Cisplatin induced a threshold shift of more than 30 dB (at 14 kHz; measured by auditory evoked brain stem response) that was significantly reduced by salicylate. We then examined the protective potential of salicylate on the cochlea, peripheral nerves, and kidney in a rat model of breast cancer--Fisher344 rats implanted with highly metastatic MTLn3 breast cancer cells. Animals received 3 x 5 mg CDDP/kg (given every third day), and salicylate was administered at 100 mg/kg (bid) from 2 days before to 3 days after CDDP treatment. Salicylate significantly attenuated the CDDP-induced threshold shift from approximately 20 dB (at 16 and 24 kHz) to approximately 5 dB, and drastically reduced the loss of cochlear outer hair cells. Likewise, salicylate protected kidney function (measured as plasma blood urea nitrogen and creatinine levels) from CDDP toxicity. Protection of nerve conduction velocities of both sensory and motor nerves was minimal. The chemotherapeutic efficacy of CDDP on suppression of tumor mass and cancer cell metastasis remained unaffected by salicylate. The results suggest that administration of salicylate may become the basis of an effective therapeutic intervention against the ototoxic and nephrotoxic side effects associated with CDDP chemotherapy.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antineoplastic Agents/adverse effects
- Auditory Threshold/drug effects
- Blood Urea Nitrogen
- Breast Neoplasms/drug therapy
- Cisplatin/adverse effects
- Drug Antagonism
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Female
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/ultrastructure
- Hearing Loss, Sensorineural/chemically induced
- Hearing Loss, Sensorineural/prevention & control
- Kidney Diseases/blood
- Kidney Diseases/chemically induced
- Kidney Diseases/prevention & control
- Kidney Function Tests
- Male
- Neoplasms, Experimental/drug therapy
- Neural Conduction/drug effects
- Neural Conduction/physiology
- Rats
- Rats, Inbred F344
- Rats, Wistar
- Salicylates/pharmacology
Collapse
Affiliation(s)
- Geming Li
- Department of Otolaryngology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | |
Collapse
|
90
|
Greiber S, Müller B, Daemisch P, Pavenstädt H. Reactive oxygen species alter gene expression in podocytes: induction of granulocyte macrophage-colony-stimulating factor. J Am Soc Nephrol 2002; 13:86-95. [PMID: 11752025 DOI: 10.1681/asn.v13186] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
It has been suggested that reactive oxygen radicals (ROS) play a crucial role in the pathogenesis of proteinuria and podocyte injury. It was investigated whether changes in gene expression might account for ROS-induced podocyte dysfunction. Differentiated podocytes were incubated with control media or with exogenous ROS from the xanthine/xanthine-oxidase reaction for 4 h. A PCR-based suppressive subtractive hybridization assay was applied to isolate and clone mRNAs that were differentially expressed by exogenous ROS. One differentially expressed clone was identified as the proinflammatory cytokine granulocyte macrophage-colony-stimulating factor (GM-CSF). Regulation of GM-CSF in podocytes was further studied by Northern analysis and enzyme-linked immunosorbent assay. Exogenous ROS caused a concentration-dependent, >10-fold induction of GM-CSF mRNA after 4 h. A >50-fold increase in GM-CSF protein release in podocytes that had been stimulated with ROS could be detected. Induction of GM-CSF protein was inhibited by actinomycin D, which indicated that increased mRNA transcription was involved. The ROS scavengers dimethyl-thio-urea and pyrrolidone-dithio-carbamate strongly inhibited increased GM-CSF production induced by ROS. GM-CSF release was also induced when internal ROS production was triggered with NADH, whereas H2O2 had only a small effect. GM-CSF release by podocytes was also stimulated by lipopolysaccharide (LPS), interleukin-1 (IL-1), and phorbolester (PMA). Dimethyl-thio-urea significantly inhibited the LPS-, IL-1-, and PMA-induced GM-CSF production. Activation of the transcription factor nuclear factor-kappaB (NF-kappaB) but not activator protein-1 was involved in the upregulation of ROS-induced GM-CSF production. The data indicate that GM-CSF is differentially expressed by ROS in podocytes. ROS also partially mediate the effects of PMA and IL-1 on podocyte GM-CSF production. Because GM-CSF can enhance glomerular inflammation and induces mesangial proliferation, these data might provide further insight into the mechanisms of ROS-induced glomerular injury.
Collapse
Affiliation(s)
- Stefan Greiber
- Department of Medicine, Division of Nephrology, University Hospital of Freiburg, Freiburg, Germany
| | - Barbara Müller
- Department of Medicine, Division of Nephrology, University Hospital of Freiburg, Freiburg, Germany
| | - Petra Daemisch
- Department of Medicine, Division of Nephrology, University Hospital of Freiburg, Freiburg, Germany
| | - Hermann Pavenstädt
- Department of Medicine, Division of Nephrology, University Hospital of Freiburg, Freiburg, Germany
| |
Collapse
|
91
|
Kubota T, Fang J, Brown RA, Krueger JM. Interleukin-18 promotes sleep in rabbits and rats. Am J Physiol Regul Integr Comp Physiol 2001; 281:R828-38. [PMID: 11506998 DOI: 10.1152/ajpregu.2001.281.3.r828] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Interleukin (IL)-1beta is involved in physiological sleep regulation. IL-18 is a member of the IL-1 family, and its signal-transduction mechanism is similar to that of IL-1. Therefore, we hypothesized that IL-18 might also be involved in sleep regulation. Three doses of IL-18 (10, 100, and 500 ng) were injected intracerebroventricularly (icv) into rabbits at the onset of the dark period. The two higher doses of IL-18 markedly increased non-rapid eye movement sleep (NREMS), accompanied by increases in brain temperature (Tbr). These effects were lost after the heat inactivation of IL-18. The 500 ng of IL-18 injection during the light period also increased NREMS and Tbr. Similar results were obtained after icv injection of 100 ng of IL-18 into rats. Furthermore, intraperitoneal injection of 30 microg/kg of IL-18 slightly, but significantly, increased NREMS, whereas it significantly decreased electroencephalogram slow-wave activity in rats. Intraperitoneal IL-18 failed to induce fever. An anti-human IL-18 antibody had little effect on spontaneous sleep in rabbits, although the anti-IL-18 antibody significantly attenuated muramyl dipeptide-induced sleep. These data suggest that IL-18 is involved in mechanisms of sleep responses to infection.
Collapse
Affiliation(s)
- T Kubota
- College of Veterinary Medicine, Department of VCAPP, Washington State University, Pullman, WA 99164-6520, USA
| | | | | | | |
Collapse
|
92
|
Basheer R, Rainnie DG, Porkka-Heiskanen T, Ramesh V, McCarley RW. Adenosine, prolonged wakefulness, and A1-activated NF-kappaB DNA binding in the basal forebrain of the rat. Neuroscience 2001; 104:731-9. [PMID: 11440805 DOI: 10.1016/s0306-4522(01)00111-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There is considerable evidence to suggest that adenosine is a modulator of behavioral state. Our previous reports showed that perfusion of adenosine into the basal forebrain decreased wakefulness. Furthermore, prolonged wakefulness resulted in increased levels of extracellular adenosine in the basal forebrain of cats and rats. However, the longer-term consequences of prolonged wakefulness and increased adenosine are largely unknown. We report here an increase in the DNA binding activity of the transcription factor, nuclear factor-kappa B (NF-kappaB) following 3 h of sustained wakefulness in the rat basal forebrain. Moreover, this treatment led to the appearance of the p65 subunit of NF-kappaB in the nucleus, as determined by western blot analysis of nuclear proteins. This contrasted with undetectable levels in the sleeping controls. A concomitant disappearance of I-kappaB in cytoplasm suggested the degradation of this inhibitor of NF-kappaB. In the acute in vitro basal forebrain slice preparation, perfusion of adenosine increased NF-kappaB DNA binding while pretreatment of the slices with the A1 adenosine receptor antagonist, cyclopentyl-1-3-dimethylxanthine, significantly reduced NF-kappaB DNA binding. These results are compatible with the hypothesis that increases in the levels of adenosine in the basal forebrain, that occur during prolonged wakefulness, act through an A1 adenosine receptor and a second messenger system to increase the activity of the transcription factor NF-kappaB. We further hypothesize that some of the long duration effects of prolonged wakefulness/sleep deprivation on performance and physiology, often termed 'sleep debt', might be mediated through adenosine and its activation of NF-kappaB, which is known to alter the expression of several behavioral state regulatory factors.
Collapse
Affiliation(s)
- R Basheer
- Department of Psychiatry, Havard Medical School and VA Medical Center, Brockton, MA 02401, USA
| | | | | | | | | |
Collapse
|
93
|
Abstract
Nuclear factor kappa-B (NFkappaB), a redox-sensitive transcription factor regulating a battery of inflammatory genes, has been indicated to play a role in the development of numerous pathological states. Activation of NFkappaB induces gene programs leading to transcription of factors that promote inflammation, such as leukocyte adhesion molecules, cytokines, and chemokines, although some few substances with possible anti-inflammatory effects are also NFkappaB regulated. The present article reviews basic regulation of NFkappaB and its activation, cell biological effects of NFkappaB activation and the role of NFkappaB in apoptosis. Evidence involving NFkappaB as a key factor in the pathophysiology of ischemia-reperfusion injury and heart failure is discussed. Although activation of NFkappaB induces pro-inflammatory genes, it has lately been indicated that the transcription factor is involved in the signaling of endogenous myocardial protection evoked by ischemic preconditioning. A possible role of NFkappaB in the development of atherosclerosis and unstable coronary syndromes is discussed. Nuclear factor kappa-B may be a new therapeutic target for myocardial protection.
Collapse
Affiliation(s)
- G Valen
- Crafoord Laboratory of Experimental Surgery, Karolinska Hospital, Stockholm, Sweden.
| | | | | |
Collapse
|
94
|
Ramkumar V, Hallam DM, Nie Z. Adenosine, oxidative stress and cytoprotection. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 86:265-74. [PMID: 11488425 DOI: 10.1254/jjp.86.265] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Adenosine, a metabolite of ATP, serves a number of important physiological roles in the body. These actions contribute to sedation, bradycardia, vasorelaxation, inhibition of lipolysis and regulation of the immune system and are mediated, in part, through activation of three distinct adenosine receptor (AR) subtypes. To date, four receptor types have been cloned: A1, A2A, A2B and A3. It is becoming increasing clear that adenosine contributes significantly to cytoprotection, a function mediated principally by the A1AR and A3AR. In this review, we survey the literature on the role of adenosine and the mechanisms underlying cytoprotection and ischemic preconditioning, a process characterized by cytoprotection derived from repeated brief ischemic challenges. An important recent observation is that the expression of several AR subtypes could be regulated by oxidative stress to provide a greater cytoprotective role. Thus, like other proteins known to be regulated during ischemia, the A1AR and A3AR can be considered as being inducible receptors.
Collapse
Affiliation(s)
- V Ramkumar
- Southern Illinois University School of Medicine, Department of Pharmacology, Springfield 62794-9620, USA.
| | | | | |
Collapse
|
95
|
Lerman LO, Nath KA, Rodriguez-Porcel M, Krier JD, Schwartz RS, Napoli C, Romero JC. Increased oxidative stress in experimental renovascular hypertension. Hypertension 2001; 37:541-6. [PMID: 11230332 DOI: 10.1161/01.hyp.37.2.541] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The pathophysiological mechanisms responsible for maintenance of chronic renovascular hypertension remain undefined. Excess angiotensin II generation may lead to release of reactive oxygen species and increased vasoconstrictor activity. To examine the potential involvement of oxidation-sensitive mechanisms in the pathophysiology of renovascular hypertension, blood samples were collected and renal blood flow measured with electron-beam computed tomography in pigs 5 and 10 weeks after induction of unilateral renal artery stenosis (n=7) or sham operation (n=7). Five weeks after procedure, plasma renin activity and mean arterial pressure were elevated in hypertensive pigs. Levels of prostaglandin F2alpha (PGF(2alpha))-isoprostanes, vasoconstrictors and markers of oxidative stress, also were significantly increased (157+/-21 versus 99+/-16 pg/mL; P<0.05) and correlated with both plasma renin activity (r=0.83) and arterial pressure (r=0.82). By 10 weeks, plasma renin activity returned to baseline but arterial pressure remained elevated (144+/-10 versus 115+/-5 mm Hg; P:<0.05). Isoprostane levels remained high and still correlated directly with the increase in arterial pressure (r=0.7) but not with plasma renin activity. Stenotic kidney blood flow was decreased at both studies. In shock-frozen cortical tissue, ex vivo endogenous intracellular radical scavengers were significantly decreased in both kidneys. The present study demonstrates, for the first time, that in early renovascular hypertension, an increase in plasma renin activity and arterial pressure is associated with increased systemic oxidative stress. When plasma renin activity later declines, PGF(2alpha)-isoprostanes remain elevated, possibly due to local activation or slow responses to angiotensin II, and may participate in sustenance of arterial pressure. Moreover, oxidation-sensitive mechanisms may influence ischemic and hypertensive parenchymal renal injury.
Collapse
Affiliation(s)
- L O Lerman
- Department of Internal Medicine, Division of Hypertension, Mayo Clinic, Rochester, Minnesota, USA.
| | | | | | | | | | | | | |
Collapse
|
96
|
Kubota T, Kushikata T, Fang J, Krueger JM. Nuclear factor-kappaB inhibitor peptide inhibits spontaneous and interleukin-1beta-induced sleep. Am J Physiol Regul Integr Comp Physiol 2000; 279:R404-13. [PMID: 10938226 DOI: 10.1152/ajpregu.2000.279.2.r404] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) is a transcription factor that when activated promotes production of several sleep-promoting substances such as interleukin-1beta (IL-1beta), tumor necrosis factor-alpha, and nerve growth factor. Therefore, we hypothesized that inhibition of NF-kappaB activation would attenuate sleep. A NF-kappaB cell-permeable inhibitor peptide (IP) was injected intracerebroventricularly (5 and 50 microg for rats, 100 microg for rabbits). On a separate day, time-matched control injections of a cell-permeable inactive control peptide were done in the same animals. The 50-microg dose of IP in rats and the 100-microg dose in rabbits significantly inhibited non-rapid eye movement sleep and rapid eye movement sleep if administered during the light period. Moreover, pretreatment of rabbits with 100 microg of the IP 12 h before intracerebroventricular injection of IL-1beta (10 ng) significantly attenuated IL-1beta-induced sleep and febrile responses. The current data support the hypothesis that a brain cytokine network is involved in sleep regulation and that NF-kappaB is a crucial factor in physiological sleep regulation.
Collapse
Affiliation(s)
- T Kubota
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University College of Veterinary Medicine, Pullman 99164-6520, USA
| | | | | | | |
Collapse
|
97
|
Kim HJ, Kim KW, Yu BP, Chung HY. The effect of age on cyclooxygenase-2 gene expression: NF-kappaB activation and IkappaBalpha degradation. Free Radic Biol Med 2000; 28:683-92. [PMID: 10754263 DOI: 10.1016/s0891-5849(99)00274-9] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Increased oxidative stress resulting in the activation of NF-kappaB is thought to play a crucial role in the expression of the cyclooxygenase-2 (COX-2), which is the key enzyme in proinflammatory prostanoid synthesis. In the current study, we investigated whether the aging process affects the status of the redox-sensitive NF-kappaB in rat kidney, and how this age-related modulation is related to COX-2 gene expression and COX-derived reactive oxygen species (ROS). We found that the aging process strongly enhanced the activation of NF-kappaB and its DNA-binding activity with an increased ROS status. Accompanied with the change in the NF-kappaB activity was a decreased IkappaBalpha as confirmed by the increased nuclear p65 protein. Thus, these data strongly indicated that the aging process increases NF-kappaB activity by downregulating IkappaBalpha. A closer examination further revealed that age-related oxidative status correlated with the increased COX-derived prostanoid biosynthetic process is mediated by the increased NF-kappaB-regulated COX activity. This increase in NF-kappaB activity was accompanied by the increased COX-2 mRNA and protein levels. Based on these data, we concluded that the age-related increase in redox-sensitive NF-kappaB translocation and binding activities are associated with increased ROS, and further that this transactivation was modulated by the age-related decrease of IkappaBalpha.
Collapse
Affiliation(s)
- H J Kim
- College of Pharmacy, Pusan, South Korea
| | | | | | | |
Collapse
|
98
|
Abstract
The vertebrate transcription factor NF-kappaB is induced by over 150 different stimuli. Active NF-kappaB, in turn, participates in the control of transcription of over 150 target genes. Because a large variety of bacteria and viruses activate NF-kappaB and because the transcription factor regulates the expression of inflammatory cytokines, chemokines, immunoreceptors, and cell adhesion molecules, NF-kappaB has often been termed a 'central mediator of the human immune response'. This article contains a complete listing of all NF-kappaB inducers and target genes described to date. The collected data argue that NF-kappaB functions more generally as a central regulator of stress responses. In addition, NF-kappaB activation blocks apoptosis in several cell types. Coupling stress responsiveness and anti-apoptotic pathways through the use of a common transcription factor may result in increased cell survival following stress insults.
Collapse
Affiliation(s)
- H L Pahl
- Department of Experimental Anesthesiology, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
99
|
Abstract
The vertebrate transcription factor NF-kappaB is induced by over 150 different stimuli. Active NF-kappaB, in turn, participates in the control of transcription of over 150 target genes. Because a large variety of bacteria and viruses activate NF-kappaB and because the transcription factor regulates the expression of inflammatory cytokines, chemokines, immunoreceptors, and cell adhesion molecules, NF-kappaB has often been termed a 'central mediator of the human immune response'. This article contains a complete listing of all NF-kappaB inducers and target genes described to date. The collected data argue that NF-kappaB functions more generally as a central regulator of stress responses. In addition, NF-kappaB activation blocks apoptosis in several cell types. Coupling stress responsiveness and anti-apoptotic pathways through the use of a common transcription factor may result in increased cell survival following stress insults.
Collapse
Affiliation(s)
- H L Pahl
- Department of Experimental Anesthesiology, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
100
|
Nie Z, Mei Y, Malek RL, Marcuzzi A, Lee NH, Ramkumar V. A role of p75 in NGF-mediated down-regulation of the A(2A) adenosine receptors in PC12 cells. Mol Pharmacol 1999; 56:947-54. [PMID: 10531399 DOI: 10.1124/mol.56.5.947] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nerve growth factor (NGF) induces differentiation of the rat pheochromocytoma clone (PC12) by activating the high affinity receptor, p140(trkA), linked to mitogen-activated protein kinase. While the physiological role of the low affinity NGF receptor (p75) has not been clearly defined, this receptor promotes activation of nuclear factor (NF) kappaB in Schwann cells. PC12 cells express the A(2A) adenosine receptor (AR), whose expression is significantly decreased by NGF treatment. In this study, we determined whether TrkA or p75 is involved in NGF-mediated regulation of A(2A)AR expression. NGF treatment decreased A(2A)AR in a time-dependent manner, with maximal effects observed by 1 day, and continued down-regulation of the receptor for up to 3 days in the presence of NGF. The decrease in A(2A)AR was associated with a more delayed decrease in the steady-state levels of the A(2A)AR mRNA. Down-regulation of the A(2A)AR at 1 day was mimicked by activators of NFkappaB, such as H(2)O(2), and ceramide, and was attenuated by the inhibitor pyrrolidine dithiocarbamate or following transient transfection of PC12 cells with a dominant negative IkappaBalpha mutant. Moreover, NGF stimulated nuclear accumulation of p65 subunits of NFkappaB (but not p50 subunits) in PC12 cells, as determined by electrophoretic mobility shift assays and by Western blotting. In contrast, inhibition of TrkA by AG879 or of TrkA-dependent mitogen-activated protein kinase mitogen-activated protein kinase kinase with PD98059 blocked PC12 cell differentiation without affecting A(2A)AR down-regulation, suggesting dissociation between these two phenomena. Taken together, these data provide strong support for the involvement of the p75/NFkappaB pathway in NGF-mediated down-regulation of A(2A)AR in PC12 cells.
Collapse
Affiliation(s)
- Z Nie
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9629, USA
| | | | | | | | | | | |
Collapse
|