51
|
Liang X, Zhang Y, Zhou J, Bu Z, Liu J, Zhang K. Tumor microenvironment-triggered intratumoral in situ construction of theranostic supramolecular self-assembly. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
52
|
Choi S, Yang J, Lee SY, Kim J, Lee J, Kim WJ, Lee S, Kim C. Deep Learning Enhances Multiparametric Dynamic Volumetric Photoacoustic Computed Tomography In Vivo (DL-PACT). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2202089. [PMID: 36354200 PMCID: PMC9811490 DOI: 10.1002/advs.202202089] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/09/2022] [Indexed: 05/19/2023]
Abstract
Photoacoustic computed tomography (PACT) has become a premier preclinical and clinical imaging modality. Although PACT's image quality can be dramatically improved with a large number of ultrasound (US) transducer elements and associated multiplexed data acquisition systems, the associated high system cost and/or slow temporal resolution are significant problems. Here, a deep learning-based approach is demonstrated that qualitatively and quantitively diminishes the limited-view artifacts that reduce image quality and improves the slow temporal resolution. This deep learning-enhanced multiparametric dynamic volumetric PACT approach, called DL-PACT, requires only a clustered subset of many US transducer elements on the conventional multiparametric PACT. Using DL-PACT, high-quality static structural and dynamic contrast-enhanced whole-body images as well as dynamic functional brain images of live animals and humans are successfully acquired, all in a relatively fast and cost-effective manner. It is believed that the strategy can significantly advance the use of PACT technology for preclinical and clinical applications such as neurology, cardiology, pharmacology, endocrinology, and oncology.
Collapse
Affiliation(s)
- Seongwook Choi
- Department of Electrical EngineeringConvergence IT EngineeringMechanical EngineeringSchool of Interdisciplinary Bioscience and BioengineeringGraduate School of Artificial Intelligenceand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Jinge Yang
- Department of Electrical EngineeringConvergence IT EngineeringMechanical EngineeringSchool of Interdisciplinary Bioscience and BioengineeringGraduate School of Artificial Intelligenceand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Soo Young Lee
- Department of Electrical EngineeringConvergence IT EngineeringMechanical EngineeringSchool of Interdisciplinary Bioscience and BioengineeringGraduate School of Artificial Intelligenceand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Jiwoong Kim
- Department of Electrical EngineeringConvergence IT EngineeringMechanical EngineeringSchool of Interdisciplinary Bioscience and BioengineeringGraduate School of Artificial Intelligenceand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Jihye Lee
- Department of ChemistryPOSTECH‐CATHOLIC Biomedical Engineering InstitutePohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Won Jong Kim
- Department of ChemistryPOSTECH‐CATHOLIC Biomedical Engineering InstitutePohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Seungchul Lee
- Department of Electrical EngineeringConvergence IT EngineeringMechanical EngineeringSchool of Interdisciplinary Bioscience and BioengineeringGraduate School of Artificial Intelligenceand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Chulhong Kim
- Department of Electrical EngineeringConvergence IT EngineeringMechanical EngineeringSchool of Interdisciplinary Bioscience and BioengineeringGraduate School of Artificial Intelligenceand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| |
Collapse
|
53
|
Kuang Y, Liu N, Ye S, Li X, Chen X, Qi L, Zhu P, Liu R, Wu X. Ce doped polyaniline nanoparticles for absorption and photoacoustic imaging response to GSH in vitro and in vivo. Bioact Mater 2022; 17:197-203. [PMID: 35386448 PMCID: PMC8965031 DOI: 10.1016/j.bioactmat.2022.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
Glutathione (GSH) is an important biological thiol in cells, which is involved in many physiological processes in the organism and regulates pathological processes of cells. Rapid and accurate monitoring of GSH in vitro and in vivo is quite needed in investigating important biochemical events. In this contribution, innovative cerium (Ce) doped polyaniline (Ce–Fe@PANI NPs) were prepared via Fe(III) induced oxidization polymerization method. Upon addition of GSH, the absorption of Ce–Fe@PANI NPs red shifted from the visible to the NIR region, confirming the excellent absorption response to GSH. Moreover, Ce–Fe@PANI NPs exhibited excellent photoacoustic (PA) imaging enhancement in tube and shifted the PA intensity peak from 680 nm to 820 nm upon addition of GSH. In vitro and in vivo experiment verified that Ce–Fe@PANI NPs can monitor GSH in deep tissues via PA imaging technology. Collectively, this research provides Ce–Fe@PANI NPs would serve as a powerful nanoplatform to realize PA imaging detection of GSH in vitro and in vivo. Ce doped polyaniline nanoparticles (Ce–Fe@PANI NPs) with NIR absorption were prepared. Ce–Fe@PANI NPs demonstrated absorption response to GSH. Ce–Fe@PANI NPs had excellent PA enhancement and shifted the PA intensity peak from 680 nm to 820 nm upon addition of GSH. Ce–Fe@PANI NPs can monitor GSH in deep tissues via PA imaging technology in vivo.
Collapse
Affiliation(s)
- Yulin Kuang
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Nanbo Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Sheng Ye
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiang Li
- Emergency Department, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xuyuan Chen
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Li Qi
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Ruiyuan Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xu Wu
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
54
|
Zare A, Shamshiripour P, Lotfi S, Shahin M, Rad VF, Moradi AR, Hajiahmadi F, Ahmadvand D. Clinical theranostics applications of photo-acoustic imaging as a future prospect for cancer. J Control Release 2022; 351:805-833. [DOI: 10.1016/j.jconrel.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
|
55
|
Xie H, Pan Q, Wu D, Qin F, Chen S, Sun W, Yang X, Chen S, Wu T, Chi J, Huang Z, Wang H, Zhang Z, Chen B, Carmeliet J, Su M, Song Y. Lateral Heterostructured Vis-NIR Photodetectors with Multimodal Detection for Rapid and Precise Classification of Glioma. ACS NANO 2022; 16:16563-16573. [PMID: 36201316 DOI: 10.1021/acsnano.2c06004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Precise diagnosis of the boundary and grade of tumors is especially important for surgical dissection. Recently, visible and near-infrared (Vis-NIR) absorption differences of tumors are demonstrated for a precise tumor diagnosis. Here, a template-assisted sequential printing strategy is investigated to construct lateral heterostructured Vis-NIR photodetectors, relying on the up-conversion nanoparticles (UCNPs)/perovskite arrays. Under the sequential printing process, the synergistic effect and co-confinement are demonstrated to induce the UCNPs to cover both sides of the perovskite microwire. The side-wrapped lateral heterogeneous UCNPs/perovskite structure exhibits more satisfactory responsiveness to Vis-NIR light than the common fully wrapped structure, due to sufficient visible-light-harvesting ability. The Vis-NIR photodetectors with R reaching 150 mA W-1 at 980 nm and 1084 A W-1 at 450 nm are employed for the rapid classification of glioma. The detection accuracy rate of 99.3% is achieved through a multimodal analysis covering the Vis-NIR light, which provides a reliable basis for glioma grade diagnosis. This work provides a concrete example for the application of photodetectors in tumor detection and surgical diagnosis.
Collapse
Affiliation(s)
- Hongfei Xie
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Qi Pan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
| | - Dongdong Wu
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing100853, China
- Medical School of Chinese PLA Hospital, Beijing100853, China
| | - Feifei Qin
- Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology in Zürich (ETH Zürich), Zürich8092, Switzerland
| | - Shuoran Chen
- Research Center for Green Printing Nanophotonic Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wei Sun
- Institute of Software, Chinese Academy of Sciences, Beijing100049, China
| | - Xu Yang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Sisi Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Tingqing Wu
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jimei Chi
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Zengqi Huang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
| | - Huadong Wang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Zeying Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Bingda Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jan Carmeliet
- Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology in Zürich (ETH Zürich), Zürich8092, Switzerland
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
56
|
Tsymbal S, Li G, Agadzhanian N, Sun Y, Zhang J, Dukhinova M, Fedorov V, Shevtsov M. Recent Advances in Copper-Based Organic Complexes and Nanoparticles for Tumor Theranostics. Molecules 2022; 27:7066. [PMID: 36296659 PMCID: PMC9611640 DOI: 10.3390/molecules27207066] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 08/19/2023] Open
Abstract
Treatment of drug-resistant forms of cancer requires consideration of their hallmark features, such as abnormal cell death mechanisms or mutations in drug-responding molecular pathways. Malignant cells differ from their normal counterparts in numerous aspects, including copper metabolism. Intracellular copper levels are elevated in various cancer types, and this phenomenon could be employed for the development of novel oncotherapeutic approaches. Copper maintains the cell oxidation levels, regulates the protein activity and metabolism, and is involved in inflammation. Various copper-based compounds, such as nanoparticles or metal-based organic complexes, show specific activity against cancer cells according to preclinical studies. Herein, we summarize the major principles of copper metabolism in cancer cells and its potential in cancer theranostics.
Collapse
Affiliation(s)
- Sergey Tsymbal
- International Institute of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 197101 Saint Petersburg, Russia
| | - Ge Li
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 Xiang’an Road East, Xiamen 361101, China
- Xiamen Key Laboratory for Endocrine-Related Cancer Precision Medicine, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Nikol Agadzhanian
- International Institute of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 197101 Saint Petersburg, Russia
| | - Yuhao Sun
- Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jiazhennan Zhang
- Day-Care Department, Xinjiang Medical University, Urumqi 830011, China
| | - Marina Dukhinova
- International Institute of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 197101 Saint Petersburg, Russia
| | - Viacheslav Fedorov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
57
|
Wen Y, Guo D, Zhang J, Liu X, Liu T, Li L, Jiang S, Wu D, Jiang H. Clinical photoacoustic/ultrasound dual-modal imaging: Current status and future trends. Front Physiol 2022; 13:1036621. [PMID: 36388111 PMCID: PMC9651137 DOI: 10.3389/fphys.2022.1036621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/05/2022] [Indexed: 08/24/2023] Open
Abstract
Photoacoustic tomography (PAT) is an emerging biomedical imaging modality that combines optical and ultrasonic imaging, providing overlapping fields of view. This hybrid approach allows for a natural integration of PAT and ultrasound (US) imaging in a single platform. Due to the similarities in signal acquisition and processing, the combination of PAT and US imaging creates a new hybrid imaging for novel clinical applications. Over the recent years, particular attention is paid to the development of PAT/US dual-modal systems highlighting mutual benefits in clinical cases, with an aim of substantially improving the specificity and sensitivity for diagnosis of diseases. The demonstrated feasibility and accuracy in these efforts open an avenue of translating PAT/US imaging to practical clinical applications. In this review, the current PAT/US dual-modal imaging systems are discussed in detail, and their promising clinical applications are presented and compared systematically. Finally, this review describes the potential impacts of these combined systems in the coming future.
Collapse
Affiliation(s)
- Yanting Wen
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Dan Guo
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Jing Zhang
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xiaotian Liu
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Ting Liu
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Lu Li
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Shixie Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Dan Wu
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL, United States
| |
Collapse
|
58
|
Li S, Ma Z, Zhang K, Zhang W, Song Z, Wang W, Yu X, Han H. A Two-Pronged Strategy for Enhanced Deep-Tumor Penetration and NIR-II Multimodal Imaging-Monitored Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41684-41694. [PMID: 36097391 DOI: 10.1021/acsami.2c08930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The second near-infrared (NIR-II)-induced photothermal therapy (PTT) has attracted a great deal of attention in recent years due to its non-invasiveness and because it uses less energy. However, the penetration of photothermal agents into solid tumors is seriously impeded by the dense-tumor extracellular matrix (ECM) containing cross-linked hyaluronic acid (HA), thereby compromising the ultimate therapeutic effects. Herein, acid-labile metal-organic frameworks were employed as nanocarriers to efficiently mineralize hyaluronidase (HAase) and encapsulate Ag2S nanodots by a one-pot approach under mild conditions. The obtained nanocomposites (AHZ NPs) maintained enzyme activity and changed in size to prolong blood circulation and complete delivery of the cargo to the tumor. Moreover, the released HAase could specifically break out the HA to loosen ECM and enable the Ag2S nanodots to breeze through the tumor matrix space and gain access to the deep tumor. Under near-infrared laser irradiation, the AHZ NPs displayed remarkable fluorescence, outstanding photoacoustic signals, and excellent photothermal properties in the whole tumor. This work offers a promising two-pronged strategy via a decrease in nanoparticle size and the degradation of dense ECM for NIR-II multimodal imaging-guided PTT of deep tumors.
Collapse
Affiliation(s)
- Shuting Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Kai Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Weiyun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhiyong Song
- State Key Laboratory of Agricultural Microbiology, College of Science, HuaZhong Agricultural University, Wuhan 430070, Hubei, P. R. China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Science, HuaZhong Agricultural University, Wuhan 430070, Hubei, P. R. China
| | - Ximiao Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- State Key Laboratory of Agricultural Microbiology, College of Science, HuaZhong Agricultural University, Wuhan 430070, Hubei, P. R. China
| |
Collapse
|
59
|
Fan H, Yan T, Chen S, Du Z, Alimu G, Zhu L, Ma R, Tang X, Heng Y, Alifu N, Zhang X. Polydopamine encapsulated new indocyanine green theranostic nanoparticles for enhanced photothermal therapy in cervical cancer HeLa cells. Front Bioeng Biotechnol 2022; 10:984166. [PMID: 36213060 PMCID: PMC9534555 DOI: 10.3389/fbioe.2022.984166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Photothermal therapy (PTT) has attracted extensive attention in cancer treatment due to its non-invasiveness, high efficiency, and repeatability in recent years. Photothermal agents (PTAs) are the key factor for PTT. Recently, although an increasing number of PTAs have been developed, there is still a great demand for optimized photothermal nanoparticles (NPs) with low toxicity, bio-safety and stability. Herein, new indocyanine green (IR820) with near-infrared (NIR:700–1,700 nm) fluorescence emission was selected as a photothermal agent (PTA). To enhance the PTT property, IR820 was encapsulated with another kind of PTA, polydopamine (PDA) under alkaline conditions. Furthermore, to improve the biocompatibility of the NPs, methoxy polyethylene glycol amine (mPEG-NH2) was modified via a Michael addition to form a novel kind of IR820@PDA@PEG NPs. After detailed characterization and analysis, the obtained IR820@PDA@PEG NPs showed a spherical shape with an average diameter of ∼159.6 nm. Meanwhile, the formed IR820@PDA@PEG NPs exhibited better photostability and lower cytotoxicity than free IR820 molecules. The photothermal performance of IR820@PDA@PEG NPs was further analyzed in vitro, and the temperature of IR820@PDA@PEG NPs (100 μg/ml) reached 54.8°C under 793 nm laser irradiation. Afterwards, the cellular uptake of IR820@PDA@PEG NPs was evaluated via confocal laser scanning fluorescence microscopic imaging. Then, PTT experiments on HeLa cells demonstrated that IR820@PDA@PEG NPs can hyperthermal ablate cancer cells (∼49.1%) under 793 nm laser irradiation. Therefore, IR820@PDA@PEG NPs would be a promising PTA for the treatment of cervical cancer HeLa cells.
Collapse
Affiliation(s)
- Huimin Fan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| | - Ting Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Shuang Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhong Du
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Gulinigaer Alimu
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Lijun Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Rong Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaohui Tang
- Central Laboratory of Xinjiang Medical University, Urumqi, China
| | - Youqiang Heng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Nuernisha Alifu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
- *Correspondence: Nuernisha Alifu, ; Xueliang Zhang,
| | - Xueliang Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
- *Correspondence: Nuernisha Alifu, ; Xueliang Zhang,
| |
Collapse
|
60
|
Wang X, Wu B, Zhang Y, Dou X, Zhao C, Feng C. Polydopamine-doped supramolecular chiral hydrogels for postoperative tumor recurrence inhibition and simultaneously enhanced wound repair. Acta Biomater 2022; 153:204-215. [PMID: 36108967 DOI: 10.1016/j.actbio.2022.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 12/23/2022]
Abstract
Cancer recurrence remains a major challenge after primary tumor excision, and the inflammation of tumor-caused wounds can hinder wound healing and potentially promote tumor growth. Herein, a chiral L-phenylalanine-based (LPFEG) supramolecular hydrogel system encapsulated with polydopamine nanoparticles (PDA-NPs) has been developed in order to prevent tumor relapse after surgery and promote wound repair. PDA-NPs allow for near-infrared (NIR) light-triggered photothermal therapy, especially, it can scavenge free radicals in the surgical wound. LPFEG can mimic native extracellular matrix (ECM) structure to create a chiral microenvironment that enhances fibroblast adhesion, proliferation, and new tissue regeneration. With anticancer drug doxorubicin (DOX) loaded into the composite hydrogel, the antitumor effect is significantly enhanced by the integration of chemo-photothermal therapy both in vitro and in vivo. The PDA-based chiral supramolecular composite hydrogel as an effective postoperative adjuvant possesses promising applicable prospects in inhibiting tumor recurrence and accelerating wound healing after operation. STATEMENT OF SIGNIFICANCE: After primary tumor excision, cancer recurrence remains a severe concern, and the inflammation induced by tumor-related wounds can delay wound healing. Herein, we designed a chiral L-phenylalanine-based (LPFEG) supramolecular hydrogel platform that was co-assembled with polydopamine nanoparticles (PDA-NPs). Among them, PDA-NPs can offer photothermal therapy and scavenge free radicals in surgical wounds. LPFEG can create a chiral microenvironment that promotes fibroblast adhesion, proliferation, and new tissue regeneration. Furthermore, with anticancer drug doxorubicin (DOX) loaded into the composite hydrogel, the antitumor effect is considerably boosted. Therefore, the PDA-based chiral supramolecular hydrogel shows high application potential as a postoperative adjuvant in preventing tumor relapse as well as accelerating wound healing after surgery.
Collapse
Affiliation(s)
- Xueqian Wang
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beibei Wu
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaqian Zhang
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
61
|
Zeng W, Yu M, Chen T, Liu Y, Yi Y, Huang C, Tang J, Li H, Ou M, Wang T, Wu M, Mei L. Polypyrrole Nanoenzymes as Tumor Microenvironment Modulators to Reprogram Macrophage and Potentiate Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201703. [PMID: 35678111 PMCID: PMC9376744 DOI: 10.1002/advs.202201703] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/19/2022] [Indexed: 05/07/2023]
Abstract
Nanozyme-based tumor catalytic therapy has attracted widespread attention in recent years, but its therapeutic outcome is drastically diminished by species of nanozyme, concentration of substrate, pH value, and reaction temperature, etc. Herein, a novel Cu-doped polypyrrole nanozyme (CuP) with trienzyme-like activities, including catalase (CAT), glutathione peroxidase (GPx), and peroxidase (POD), is first proposed by a straightforward one-step procedure, which can specifically promote O2 and ·OH elevation but glutathione (GSH) reduction in tumor microenvironment (TME), causing irreversible oxidative stress damage to tumor cells and reversing the redox balance. The PEGylated CuP nanozyme (CuPP) has been demonstrated to efficiently reverse immunosuppressive TME by overcoming tumor hypoxia and re-educating macrophage from pro-tumoral M2 to anti-tumoral M1 phenotype. More importantly, CuPP exhibits hyperthermia-enhanced enzyme-mimic catalytic and immunoregulatory activities, which results in intense immune responses and almost complete tumor inhibition by further combining with αPD-L1. This work opens intriguing perspectives not only in enzyme-catalytic nanomedicine but also in macrophage-based tumor immunotherapy.
Collapse
Affiliation(s)
- Weiwei Zeng
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
- Tianjin Key Laboratory of Biomedical MaterialsKey Laboratory of Biomaterials and Nanotechnology for Cancer ImmunotherapyInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| | - Mian Yu
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Ting Chen
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
- Tianjin Key Laboratory of Biomedical MaterialsKey Laboratory of Biomaterials and Nanotechnology for Cancer ImmunotherapyInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| | - Yuanqi Liu
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Yunfei Yi
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Chenyi Huang
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Jia Tang
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Hanyue Li
- Tianjin Key Laboratory of Biomedical MaterialsKey Laboratory of Biomaterials and Nanotechnology for Cancer ImmunotherapyInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| | - Meitong Ou
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Tianqi Wang
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
- Tianjin Key Laboratory of Biomedical MaterialsKey Laboratory of Biomaterials and Nanotechnology for Cancer ImmunotherapyInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| |
Collapse
|
62
|
Yuan Z, Liu X, Ling J, Huang G, Huang J, Zhu X, He L, Chen T. In situ-transition nanozyme triggered by tumor microenvironment boosts synergistic cancer radio-/chemotherapy through disrupting redox homeostasis. Biomaterials 2022; 287:121620. [PMID: 35709558 DOI: 10.1016/j.biomaterials.2022.121620] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022]
Abstract
Disrupting redox homeostasis in the tumor microenvironment (TME), like excessive H2O2, glutathione (GSH) and weak acidity, has been proved as an effective tumor therapeutic strategy. Herein, we constructed a TME-responsive nanozyme, DOX@HMSN/Mn3O4(R), with reversible Mn3+/Mn2+ transition in situ triggered by TME to perturb the intrinsic redox homeostasis and catalyze reactive oxygen species (ROS) overproduction. In addition, this nanozyme could react with excess GSH in TME to produce GSSG, resulting in the consumption of reducing agents to suppress ROS clearance. Density functional theory calculations further confirmed that the nanozyme mainly exhibited the oxidase-like activity to catalyze the formation of hydroxyl radicals from O2, thus strengthening the oxidation environment in the TME. Combined with radiotherapy, the high-energy X-ray could excite the outer-layer electrons in the nanozyme, forming photoelectrons that participate in the oxidase-like enzymatic reaction, thus intensifying ROS accumulation and amplifying the radio-/chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Zhongwen Yuan
- Department of Neurology and Stroke Center, The First Affiliated Hospital, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Xinxin Liu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Jiabao Ling
- Department of Neurology and Stroke Center, The First Affiliated Hospital, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Guanning Huang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Jiarun Huang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lizhen He
- Department of Neurology and Stroke Center, The First Affiliated Hospital, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| | - Tianfeng Chen
- Department of Neurology and Stroke Center, The First Affiliated Hospital, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
63
|
Jin GQ, Chau CV, Arambula JF, Gao S, Sessler JL, Zhang JL. Lanthanide porphyrinoids as molecular theranostics. Chem Soc Rev 2022; 51:6177-6209. [PMID: 35792133 DOI: 10.1039/d2cs00275b] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In recent years, lanthanide (Ln) porphyrinoids have received increasing attention as theranostics. Broadly speaking, the term 'theranostics' refers to agents designed to allow both disease diagnosis and therapeutic intervention. This Review summarises the history and the 'state-of-the-art' development of Ln porphyrinoids as theranostic agents. The emphasis is on the progress made within the past decade. Applications of Ln porphyrinoids in near-infrared (NIR, 650-1700 nm) fluorescence imaging (FL), magnetic resonance imaging (MRI), radiotherapy, and chemotherapy will be discussed. The use of Ln porphyrinoids as photo-activated agents ('phototheranostics') will also be highlighted in the context of three promising strategies for regulation of porphyrinic triplet energy dissipation pathways, namely: regioisomeric effects, metal regulation, and the use of expanded porphyrinoids. The goal of this Review is to showcase some of the ongoing efforts being made to optimise Ln porphyrinoids as theranostics and as phototheranostics, in order to provide a platform for understanding likely future developments in the area, including those associated with structure-based innovations, functional improvements, and emerging biological activation strategies.
Collapse
Affiliation(s)
- Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
| | - Calvin V Chau
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jonathan F Arambula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA. .,InnovoTEX, Inc. 3800 N. Lamar Blvd, Austin, Texas 78756, USA.
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China. .,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China.,Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China. .,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
| |
Collapse
|
64
|
Zhong X, Dai X, Wang Y, Wang H, Qian H, Wang X. Copper-based nanomaterials for cancer theranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1797. [PMID: 35419993 DOI: 10.1002/wnan.1797] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/30/2022]
Abstract
Copper-based nanomaterials (Cu-based NMs) with favorable biocompatibility and unique properties have attracted the attention of many biomedical researchers. Cu-based NMs are one of the most widely studied materials in cancer treatment. In recent years, great progress has been made in the field of biomedicine, especially in the treatment and diagnosis of tumors. This review begins with the classification of Cu-based NMs and the recent synthetic strategies of Cu-based NMs. Then, according to the abundant and special properties of Cu-based NMs, their application in biomedicine is summarized in detail. For biomedical imaging, such as photoacoustic imaging, positron emission tomography imaging, and multimodal imaging based on Cu-based NMs are summarized, as well as strategies to improve the diagnostic effectiveness. Moreover, a series of unique structures and functions as well as the underlying property activity relationship of Cu-based NMs were shown to highlight their promising therapeutic performance. Cu-based NMs have been widely used in monotherapies, such as photothermal therapy (PTT) and chemodynamic therapy (CDT). Moreover, the sophisticated design in composition, structure, and surface fabrication of Cu-based NMs can endow these NMs with more modalities in cancer diagnosis and therapy. To further improve the efficiency of cancer treatment, combined therapy based on Cu-based NMs was introduced in detail. Finally, the challenges, critical factors, and future prospects for the clinical translation of Cu-based NMs as multifunctional theranostic agents were also considered and discussed. The aim of this review is to provide a better understanding and key consideration for the rational design of this increasingly important new paradigm of Cu-based NMs as theranostic agents. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Xiaoyan Zhong
- School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xingliang Dai
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
| |
Collapse
|
65
|
Design of Smart Nanomedicines for Effective Cancer Treatment. Int J Pharm 2022; 621:121791. [PMID: 35525473 DOI: 10.1016/j.ijpharm.2022.121791] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022]
Abstract
Nanomedicine is a novel field of study that involves the use of nanomaterials to address challenges and issues that are associated with conventional therapeutics for cancer treatment including, but not limited to, low bioavailability, low water-solubility, narrow therapeutic window, nonspecific distribution, and multiple side effects of the drugs. Multiple strategies have been exploited to reduce the nonspecific distribution, and thus the side effect of the active pharmaceutical ingredients (API), including active and passive targeting strategies and externally controllable release of the therapeutic cargo. Site-specific release of the drug prevents it from impacting healthy cells, thereby significantly reducing side effects. API release triggers can be either externally applied, as in ultrasound-mediated activation, or induced by the tumor. To rationally design such nanomedicines, a thorough understanding of the differences between the tumor microenvironment versus that of healthy tissues must be pared with extensive knowledge of stimuli-responsive biomaterials. Herein, we describe the characteristics that differentiate tumor tissues from normal tissues. Then, we introduce smart materials that are commonly used for the development of smart nanomedicines to be triggered by stimuli such as changes in pH, temperature, and enzymatic activity. The most recent advances and their impact on the field of cancer therapy are further discussed.
Collapse
|
66
|
Wu J, Zhang Y, Jiang K, Wang X, Blum NT, Zhang J, Jiang S, Lin J, Huang P. Enzyme-Engineered Conjugated Polymer Nanoplatform for Activatable Companion Diagnostics and Multistage Augmented Synergistic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200062. [PMID: 35243699 DOI: 10.1002/adma.202200062] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Companion diagnostics (CDx) provides critical information for precision medicine. However, current CDx is mostly limited to in vitro tests, which cannot accurately evaluate the disease progression and treatment response in real time. To overcome this challenge, herein a glucose oxidase (GOx)-engineered conjugated polymer (polyaniline, PANI) nanoplatform (denoted as PANITG) is reported for activatable imaging-based CDx and multistage augmented photothermal/starvation synergistic therapy. PANITG comprises a pH-activatable conjugated polymer as a photothermal convertor and photoacoustic (PA) emitter, a GOx as a cancer starvation inducer as well as a H2 O2 and acid producer, and a H2 O2 -cleavable linker as a "switch" for GOx activity. The in vivo PA imaging and photothermal therapy abilities are activated by acidic tumor microenvironment and self-augmented by the reaction between GOx and glucose. Meanwhile, the photothermal effect will enhance the GOx activity in turn. Such multistage augmentation of the therapeutic effects will facilitate effective cancer management. In addition, the in vivo PA imaging with PANITG reveals the tumor pH level which is correlated to the efficiency of the photothermal therapy and to the catalytic activity of GOx at each stage, enabling real-time activatable CDx.
Collapse
Affiliation(s)
- Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yafei Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Kejia Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoyu Wang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Nicholas Thomas Blum
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jing Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Shanshan Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
67
|
Iron-Oxide-Nanoparticles-Doped Polyaniline Composite Thin Films. Polymers (Basel) 2022; 14:polym14091821. [PMID: 35566991 PMCID: PMC9100357 DOI: 10.3390/polym14091821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Iron-oxide-doped polyaniline (PANI-IO) thin films were obtained by the polymerization of aniline monomers and iron oxide solutions in direct current glow discharge plasma in the absence of a buffer gas for the first time. The PANI-IO thin films were deposited on optical polished Si wafers in order to study surface morphology and evaluate their in vitro biocompatibility. The characterization of the coatings was accomplished using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), metallographic microscopy (MM), and X-ray photoelectron spectroscopy (XPS). In vitro biocompatibility assessments were also conducted on the PANI-IO thin films. It was observed that a uniform distribution of iron oxide particles inside the PANI layers was obtained. The constituent elements of the coatings were uniformly distributed. The Fe-O bonds were associated with magnetite in the XPS studies. The surface morphology of the PANI-IO thin films was assessed by atomic force microscopy (AFM). The AFM topographies revealed that PANI-IO exhibited the morphology of a uniformly distributed and continuous layer. The viability of Caco-2 cells cultured on the Si substrate and PANI-IO coating was not significantly modified compared to control cells. Moreover, after 24 h of incubation, we observed no increase in LDH activity in media in comparison to the control. In addition, our results revealed that the NO levels for the Si substrate and PANI-IO coating were similar to those found in the control sample.
Collapse
|
68
|
Wen Y, Wu D, Zhang J, Jiang S, Xiong C, Guo D, Chi Z, Chen Y, Li L, Yang Y, Liu T, Jiang H. Evaluation of Tracheal Stenosis in Rabbits Using Multispectral Optoacoustic Tomography. Front Bioeng Biotechnol 2022; 10:860305. [PMID: 35309993 PMCID: PMC8931196 DOI: 10.3389/fbioe.2022.860305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/15/2022] [Indexed: 01/06/2023] Open
Abstract
Objective: Photoacoustic tomography (PAT) and multispectral optoacoustic tomography (MSOT) are evolving technologies that are capable of delivering real-time, high-resolution images of tissues. The purpose of this study was to evaluate the feasibility of using PAT and MSOT for detecting histology in a rabbit tracheal stenosis model.
Method: A total of 12 rabbits (9 stenosis and three control) were randomly divided into four groups (A, B, C and D). Each group consisted of three rabbits, which were staged at the first, fourth, and eighth weeks of stenosis progression, respectively. PAT/MSOT images and corresponding histology from these experimental animals were compared, for analyzing the morphologic features and quantitative tracheal measurements in different tracheal stenosis stage. Result: Both the PAT images and corresponding histology indicated the most severe degree of stenosis in group C. MSOT images indicated notable differences in tracheal contents of group B and D. Conclusion: This study suggests that PAT/MSOT are potentially valuable non-invasive modality which are capable of evaluating tracheal structure and function in vivo.
Collapse
Affiliation(s)
- Yanting Wen
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Dan Wu
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Jing Zhang
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Shixie Jiang
- Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Chunyan Xiong
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Dan Guo
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Zihui Chi
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yi Chen
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Lun Li
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Ying Yang
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Ting Liu
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL, United States
| |
Collapse
|
69
|
Qiu Z, Zhang C, Zhang L, Wang S, Hu S, Zhao S. Precise in Vivo Inflammation Imaging in the NIR-II Window Using 1065 nm Photoacoustic Probe for in Situ Visual Monitoring of Pathological Processes Related to Hepatitis. ACS Sens 2022; 7:641-648. [PMID: 35175041 DOI: 10.1021/acssensors.1c02632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction between light and biological tissues in the second near-infrared (NIR-II) window is weak, which can effectively reduce the scattering and absorption of incoming light by biological tissues and enhance the resolution and sensing ability of in vivo photoacoustic (PA) imaging. In particular, tissues that carry blood and water produce the lowest PA background in the wavelength range of 1050 to 1150 nm. However, the development of the NIR-II PA probe for the above window faces great challenges. To tackle this challenge, the reduction-reoxidation of an organic dye was used to develop a PA imaging probe (Hydro-1048) as the first NIR-II PA probe of a hydroxy radical (·OH) for molecular imaging in deep tissue. The ·OH oxidized the C-N single bond in Hydro-1048 to double bonds, which formed Et-1065. This conversion extended the conjugate system of the molecule and shifted the absorption peak from 520 to 1065 nm, which resulted in a strong PA signal after irradiation with a 1065 nm laser. At a detection limit of 0.6 nM, a good linear relationship within the range of 5-1000 nM was obtained for the PA signal intensity versus the concentration of ·OH. The developed NIR-II PA probe can be used for the noninvasive high-resolution imaging of ·OH in deep tissue, and the PA imaging of ·OH can also be used to visually monitor in situ pathological processes related to hepatitis.
Collapse
Affiliation(s)
- Zhidong Qiu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chaobang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulong Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
70
|
Wang W, Li Z, Nie X, Zeng W, Zhang Y, Deng Y, Chen H, Zeng X, Ma H, Zheng Y, Gao N. pH-Sensitive and Charge-Reversal Polymeric Nanoplatform Enhanced Photothermal/Photodynamic Synergistic Therapy for Breast Cancer. Front Bioeng Biotechnol 2022; 10:836468. [PMID: 35252143 PMCID: PMC8895045 DOI: 10.3389/fbioe.2022.836468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022] Open
Abstract
As reported, breast cancer is one of the most common malignancies in women and has overtaken lung cancer as the most commonly diagnosed cancer worldwide by 2020. Currently, phototherapy is a promising anti-tumor therapy due to its fewer side effects, less invasiveness, and lower cost. However, its application in cancer therapeutics is limited by the incomplete therapeutic effect caused by low drug penetration and monotherapy. Herein, we built a charge-reversal nanoplatform (Ce6-PLGA@PDA-PAH-DMMA NPs), including polydopamine (PDA) and chlorin e6 (Ce6) for enhancing photothermal/photodynamic synergistic therapy. The PAH-DMMA charge-reversal layer enabled Ce6-PLGA@PDA-PAH-DMMA NPs to have long blood circulation at the normal physiological environment and to successfully realize charge reversal under the weakly acidic tumor microenvironment, improving cellular uptake. Besides, in vitro tests demonstrated that Ce6-PLGA@PDA-PAH-DMMA NPs had high photothermal conversion and greater anti-tumor activity than no charge-reversal nanoparticles, which overcame the limited tumor therapeutic efficacy of PTT or photodynamic therapy alone. Overall, the design of pH-responsive and charge-reversal nanoparticles (Ce6-PLGA@PDA-PAH-DMMA NPs) provided a promising approach for synergistic PTT/PDT therapy against breast cancer.
Collapse
Affiliation(s)
- Wenyan Wang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Zimu Li
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Xiaozhong Nie
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, China
| | - Wenfeng Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yi Zhang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yimin Deng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Hongzhong Chen
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Hualin Ma
- Shenzhen Key Laboratory of Kindey Diseases, Department of Nephrology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- *Correspondence: Hualin Ma, ; Yi Zheng, ; Nansha Gao,
| | - Yi Zheng
- Central Laboratory, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Hualin Ma, ; Yi Zheng, ; Nansha Gao,
| | - Nansha Gao
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- *Correspondence: Hualin Ma, ; Yi Zheng, ; Nansha Gao,
| |
Collapse
|
71
|
Zhao Z, Swartchick CB, Chan J. Targeted contrast agents and activatable probes for photoacoustic imaging of cancer. Chem Soc Rev 2022; 51:829-868. [PMID: 35094040 PMCID: PMC9549347 DOI: 10.1039/d0cs00771d] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoacoustic (PA) imaging has emerged as a powerful technique for the high resolution visualization of biological processes within deep tissue. Through the development and application of exogenous targeted contrast agents and activatable probes that can respond to a given cancer biomarker, researchers can image molecular events in vivo during cancer progression. This information can provide valuable details that can facilitate cancer diagnosis and therapy monitoring. In this tutorial review, we provide a step-by-step guide to select a cancer biomarker and subsequent approaches to design imaging agents for in vivo use. We envision this information will be a useful summary to those in the field, new members to the community, and graduate students taking advanced imaging coursework. We also highlight notable examples from the recent literature, with emphasis on the molecular designs and their in vivo PA imaging performance. To conclude, we provide our outlook and future perspective in this exciting field.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Chelsea B Swartchick
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| |
Collapse
|
72
|
Wang S, Zhao J, Zhang L, Zhang C, Qiu Z, Zhao S, Huang Y, Liang H. A Unique Multifunctional Nanoenzyme Tailored for Triggering Tumor Microenvironment Activated NIR-II Photoacoustic Imaging and Chemodynamic/Photothermal Combined Therapy. Adv Healthc Mater 2022; 11:e2102073. [PMID: 34731532 DOI: 10.1002/adhm.202102073] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/27/2021] [Indexed: 12/12/2022]
Abstract
The accurate diagnosis and targeted therapy of malignant tumors face significant challenges. To address these, an oxidized molybdenum polyoxometalate-copper nanocomposite (Ox-POM@Cu) is designed and synthesized here. The doping with Cu determines the formation of oxygen vacancies, which can increase the carrier concentration in Ox-POM@Cu, accelerate electron transfer, and enhance the redox activity, thus playing an efficient catalytic role. The nanocomposite presents unique enzymatic functions characterized by a multielement catalytic activity in the tumor microenvironment (TME). In addition, it can be employed as an NIR-II photoacoustic imaging (PAI) probe and cancer therapy agent. First, it participates in a redox reaction with glutathione (GSH) in tumor tissues, activates the PAI and photothermal therapy functions via NIR-II irradiation, and depletes the GSH supply in cancerous cells. Subsequently, it catalyzes a Fenton-like reaction with H2 O2 in tumor tissues to form hydroxyl radicals, thereby performing a chemodynamic therapy function. The findings show that the developed nanoenzyme is very efficient in the diagnosis and treatment of malignant tumors. This work not only provides a new strategy for the design of TME-induced NIR-II PAI but also presents new insights into enhanced cancer therapy.
Collapse
Affiliation(s)
- Shulong Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Science Guangxi Normal University Guilin 541004 China
| | - Jingjin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Science Guangxi Normal University Guilin 541004 China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Science Guangxi Normal University Guilin 541004 China
| | - Chaobang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Science Guangxi Normal University Guilin 541004 China
| | - Zhidong Qiu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Science Guangxi Normal University Guilin 541004 China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Science Guangxi Normal University Guilin 541004 China
| | - Yong Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Science Guangxi Normal University Guilin 541004 China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Science Guangxi Normal University Guilin 541004 China
| |
Collapse
|
73
|
Jiang Y, Huo Z, Qi X, Zuo T, Wu Z. Copper-induced tumor cell death mechanisms and antitumor theragnostic applications of copper complexes. Nanomedicine (Lond) 2022; 17:303-324. [PMID: 35060391 DOI: 10.2217/nnm-2021-0374] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent studies found that unbalanced copper homeostasis affect tumor growth, causing irreversible damage. Copper can induce multiple forms of cell death, including apoptosis and autophagy, through various mechanisms, including reactive oxygen species accumulation, proteasome inhibition, and antiangiogenesis. Hence, copper in vivo has attracted tremendous attention and is in the research spotlight in the field of tumor treatment. This review first highlights three typical forms of copper's antitumor mechanisms. Then, the development of diverse biomaterials and nanotechnology allowing copper to be fabricated into diverse structures to realize its theragnostic action is discussed. Novel copper complexes and their clinical applications are subsequently described.
Collapse
Affiliation(s)
- Yicheng Jiang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zhiyi Huo
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.,Industrial Technology Innovation Platform, Zhejiang Center for Safety Study of Drug Substances, Hangzhou, 310018, China
| | - Tongmei Zuo
- Industrial Technology Innovation Platform, Zhejiang Center for Safety Study of Drug Substances, Hangzhou, 310018, China
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| |
Collapse
|
74
|
Ren H, Zeng XZ, Zhao XX, Hou DY, Yao H, Yaseen M, Zhao L, Xu WH, Wang H, Li LL. A bioactivated in vivo assembly nanotechnology fabricated NIR probe for small pancreatic tumor intraoperative imaging. Nat Commun 2022; 13:418. [PMID: 35058435 PMCID: PMC8776730 DOI: 10.1038/s41467-021-27932-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
Real-time imaging of the tumour boundary is important during surgery to ensure that sufficient tumour tissue has been removed. However, the current fluorescence probes for bioimaging suffer from poor tumour specificity and narrow application of the imaging window used. Here, we report a bioactivated in vivo assembly (BIVA) nanotechnology, demonstrating a general optical probe with enhanced tumour accumulation and prolonged imaging window. The BIVA probe exhibits active targeting and assembly induced retention effect, which improves selectivity to tumours. The surface specific nanofiber assembly on the tumour surface increases the accumulation of probe at the boundary of the tumor. The blood circulation time of the BIVA probe is prolonged by 110 min compared to idocyanine green. The assembly induced metabolic stability broaden the difference between the tumor and background, obtaining a delayed imaging window between 8-96 h with better signal-to-background contrast (>9 folds). The fabricated BIVA probe permits precise imaging of small sized (<2 mm) orthotopic pancreatic tumors in vivo. The high specificity and sensitivity of the BIVA probe may further benefit the intraoperative imaging in a clinical setting.
Collapse
Affiliation(s)
- Han Ren
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Xiang-Zhong Zeng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), 100049, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Xiao-Xiao Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Da-Yong Hou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, 150001, Harbin, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Haodong Yao
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 100049, Beijing, China
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Lina Zhao
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 100049, Beijing, China
| | - Wan-Hai Xu
- Department of Urology, The Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, 150001, Harbin, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Li-Li Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| |
Collapse
|
75
|
He R, Zang J, Zhao Y, Dong H, Li Y. Nanotechnology-Based Approaches to Promote Lymph Node Targeted Delivery of Cancer Vaccines. ACS Biomater Sci Eng 2022; 8:406-423. [PMID: 35005881 DOI: 10.1021/acsbiomaterials.1c01274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vaccines are a promising immunotherapy that awakens the human immune system to inhibit and eliminate cancer with fewer side effects compared with traditional radiotherapy and chemotherapy. Although cancer vaccines have shown some efficacy, there are still troublesome bottlenecks to expand their benefits in the clinic, including weak immune effects and limited therapeutic outcomes. In the past few years, in addition to neoantigen screening, a main branch of the efforts has been devoted to promoting the lymph nodes (LNs) targeting of cancer vaccines and the cross-presentation of antigens by dendritic cells (DCs), two cardinal stages in effective initiation of the immune response. Especially, nanomaterials have shown hopeful biomedical applications in the improvement of vaccine effectiveness. This Review briefly outlines the possible mechanisms by which nanoparticle properties affect LN targeting and antigen cross-presentation and then gives an overview of state-of-the-art advances in improving these biological outcomes with nanotechnology.
Collapse
Affiliation(s)
- Ruiqing He
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jie Zang
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yuge Zhao
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Haiqing Dong
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
76
|
Wang S, Zhang L, Luo Y, Bai Y, Huang Y, Zhao S. A Circular Dichroism and Photoacoustic Dual-Mode Probe for Detection In Vitro and Imaging In Vivo of Hydroxyl Radicals. Anal Chem 2022; 94:2453-2464. [DOI: 10.1021/acs.analchem.1c04237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shulong Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yanni Luo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yulong Bai
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yong Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
77
|
Huang X, Tang L, Xu L, Zhang Y, Li G, Peng W, Guo X, Zhou L, Liu C, Shen XC. NIR-II Light-Modulated Injectable Self-Healing Hydrogel for Synergistic Photothermal/Chemodynamic/Chemo-therapy of Melanoma and Wound Healing Promotion. J Mater Chem B 2022; 10:7717-7731. [DOI: 10.1039/d2tb00923d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of an injectable multifunctional hydrogel with tumor therapy, antibacterial treatment and wound healing properties is essential for simultaneous eradicating melanoma and promoting wound healing of tumor-initiated skin defects....
Collapse
|
78
|
Wei J, Liu Y, Yu J, Chen L, Luo M, Yang L, Li P, Li S, Zhang XH. Conjugated Polymers: Optical Toolbox for Bioimaging and Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103127. [PMID: 34510742 DOI: 10.1002/smll.202103127] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Conjugated polymers (CPs) are capable of coordinating the electron coupling phenomenon to bestow powerful optoelectronic features. The light-harvesting and light-amplifying properties of CPs are extensively used in figuring out the biomedical issues with special emphasis on accurate diagnosis, effective treatment, and precise theranostics. This review summarizes the recent progress of CP materials in bioimaging, cancer therapeutics, and introduces the design strategies by rationally tuning the optical properties. The recent advances of CPs in bioimaging applications are first summarized and the challenges to clear the future directions of CPs in the respective area are discussed. In the following sections, the focus is on the burgeoning applications of CPs in phototherapy of the tumor, and illustrates the underlying photo-transforming mechanism for further molecular designing. Besides, the recent progress in the CPs-assistant drug therapy, mainly including drug delivery, gene therapeutic, the optical-activated reversion of tumor resistance, and synergistic therapy has also been discussed elaborately. In the end, the potential challenges and future developments of CPs on cancer diagnosis and therapy are also illuminated for the improvement of optical functionalization and the promotion of clinical translation.
Collapse
Affiliation(s)
- Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Ying Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Jie Yu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Ling Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Mai Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Lele Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|