51
|
Kraack JP. Ultrafast structural molecular dynamics investigated with 2D infrared spectroscopy methods. Top Curr Chem (Cham) 2017; 375:86. [PMID: 29071445 DOI: 10.1007/s41061-017-0172-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/02/2017] [Indexed: 12/23/2022]
Abstract
Ultrafast, multi-dimensional infrared (IR) spectroscopy has been advanced in recent years to a versatile analytical tool with a broad range of applications to elucidate molecular structure on ultrafast timescales, and it can be used for samples in a many different environments. Following a short and general introduction on the benefits of 2D IR spectroscopy, the first part of this chapter contains a brief discussion on basic descriptions and conceptual considerations of 2D IR spectroscopy. Outstanding classical applications of 2D IR are used afterwards to highlight the strengths and basic applicability of the method. This includes the identification of vibrational coupling in molecules, characterization of spectral diffusion dynamics, chemical exchange of chemical bond formation and breaking, as well as dynamics of intra- and intermolecular energy transfer for molecules in bulk solution and thin films. In the second part, several important, recently developed variants and new applications of 2D IR spectroscopy are introduced. These methods focus on (i) applications to molecules under two- and three-dimensional confinement, (ii) the combination of 2D IR with electrochemistry, (iii) ultrafast 2D IR in conjunction with diffraction-limited microscopy, (iv) several variants of non-equilibrium 2D IR spectroscopy such as transient 2D IR and 3D IR, and (v) extensions of the pump and probe spectral regions for multi-dimensional vibrational spectroscopy towards mixed vibrational-electronic spectroscopies. In light of these examples, the important open scientific and conceptual questions with regard to intra- and intermolecular dynamics are highlighted. Such questions can be tackled with the existing arsenal of experimental variants of 2D IR spectroscopy to promote the understanding of fundamentally new aspects in chemistry, biology and materials science. The final part of the chapter introduces several concepts of currently performed technical developments, which aim at exploiting 2D IR spectroscopy as an analytical tool. Such developments embrace the combination of 2D IR spectroscopy and plasmonic spectroscopy for ultrasensitive analytics, merging 2D IR spectroscopy with ultra-high-resolution microscopy (nanoscopy), future variants of transient 2D IR methods, or 2D IR in conjunction with microfluidics. It is expected that these techniques will allow for groundbreaking research in many new areas of natural sciences.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
52
|
Wang P, Chang AY, Novosad V, Chupin VV, Schaller RD, Rozhkova EA. Cell-Free Synthetic Biology Chassis for Nanocatalytic Photon-to-Hydrogen Conversion. ACS NANO 2017; 11:6739-6745. [PMID: 28602073 DOI: 10.1021/acsnano.7b01142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report on an entirely man-made nano-bio architecture fabricated through noncovalent assembly of a cell-free expressed transmembrane proton pump and TiO2 semiconductor nanoparticles as an efficient nanophotocatalyst for H2 evolution. The system produces hydrogen at a turnover of about 240 μmol of H2 (μmol protein)-1 h-1 and 17.74 mmol of H2 (μmol protein)-1 h-1 under monochromatic green and white light, respectively, at ambient conditions, in water at neutral pH and room temperature, with methanol as a sacrificial electron donor. Robustness and flexibility of this approach allow for systemic manipulation at the nanoparticle-bio interface toward directed evolution of energy transformation materials and artificial systems.
Collapse
Affiliation(s)
- Peng Wang
- Center for Nanoscale Materials, Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439-4855, United States
- State Key Laboratory of Crystal Materials, Shandong University , Jinan, Shandong 250100, People's Republic of China
| | - Angela Y Chang
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Valentyn Novosad
- Materials Science Division, Argonne National Laboratory , Argonne, Illinois 60439-4855, United States
| | - Vladimir V Chupin
- Laboratory Chemistry and Physics of Lipids, Department of General and Applied Physics, Moscow Institute of Physics and Technology , Dolgoprudny, Moscow Region 141701, Russia
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439-4855, United States
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Elena A Rozhkova
- Center for Nanoscale Materials, Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439-4855, United States
| |
Collapse
|
53
|
Hung CC, Chen XR, Ko YK, Kobayashi T, Yang CS, Yabushita A. Schiff Base Proton Acceptor Assists Photoisomerization of Retinal Chromophores in Bacteriorhodopsin. Biophys J 2017. [PMID: 28636908 DOI: 10.1016/j.bpj.2017.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In this study, we investigated the ultrafast dynamics of bacteriorhodopsins (BRs) from Haloquadratum walsbyi (HwBR) and Haloarcula marismortui (HmBRI and HmBRII). First, the ultrafast dynamics were studied for three HwBR samples: wild-type, D93N mutation, and D104N mutation. The residues of the D93 and D104 mutants correspond to the control by the Schiff base proton acceptor and donor of the proton translocation subchannels. Measurements indicated that the negative charge from the Schiff base proton acceptor residue D93 interacts with the ultrafast and substantial change of the electrostatic potential associated with chromophore isomerization. By contrast, the Schiff base proton donor assists the restructuring of the chromophore cavity hydrogen-bond network during the thermalization of the vibrational hot state. Second, the ultrafast dynamics of the wild-types of HwBR, HmBRI, and HmBRII were compared. Measurements demonstrated that the hydrogen-bond network in the extracellular region in HwBR and HmBRII slows the photoisomerization of retinal chromophores, and the negatively charged helices on the cytoplasmic side of HwBR and HmBRII accelerate the thermalization of the vibrational hot state of retinal chromophores. The similarity of the correlation spectra of the wild-type HmBRI and D104N mutant of HwBR indicates that inactivation of the Schiff base proton donor induces a positive charge on the helices of the cytoplasmic side.
Collapse
Affiliation(s)
- Chih-Chang Hung
- Department of Electrophysics, National Chiao-Tung University, Hsinchu, Taiwan
| | - Xiao-Ru Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ying-Kuan Ko
- Department of Electrophysics, National Chiao-Tung University, Hsinchu, Taiwan
| | - Takayoshi Kobayashi
- Brain Science Inspired Life Support Research Center, The University of Electro-Communications, Tokyo, Japan; Research Center for Water Frontier Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Atsushi Yabushita
- Department of Electrophysics, National Chiao-Tung University, Hsinchu, Taiwan; Faculty of Engineering, Kanagawa University, Yokohama, Japan.
| |
Collapse
|
54
|
Zhou L, Liu J, Dong F. Spectroscopic study on biological mackinawite (FeS) synthesized by ferric reducing bacteria (FRB) and sulfate reducing bacteria (SRB): Implications for in-situ remediation of acid mine drainage. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:544-548. [PMID: 27744066 DOI: 10.1016/j.saa.2016.09.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/24/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
Mackinawite (FeS), widespread in low temperature aquatic environments, is generally considered to be the first Fe sulfide formed in sedimentary environments which has shown effective immobilization of heavy metals and toxic oxyanions through various sorption reactions. The spectroscopic study researches on mackinawite formed by FRB and SRB and its environmental implication for in-situ remediation of acid mine drainage where contains large amounts of Fe3+ and SO42-. The XRD result of biologically synthetic particles shows that these particles are mainly composed of mackinawite (FeS0.9). The Raman peaks observed at 208, 256, 282, 298cm-1 are attributed to FeS stretching vibrations of mackinawite. The Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) reveals that the diagnostic bands of low intensity for these FeS particles occur at 412-425cm-1 and 607-622cm-1, which are assigned to the stretching vibrations of SS and FeS bonds. The Raman and IR vibrations from organic components both confirm that these particles are biogenic origin. The IR spectra of biologically synthesized mackinawite for different aging times show that the nano-sized particles mackinwate will be completely oxidized within 10h. All these findings have good implications for in-situ remediation of acid mine drainage.
Collapse
Affiliation(s)
- Lei Zhou
- The Key Laboratory of Solid Waste Treatment and Resource, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Jing Liu
- The Key Laboratory of Solid Waste Treatment and Resource, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Faqin Dong
- The Key Laboratory of Solid Waste Treatment and Resource, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| |
Collapse
|
55
|
Eckert CE, Kaur J, Glaubitz C, Wachtveitl J. Ultrafast Photoinduced Deactivation Dynamics of Proteorhodopsin. J Phys Chem Lett 2017; 8:512-517. [PMID: 28072545 DOI: 10.1021/acs.jpclett.6b02975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report femtosecond time-resolved absorption change measurements of the photoinduced deactivation dynamics of a microbial rhodopsin in the ultraviolet-visible and mid-infrared range. The blue light quenching process is recorded in green proteorhodopsin's (GPR) primary proton donor mutant E108Q from the deprotonated 13-cis photointermediate. The return of GPR to the dark state occurs in two steps, starting with the photoinduced 13-cis to all-trans reisomerization of the retinal. The subsequent Schiff base reprotonation via the primary proton acceptor (D97) occurs on a nanosecond time scale. This step is two orders of magnitude faster than that in bacteriorhodopsin, potentially because of the very high pKA of the GPR primary proton acceptor.
Collapse
Affiliation(s)
- C Elias Eckert
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt am Main , Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Jagdeep Kaur
- Institute of Biophysical Chemistry, Goethe-University Frankfurt am Main , Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry, Goethe-University Frankfurt am Main , Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt am Main , Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
56
|
Musbat L, Nihamkin M, Toker Y, Dilger JM, Fuller DR, El-Baba TJ, Clemmer DE, Sarkar S, Kronik L, Hirshfeld A, Friedman N, Sheves M. Measurements of the stabilities of isolated retinal chromophores. Phys Rev E 2017; 95:012406. [PMID: 28208402 DOI: 10.1103/physreve.95.012406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Indexed: 06/06/2023]
Abstract
The barrier energies for isomerization and fragmentation were measured for a series of retinal chromophore derivatives using a tandem ion mobility spectrometry approach. These measurements allow us to quantify the effect of charge delocalization on the rigidity of chromophores. We find that the role of the methyl group on the C13 position is pivotal regarding the ground state dynamics of the chromophore. Additionally, a correlation between quasi-equilibrium isomer distribution and fragmentation pathways is observed.
Collapse
Affiliation(s)
- L Musbat
- Department of Physics and Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - M Nihamkin
- Department of Physics and Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Y Toker
- Department of Physics and Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - J M Dilger
- Spectrum Warfare Systems Department, NSWC Crane Division, Crane, Indiana 47522, USA
| | - D R Fuller
- Department of Chemistry, Indiana University Bloomington, Indiana 47405, USA
| | - T J El-Baba
- Department of Chemistry, Indiana University Bloomington, Indiana 47405, USA
| | - D E Clemmer
- Department of Chemistry, Indiana University Bloomington, Indiana 47405, USA
| | - S Sarkar
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - L Kronik
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - A Hirshfeld
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - N Friedman
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - M Sheves
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
57
|
Stensitzki T, Yang Y, Muders V, Schlesinger R, Heberle J, Heyne K. Femtosecond infrared spectroscopy of channelrhodopsin-1 chromophore isomerization. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:043208. [PMID: 27191011 PMCID: PMC4851625 DOI: 10.1063/1.4948338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
Vibrational dynamics of the retinal all-trans to 13-cis photoisomerization in channelrhodopsin-1 from Chlamydomonas augustae (CaChR1) was investigated by femtosecond visible pump mid-IR probe spectroscopy. After photoexcitation, the transient infrared absorption of C-C stretching modes was detected. The formation of the 13-cis photoproduct marker band at 1193 cm(-1) was observed within the time resolution of 0.3 ps. We estimated the photoisomerization yield to (60 ± 6) %. We found additional time constants of (0.55 ± 0.05) ps and (6 ± 1) ps, assigned to cooling, and cooling processes with a back-reaction pathway. An additional bleaching band demonstrates the ground-state heterogeneity of retinal.
Collapse
Affiliation(s)
- T Stensitzki
- Department of Physics, Institute of Experimental Physics , Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | - Y Yang
- Department of Physics, Institute of Experimental Physics , Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | - V Muders
- Genetic Biophysics, Department of Physics, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | - R Schlesinger
- Genetic Biophysics, Department of Physics, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | - J Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | - K Heyne
- Department of Physics, Institute of Experimental Physics , Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
58
|
Grabarek D, Walczak E, Andruniów T. Assessing the Accuracy of Various Ab Initio Methods for Geometries and Excitation Energies of Retinal Chromophore Minimal Model by Comparison with CASPT3 Results. J Chem Theory Comput 2016; 12:2346-56. [DOI: 10.1021/acs.jctc.6b00108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dawid Grabarek
- Advanced Materials Engineering
and Modelling Group, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| | - Elżbieta Walczak
- Advanced Materials Engineering
and Modelling Group, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering
and Modelling Group, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| |
Collapse
|
59
|
Kim J, Kim KH, Oang KY, Lee JH, Hong K, Cho H, Huse N, Schoenlein RW, Kim TK, Ihee H. Tracking reaction dynamics in solution by pump–probe X-ray absorption spectroscopy and X-ray liquidography (solution scattering). Chem Commun (Camb) 2016; 52:3734-49. [DOI: 10.1039/c5cc08949b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TRXL and TRXAS are powerful techniques for real-time probing of structural and electronic dynamics of photoinduced reactions in solution phase.
Collapse
|
60
|
Matsumoto H, Iwasa T, Yoshizawa T. The role of the non-covalent β-ionone-ring binding site in rhodopsin: historical and physiological perspective. Photochem Photobiol Sci 2015; 14:1932-40. [PMID: 26257274 DOI: 10.1039/c5pp00158g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bleached rhodopsin regenerates by way of the Schiff base formation between the 11-cis retinal and opsin. Recovery of human vision from light adapted states follows biphasic kinetics and each adaptive phase is assigned to two distinct classes of visual pigments in cones and rods, respectively, suggesting that the speed of Schiff base formation differs between iodopsin and rhodopsin. Matsumoto and Yoshizawa predicted the existence of a β-ionone ring-binding site in rhodopsin, which has been proven by structural studies. They postulated that rhodopsin regeneration starts with a non-covalent binding of the β-ionone ring moiety of 11-cis-retinal, followed by the Schiff base formation. Recent physiological investigation revealed that non-covalent occupation of the β-ionone ring binding site transiently activates the visual transduction cascade in the dark. In order to understand the role of non-covalent binding of 11-cis-retinal to opsin during regeneration, we studied the kinetics of rhodopsin regeneration from opsin and 11-cis-retinal and found that the Schiff base formation is accelerated ∼10(7) times compared to that between retinal and free amine. According to Cordes and Jencks, Schiff base formation in solution exhibits a bell-shaped pH dependence. However, we discovered that the rhodopsin formation is independent of pH over a wide pH range, suggesting that aqueous solvents do not have access to the Schiff base milieu during its formation. According to Hecht et al. the regeneration of iodopsin must be significantly faster than that of rhodopsin. Does this suggest that the Schiff base formation in iodopsin is favored due to its structural architecture? The iodopsin structure once solved would answer such a question as how molecular fine-tuning of retinal proteins realizes their dark adaptive functions. In contrast, bacteriorhodopsin does not require occupancy of a distinct β-ionone ring-binding site, enabling an aldehyde without the cyclohexene ring to form a pigment. Studies of regeneration reaction of other retinal proteins, which are scarcely available, would clarify the molecular structure-phenotype relationships and their physiological roles.
Collapse
Affiliation(s)
- Hiroyuki Matsumoto
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA. and Clinical Proteomics and Gene Therapy Laboratory, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Tatsuo Iwasa
- Muroran Institute of Technology, Graduate School of Engineering, Hokkaido 050-8585, Japan
| | - Tôru Yoshizawa
- Department of Biophysics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
61
|
Terpugov EL, Degtyareva OV. Photo-induced processes and the reaction dynamics of bacteriorhodopsin. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915020189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
62
|
Dong H, Lewis NHC, Oliver TAA, Fleming GR. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy. J Chem Phys 2015; 142:174201. [DOI: 10.1063/1.4919684] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Hui Dong
- Department of Chemistry, University of California, Berkeley, California 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, Californial 94720, USA; and Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720, USA
| | - Nicholas H. C. Lewis
- Department of Chemistry, University of California, Berkeley, California 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, Californial 94720, USA; and Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720, USA
| | - Thomas A. A. Oliver
- Department of Chemistry, University of California, Berkeley, California 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, Californial 94720, USA; and Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720, USA
| | - Graham R. Fleming
- Department of Chemistry, University of California, Berkeley, California 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, Californial 94720, USA; and Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
63
|
Coughlan NJA, Catani KJ, Adamson BD, Wille U, Bieske EJ. Photoisomerization action spectrum of retinal protonated Schiff base in the gas phase. J Chem Phys 2015; 140:164307. [PMID: 24784270 DOI: 10.1063/1.4871883] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The photophysical behaviour of the isolated retinal protonated n-butylamine Schiff base (RPSB) is investigated in the gas phase using a combination of ion mobility spectrometry and laser spectroscopy. The RPSB cations are introduced by electrospray ionisation into an ion mobility mass spectrometer where they are exposed to tunable laser radiation in the region of the S1 ← S0 transition (420-680 nm range). Four peaks are observed in the arrival time distribution of the RPSB ions. On the basis of predicted collision cross sections with nitrogen gas, the dominant peak is assigned to the all-trans isomer, whereas the subsidiary peaks are assigned to various single, double and triple cis geometric isomers. RPSB ions that absorb laser radiation undergo photoisomerization, leading to a detectable change in their drift speed. By monitoring the photoisomer signal as a function of laser wavelength an action spectrum, extending from 480 to 660 nm with a clear peak at 615 ± 5 nm, is obtained. The photoisomerization action spectrum is related to the absorption spectrum of isolated retinal RPSB molecules and should help benchmark future electronic structure calculations.
Collapse
Affiliation(s)
- N J A Coughlan
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - K J Catani
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - B D Adamson
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - U Wille
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - E J Bieske
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
64
|
Valsson O, Filippi C, Casida ME. Regarding the use and misuse of retinal protonated Schiff base photochemistry as a test case for time-dependent density-functional theory. J Chem Phys 2015; 142:144104. [DOI: 10.1063/1.4916354] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
65
|
Cheminal A, Léonard J, Kim SY, Jung KH, Kandori H, Haacke S. 100 fs photo-isomerization with vibrational coherences but low quantum yield in Anabaena Sensory Rhodopsin. Phys Chem Chem Phys 2015; 17:25429-39. [DOI: 10.1039/c5cp04353k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Counter-intuitive photochemistry: in Anabaena Sensory Rhodopsin, the retinal 13-cis isomer isomerizes much faster than all-trans ASR, but with a 3-times lower quantum yield.
Collapse
Affiliation(s)
- Alexandre Cheminal
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE
- Université de Strasbourg – CNRS
- 67034 Strasbourg
- France
| | - Jérémie Léonard
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE
- Université de Strasbourg – CNRS
- 67034 Strasbourg
- France
| | - So-Young Kim
- Department of Life Science and Institute of Biological Interfaces
- Sogang University
- Mapo-Gu
- South Korea
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces
- Sogang University
- Mapo-Gu
- South Korea
| | - Hideki Kandori
- Department of Frontier Materials
- Nagoya Institute of Technology
- Showa-ku
- Japan
| | - Stefan Haacke
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE
- Université de Strasbourg – CNRS
- 67034 Strasbourg
- France
| |
Collapse
|
66
|
Polli D, Rivalta I, Nenov A, Weingart O, Garavelli M, Cerullo G. Tracking the primary photoconversion events in rhodopsins by ultrafast optical spectroscopy. Photochem Photobiol Sci 2015; 14:213-28. [DOI: 10.1039/c4pp00370e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review the most recent experimental and computational efforts aimed at exposing the very early phases of the ultrafast isomerization in visual Rhodopsins and we discuss future advanced experiments and calculations.
Collapse
Affiliation(s)
- D. Polli
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- 20133 Milano
- Italy
| | - I. Rivalta
- Université de Lyon
- CNRS
- Institut de Chimie de Lyon
- École Normale Supérieure de Lyon
- F-69364 Lyon Cedex 07
| | - A. Nenov
- Dipartimento di Chimica “G. Ciamician”
- Università di Bologna
- 40126 Bologna
- Italy
| | - O. Weingart
- Institut für Theoretische Chemie und Computerchemie
- Heinrich-Heine-Universität Düsseldorf
- Universitätsstr. 1
- 40225 Düsseldorf
- Germany
| | - M. Garavelli
- Université de Lyon
- CNRS
- Institut de Chimie de Lyon
- École Normale Supérieure de Lyon
- F-69364 Lyon Cedex 07
| | - G. Cerullo
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- 20133 Milano
- Italy
| |
Collapse
|
67
|
Johnson PJM, Halpin A, Morizumi T, Brown LS, Prokhorenko VI, Ernst OP, Dwayne Miller RJ. The photocycle and ultrafast vibrational dynamics of bacteriorhodopsin in lipid nanodiscs. Phys Chem Chem Phys 2014; 16:21310-20. [PMID: 25178090 DOI: 10.1039/c4cp01826e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photocycle and vibrational dynamics of bacteriorhodopsin in a lipid nanodisc microenvironment have been studied by steady-state and time-resolved spectroscopies. Linear absorption and circular dichroism indicate that the nanodiscs do not perturb the structure of the retinal binding pocket, while transient absorption and flash photolysis measurements show that the photocycle which underlies proton pumping is unchanged from that in the native purple membranes. Vibrational dynamics during the initial photointermediate formation are subsequently studied by ultrafast broadband transient absorption spectroscopy, where the low scattering afforded by the lipid nanodisc microenvironment allows for unambiguous assignment of ground and excited state nuclear dynamics through Fourier filtering of frequency regions of interest and subsequent time domain analysis of the retrieved vibrational dynamics. Canonical ground state oscillations corresponding to high frequency ethylenic and C-C stretches, methyl rocks, and hydrogen out-of-plane wags are retrieved, while large amplitude, short dephasing time vibrations are recovered predominantly in the frequency region associated with out-of-plane dynamics and low frequency torsional modes implicated in isomerization.
Collapse
Affiliation(s)
- Philip J M Johnson
- Institute for Optical Sciences & Departments of Chemistry & Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | | | | | | | | | | | | |
Collapse
|
68
|
Nakashima S, Ogura T, Kitagawa T. Infrared and Raman spectroscopic investigation of the reaction mechanism of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:86-97. [PMID: 25135480 DOI: 10.1016/j.bbabio.2014.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/07/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
Abstract
Recent progress in studies on the proton-pumping and O₂reduction mechanisms of cytochrome c oxidase (CcO) elucidated by infrared (IR) and resonance Raman (rR) spectroscopy, is reviewed. CcO is the terminal enzyme of the respiratory chain and its O₂reduction reaction is coupled with H⁺ pumping activity across the inner mitochondrial membrane. The former is catalyzed by heme a3 and its mechanism has been determined using a rR technique, while the latter used the protein moiety and has been investigated with an IR technique. The number of H⁺ relative to e⁻ transferred in the reaction is 1:1, and their coupling is presumably performed by heme a and nearby residues. To perform this function, different parts of the protein need to cooperate with each other spontaneously and sequentially. It is the purpose of this article to describe the structural details on the coupling on the basis of the vibrational spectra of certain specified residues and chromophores involved in the reaction. Recent developments in time-resolved IR and Raman technology concomitant with protein manipulation methods have yielded profound insights into such structural changes. In particular, the new IR techniques that yielded the breakthrough are reviewed and assessed in detail. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Satoru Nakashima
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Takashi Ogura
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Department of Life Science, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Teizo Kitagawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.
| |
Collapse
|
69
|
Lucas F, Hornberger K. Incoherent control of the retinal isomerization in rhodopsin. PHYSICAL REVIEW LETTERS 2014; 113:058301. [PMID: 25126938 DOI: 10.1103/physrevlett.113.058301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Indexed: 06/03/2023]
Abstract
We propose to control the retinal photoisomerization yield through the backaction dynamics imparted by a nonselective optical measurement of the molecular electronic state. This incoherent effect is easier to implement than comparable coherent pulse shaping techniques, and is also robust to environmental noise. A numerical simulation of the quantum dynamics shows that the isomerization yield of this important biomolecule can be substantially increased above the natural limit.
Collapse
Affiliation(s)
- Felix Lucas
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany and University of Duisburg-Essen, Faculty of Physics, Lotharstraße 1-21, 47057 Duisburg, Germany
| | - Klaus Hornberger
- University of Duisburg-Essen, Faculty of Physics, Lotharstraße 1-21, 47057 Duisburg, Germany
| |
Collapse
|
70
|
|
71
|
Oliver TAA, Lewis NHC, Fleming GR. Correlating the motion of electrons and nuclei with two-dimensional electronic-vibrational spectroscopy. Proc Natl Acad Sci U S A 2014; 111:10061-6. [PMID: 24927586 PMCID: PMC4104903 DOI: 10.1073/pnas.1409207111] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multidimensional nonlinear spectroscopy, in the electronic and vibrational regimes, has reached maturity. To date, no experimental technique has combined the advantages of 2D electronic spectroscopy and 2D infrared spectroscopy, monitoring the evolution of the electronic and nuclear degrees of freedom simultaneously. The interplay and coupling between the electronic state and vibrational manifold is fundamental to understanding ensuing nonradiative pathways, especially those that involve conical intersections. We have developed a new experimental technique that is capable of correlating the electronic and vibrational degrees of freedom: 2D electronic-vibrational spectroscopy (2D-EV). We apply this new technique to the study of the 4-(di-cyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H-pyran (DCM) laser dye in deuterated dimethyl sulfoxide and its excited state relaxation pathways. From 2D-EV spectra, we elucidate a ballistic mechanism on the excited state potential energy surface whereby molecules are almost instantaneously projected uphill in energy toward a transition state between locally excited and charge-transfer states, as evidenced by a rapid blue shift on the electronic axis of our 2D-EV spectra. The change in minimum energy structure in this excited state nonradiative crossing is evident as the central frequency of a specific vibrational mode changes on a many-picoseconds timescale. The underlying electronic dynamics, which occur on the hundreds of femtoseconds timescale, drive the far slower ensuing nuclear motions on the excited state potential surface, and serve as a excellent illustration for the unprecedented detail that 2D-EV will afford to photochemical reaction dynamics.
Collapse
Affiliation(s)
- Thomas A A Oliver
- Department of Chemistry, University of California, Berkeley, CA 94720; andPhysical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Nicholas H C Lewis
- Department of Chemistry, University of California, Berkeley, CA 94720; andPhysical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, CA 94720; andPhysical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
72
|
Sudo Y, Mizuno M, Wei Z, Takeuchi S, Tahara T, Mizutani Y. The Early Steps in the Photocycle of a Photosensor Protein Sensory Rhodopsin I from Salinibacter ruber. J Phys Chem B 2014; 118:1510-8. [DOI: 10.1021/jp4112662] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yuki Sudo
- Division
of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
- Department
of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Misao Mizuno
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Zhengrong Wei
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Satoshi Takeuchi
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yasuhisa Mizutani
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
73
|
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown L, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 2014; 114:126-63. [PMID: 24364740 PMCID: PMC3979449 DOI: 10.1021/cr4003769] [Citation(s) in RCA: 808] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Oliver P. Ernst
- Departments
of Biochemistry and Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - David T. Lodowski
- Center
for Proteomics and Bioinformatics, Case
Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marcus Elstner
- Institute
for Physical Chemistry, Karlsruhe Institute
of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| | - Peter Hegemann
- Institute
of Biology, Experimental Biophysics, Humboldt-Universität
zu Berlin, Invalidenstrasse
42, 10115 Berlin, Germany
| | - Leonid
S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hideki Kandori
- Department
of Frontier Materials, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
74
|
Yang Y, Linke M, von Haimberger T, Matute R, González L, Schmieder P, Heyne K. Active and silent chromophore isoforms for phytochrome Pr photoisomerization: An alternative evolutionary strategy to optimize photoreaction quantum yields. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2014; 1:014701. [PMID: 26798771 PMCID: PMC4711594 DOI: 10.1063/1.4865233] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/11/2014] [Indexed: 05/12/2023]
Abstract
Photoisomerization of a protein bound chromophore is the basis of light sensing of many photoreceptors. We tracked Z-to-E photoisomerization of Cph1 phytochrome chromophore PCB in the Pr form in real-time. Two different phycocyanobilin (PCB) ground state geometries with different ring D orientations have been identified. The pre-twisted and hydrogen bonded PCB(a) geometry exhibits a time constant of 30 ps and a quantum yield of photoproduct formation of 29%, about six times slower and ten times higher than that for the non-hydrogen bonded PCB(b) geometry. This new mechanism of pre-twisting the chromophore by protein-cofactor interaction optimizes yields of slow photoreactions and provides a scaffold for photoreceptor engineering.
Collapse
Affiliation(s)
| | - Martin Linke
- Department of Physics, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | | | - Ricardo Matute
- Department of Chemistry and Biochemistry, UCLA , 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA
| | - Leticia González
- Universität Wien, Institut für Theoretische Chemie , Währinger Str. 17, A-1090 Wien
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie , Robert-Rössle Str. 10, 13125 Berlin, Germany
| | | |
Collapse
|
75
|
Hwan Kim K, Kim J, Hyuk Lee J, Ihee H. Topical Review: Molecular reaction and solvation visualized by time-resolved X-ray solution scattering: Structure, dynamics, and their solvent dependence. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2014; 1:011301. [PMID: 26798770 PMCID: PMC4711596 DOI: 10.1063/1.4865234] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/17/2014] [Indexed: 05/16/2023]
Abstract
Time-resolved X-ray solution scattering is sensitive to global molecular structure and can track the dynamics of chemical reactions. In this article, we review our recent studies on triiodide ion (I3 (-)) and molecular iodine (I2) in solution. For I3 (-), we elucidated the excitation wavelength-dependent photochemistry and the solvent-dependent ground-state structure. For I2, by combining time-slicing scheme and deconvolution data analysis, we mapped out the progression of geminate recombination and the associated structural change in the solvent cage. With the aid of X-ray free electron lasers, even clearer observation of ultrafast chemical events will be made possible in the near future.
Collapse
Affiliation(s)
| | - Jeongho Kim
- Department of Chemistry, Inha University , Incheon 402-751, South Korea
| | - Jae Hyuk Lee
- Department of Chemistry, KAIST , Daejeon 305-701, South Korea
| | | |
Collapse
|
76
|
Knorr J, Rudolf P, Nuernberger P. A comparative study on chirped-pulse upconversion and direct multichannel MCT detection. OPTICS EXPRESS 2013; 21:30693-30706. [PMID: 24514645 DOI: 10.1364/oe.21.030693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A comparative study is carried out on two spectroscopic techniques employed to detect ultrafast absorption changes in the mid-infrared spectral range, namely direct multichannel detection via HgCdTe (MCT) photodiode arrays and the newly established technique of chirped-pulse up-conversion (CPU). Whereas both methods are meanwhile individually used in a routine manner, we directly juxtapose their applicability in femtosecond pump-probe experiments based on 1 kHz shot-to-shot data acquisition. Additionally, we examine different phase-matching conditions in the CPU scheme for a given mid-infrared spectrum, thereby simultaneously detecting signals which are separated by more than 200 cm(-1).
Collapse
|
77
|
Ultrafast photochemistry of anabaena sensory rhodopsin: experiment and theory. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:589-97. [PMID: 24099700 DOI: 10.1016/j.bbabio.2013.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/28/2013] [Accepted: 09/29/2013] [Indexed: 11/20/2022]
Abstract
Light induced isomerization of the retinal chromophore activates biological function in all retinal protein (RP) driving processes such as ion-pumping, vertebrate vision and phototaxis in organisms as primitive as archea, or as complex as mammals. This process and its consecutive reactions have been the focus of experimental and theoretical research for decades. The aim of this review is to demonstrate how the experimental and theoretical research efforts can now be combined to reach a more comprehensive understanding of the excited state process on the molecular level. Using the Anabaena Sensory Rhodopsin as an example we will show how contemporary time-resolved spectroscopy and recently implemented excited state QM/MM methods consistently describe photochemistry in retinal proteins. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
|
78
|
Luber S, Adamczyk K, Nibbering ETJ, Batista VS. Photoinduced Proton Coupled Electron Transfer in 2-(2′-Hydroxyphenyl)-Benzothiazole. J Phys Chem A 2013; 117:5269-79. [DOI: 10.1021/jp403342w] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sandra Luber
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut,
United States
| | - Katrin Adamczyk
- Max-Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin-Adlershof, Germany
| | - Erik T. J. Nibbering
- Max-Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin-Adlershof, Germany
| | - Victor S. Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut,
United States
| |
Collapse
|
79
|
Neumann-Verhoefen MK, Neumann K, Bamann C, Radu I, Heberle J, Bamberg E, Wachtveitl J. Ultrafast Infrared Spectroscopy on Channelrhodopsin-2 Reveals Efficient Energy Transfer from the Retinal Chromophore to the Protein. J Am Chem Soc 2013; 135:6968-76. [DOI: 10.1021/ja400554y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mirka-Kristin Neumann-Verhoefen
- Institute of Physical and Theoretical
Chemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue Strasse 7, 60438 Frankfurt am Main, Germany
| | - Karsten Neumann
- Institute of Physical and Theoretical
Chemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue Strasse 7, 60438 Frankfurt am Main, Germany
| | - Christian Bamann
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt
am Main, Germany
| | - Ionela Radu
- Department
of Physics, Molecular
Biospectroscopy, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Joachim Heberle
- Department of Physics, Experimental
Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt
am Main, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical
Chemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue Strasse 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
80
|
Wand A, Gdor I, Zhu J, Sheves M, Ruhman S. Shedding New Light on Retinal Protein Photochemistry. Annu Rev Phys Chem 2013; 64:437-58. [DOI: 10.1146/annurev-physchem-040412-110148] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Itay Gdor
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Jingyi Zhu
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Mordechai Sheves
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| |
Collapse
|
81
|
Kobayashi T. Development of Ultrafast Spectroscopy and Reaction Mechanisms Studied by the Observation of Ultrashort-Life Species and Transition States. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2013. [DOI: 10.1246/bcsj.20120250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Takayoshi Kobayashi
- Advanced Ultrafast Laser Research Center, The University of Electro-Communications
- JST, CREST
- Department of Electrophysics, National Chiao Tung University
- Institute of Laser Engineering, Osaka University
| |
Collapse
|
82
|
Szymczak JJ, Hofmann FD, Meuwly M. Structure and dynamics of solvent shells around photoexcited metal complexes. Phys Chem Chem Phys 2013; 15:6268-77. [DOI: 10.1039/c3cp44465a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
83
|
Russell HJ, Jones AR, Hay S, Greetham GM, Towrie M, Scrutton NS. Protein Motions Are Coupled to the Reaction Chemistry in Coenzyme B 12-Dependent Ethanolamine Ammonia Lyase. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
84
|
Russell HJ, Jones AR, Hay S, Greetham GM, Towrie M, Scrutton NS. Protein Motions Are Coupled to the Reaction Chemistry in Coenzyme B12-Dependent Ethanolamine Ammonia Lyase. Angew Chem Int Ed Engl 2012; 51:9306-10. [DOI: 10.1002/anie.201202502] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/13/2012] [Indexed: 11/12/2022]
|
85
|
Yang Y, Linke M, von Haimberger T, Hahn J, Matute R, González L, Schmieder P, Heyne K. Real-Time Tracking of Phytochrome’s Orientational Changes During Pr Photoisomerization. J Am Chem Soc 2012; 134:1408-11. [DOI: 10.1021/ja209413d] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yang Yang
- Department
of Physics, Freie Universität Berlin, Arnimallee 14, 14195
Berlin, Germany
- Center for Supramolecular Interactions, Takustr. 3, 14195 Berlin, Germany
| | - Martin Linke
- Department
of Physics, Freie Universität Berlin, Arnimallee 14, 14195
Berlin, Germany
| | | | - Janina Hahn
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle
Str. 10, 13125 Berlin, Germany
| | - Ricardo Matute
- Institut für Physikalische
Chemie, Friedrich-Schiller Universität Jena, Helmholtzweg 4, 07743 Jena, Germany
- Departamento de Quimica, Universidad de Chile, Facultad de Ciencias, Casilla
653, Santiago, Chile
| | - Leticia González
- Institut für Physikalische
Chemie, Friedrich-Schiller Universität Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle
Str. 10, 13125 Berlin, Germany
| | - Karsten Heyne
- Department
of Physics, Freie Universität Berlin, Arnimallee 14, 14195
Berlin, Germany
- Center for Supramolecular Interactions, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
86
|
Kraack JP, Buckup T, Motzkus M. Evidence for the Two-State-Two-Mode model in retinal protonated Schiff-bases from pump degenerate four-wave-mixing experiments. Phys Chem Chem Phys 2012; 14:13979-88. [DOI: 10.1039/c2cp42248d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
87
|
|
88
|
Li X, Chung LW, Morokuma K. Photodynamics of All-trans Retinal Protonated Schiff Base in Bacteriorhodopsin and Methanol Solution. J Chem Theory Comput 2011; 7:2694-8. [DOI: 10.1021/ct200549z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xin Li
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Lung Wa Chung
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
89
|
Groma GI, Colonna A, Martin JL, Vos MH. Vibrational motions associated with primary processes in bacteriorhodopsin studied by coherent infrared emission spectroscopy. Biophys J 2011; 100:1578-86. [PMID: 21402041 DOI: 10.1016/j.bpj.2011.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/01/2011] [Accepted: 02/04/2011] [Indexed: 11/18/2022] Open
Abstract
The primary energetic processes driving the functional proton pump of bacteriorhodopsin take place in the form of complex molecular dynamic events after excitation of the retinal chromophore into the Franck-Condon state. These early events include a strong electronic polarization, skeletal stretching, and all-trans-to-13-cis isomerization upon formation of the J intermediate. The effectiveness of the photoreaction is ensured by a conical intersection between the electronic excited and ground states, providing highly nonadiabatic coupling to nuclear motions. Here, we study real-time vibrational coherences associated with these motions by analyzing light-induced infrared emission from oriented purple membranes in the 750-1400 cm(-)(1) region. The experimental technique applied is based on second-order femtosecond difference frequency generation on macroscopically ordered samples that also yield information on phase and direction of the underlying motions. Concerted use of several analysis methods resulted in the isolation and characterization of seven different vibrational modes, assigned as C-C stretches, out-of-plane methyl rocks, and hydrogen out-of-plane wags, whereas no in-plane H rock was found. Based on their lifetimes and several other criteria, we deduce that the majority of the observed modes take place on the potential energy surface of the excited electronic state. In particular, the direction sensitivity provides experimental evidence for large intermediate distortions of the retinal plane during the excited-state isomerization process.
Collapse
Affiliation(s)
- Géza I Groma
- Laboratory for Optical Biosciences, Ecole Polytechnique, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Palaiseau, France.
| | | | | | | |
Collapse
|
90
|
Kraack JP, Buckup T, Hampp N, Motzkus M. Ground- and Excited-State Vibrational Coherence Dynamics in Bacteriorhodopsin Probed With Degenerate Four-Wave-Mixing Experiments. Chemphyschem 2011; 12:1851-9. [DOI: 10.1002/cphc.201100032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/24/2011] [Indexed: 11/06/2022]
|
91
|
Mohammed OF, Luber S, Batista VS, Nibbering ETJ. Ultrafast Branching of Reaction Pathways in 2-(2′-Hydroxyphenyl)benzothiazole in Polar Acetonitrile Solution. J Phys Chem A 2011; 115:7550-8. [DOI: 10.1021/jp202277t] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Omar F. Mohammed
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, D-12489 Berlin, Germany
| | - Sandra Luber
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Victor S. Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Erik T. J. Nibbering
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, D-12489 Berlin, Germany
| |
Collapse
|
92
|
Wolf MMN, Zimmermann H, Diller R, Domratcheva T. Vibrational Mode Analysis of Isotope-Labeled Electronically Excited Riboflavin. J Phys Chem B 2011; 115:7621-8. [DOI: 10.1021/jp110784t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Herbert Zimmermann
- Max-Planck-Institut für medizinische Forschung, D-69120 Heidelberg, Germany
| | - Rolf Diller
- Fachbereich Physik, TU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | | |
Collapse
|
93
|
Colindres-Rojas M, Wolf MMN, Gross R, Seidel S, Dietzek B, Schmitt M, Popp J, Hermann G, Diller R. Excited-state dynamics of protochlorophyllide revealed by subpicosecond infrared spectroscopy. Biophys J 2011; 100:260-7. [PMID: 21190679 DOI: 10.1016/j.bpj.2010.11.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 11/19/2010] [Accepted: 11/29/2010] [Indexed: 11/24/2022] Open
Abstract
To gain a better understanding of the light-induced reduction of protochlorophyllide (PChlide) to chlorophyllide as a key regulatory step in chlorophyll synthesis, we performed transient infrared absorption measurements on PChlide in d4-methanol. Excitation in the Q-band at 630 nm initiates dynamics characterized by three time constants: τ₁ = 3.6 ± 0.2, τ₂ = 38 ± 2, and τ₃ = 215 ± 8 ps. As indicated by the C13'=O carbonyl stretching mode in the electronic ground state at 1686 cm⁻¹, showing partial ground-state recovery, and in the excited electronic state at 1625 cm⁻¹, showing excited-state decay, τ₂ describes the formation of a state with a strong change in electronic structure, and τ₃ represents the partial recovery of the PChlide electronic ground state. Furthermore, τ₁ corresponds with vibrational energy relaxation. The observed kinetics strongly suggest a branched reaction scheme with a branching ratio of 0.5 for the path leading to the PChlide ground state on the 200 ps timescale and the path leading to a long-lived state (>>700 ps). The results clearly support a branched reaction scheme, as proposed previously, featuring the formation of an intramolecular charge transfer state with ∼25 ps, its decay into the PChlide ground state with 200 ps, and a parallel reaction path to the long-lived PChlide triplet state.
Collapse
|
94
|
Mizuno M, Sudo Y, Homma M, Mizutani Y. Direct Observation of the Structural Change of Tyr174 in the Primary Reaction of Sensory Rhodopsin II. Biochemistry 2011; 50:3170-80. [DOI: 10.1021/bi101817y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
95
|
Kobayashi T, Yabushita A. Transition-state spectroscopy using ultrashort laser pulses. CHEM REC 2011; 11:99-116. [DOI: 10.1002/tcr.201000018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Indexed: 11/11/2022]
|
96
|
Toh KC, Stojković EA, Rupenyan AB, van Stokkum IHM, Salumbides M, Groot ML, Moffat K, Kennis JTM. Primary reactions of bacteriophytochrome observed with ultrafast mid-infrared spectroscopy. J Phys Chem A 2010; 115:3778-86. [PMID: 21192725 DOI: 10.1021/jp106891x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phytochromes are red-light photoreceptor proteins that regulate a variety of responses and cellular processes in plants, bacteria, and fungi. The phytochrome light activation mechanism involves isomerization around the C(15)═C(16) double bond of an open-chain tetrapyrrole chromophore, resulting in a flip of its D-ring. In an important recent development, bacteriophytochrome (Bph) has been engineered for use as a fluorescent marker in mammalian tissues. Bphs covalently bind a biliverdin (BV) chromophore, naturally abundant in mammalian cells. Here, we report an ultrafast time-resolved mid-infrared spectroscopic study on the Pr state of two highly related Bphs from Rps. palustris , RpBphP2 (P2) and RpBphP3 (P3) with distinct photoconversion and fluorescence properties. We observed that the BV excited state of P2 decays in 58 ps, while the BV excited state of P3 decays in 362 ps. By combining ultrafast mid-IR spectroscopy with FTIR spectroscopy on P2 and P3 wild type and mutant proteins, we demonstrate that the hydrogen bond strength at the ring D carbonyl of the BV chromophore is significantly stronger in P3 as compared to P2. This result is consistent with the X-ray structures of Bph, which indicate one hydrogen bond from a conserved histidine to the BV ring D carbonyl for classical bacteriophytochromes such as P2, and one or two additional hydrogen bonds from a serine and a lysine side chain to the BV ring D carbonyl for P3. We conclude that the hydrogen-bond strength at BV ring D is a key determinant of excited-state lifetime and fluorescence quantum yield. Excited-state decay is followed by the formation of a primary intermediate that does not decay on the nanosecond time scale of the experiment, which shows a narrow absorption band at ∼1540 cm(-1). Possible origins of this product band are discussed. This work may aid in rational structure- and mechanism-based conversion of BPh into an efficient near-IR fluorescent marker.
Collapse
Affiliation(s)
- K C Toh
- Biophysics Group, Department of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Malhado JP, Spezia R, Hynes JT. Dynamical Friction Effects on the Photoisomerization of a Model Protonated Schiff Base in Solution. J Phys Chem A 2010; 115:3720-35. [DOI: 10.1021/jp106096m] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- João Pedro Malhado
- Département de Chimie, CNRS UMR 8640 PASTEUR, École Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
| | - Riccardo Spezia
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environement, CNRS UMR 8587, Université d’Evry Val d’Essonne, Bd. F. Mitterrand, 91025 Evry, France
| | - James T. Hynes
- Département de Chimie, CNRS UMR 8640 PASTEUR, École Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| |
Collapse
|
98
|
Ataka K, Kottke T, Heberle J. Thinner, Smaller, Faster: IR Techniques To Probe the Functionality of Biological and Biomimetic Systems. Angew Chem Int Ed Engl 2010; 49:5416-24. [DOI: 10.1002/anie.200907114] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
99
|
Ataka K, Kottke T, Heberle J. Dünner, kleiner, schneller - wie die IR-Spektroskopie zur Aufklärung des Funktionsmechanismus biologischer und biomimetischer Systeme beiträgt. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200907114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
100
|
Lanzl K, Sanden-Flohe MV, Kutta RJ, Dick B. Photoreaction of mutated LOV photoreceptor domains from Chlamydomonas reinhardtii with aliphatic mercaptans: implications for the mechanism of wild type LOV. Phys Chem Chem Phys 2010; 12:6594-604. [PMID: 20448867 DOI: 10.1039/b922408d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Irradiation of the LOV1 domain from the blue-light photoreceptor phototropin of the green alga Chlamydomonas reinhardtii leads to the formation of a covalent adduct of the sulfur atom of cysteine 57 to the carbon C(4a) in the chromophore FMN. This reaction is not possible in the mutant LOV1-C57G in which this cysteine is replaced by glycine. Irradiation of LOV1-C57G in the absence of oxygen but in the presence of aliphatic mercaptans or thioethers leads to the formation of a species with an absorption maximum at 615 nm, which is identified as the neutral radical FMNH . When oxygen is admitted, the reaction is completely reversible. Irradiation of LOV1-C57G in the presence of methylmercaptan CH(3)SH under oxygen-free conditions yields, in addition to FMNH , a third species with a single absorption maximum at 379 nm. This species is stable against oxygen and is also formed when the irradiation is performed in the presence of oxygen. This species is assigned to the adduct between CH(3)SH and FMN. In aqueous solution the photoreaction of CH(3)SH with FMN leads to the fully reduced hydroquinone form FMNH(2) or its anion FMNH(-). Adduct formation apparently requires the protein cage. After formation, the adduct is stable for hours inside the protein, but decomposes immediately upon denaturation. The implications of these observations for the mechanism of adduct formation in wild type LOV domains are discussed.
Collapse
Affiliation(s)
- Karin Lanzl
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D 93040 Regensburg, Germany
| | | | | | | |
Collapse
|