51
|
Huang J, Xu W, Zhai J, Hu Y, Guo J, Zhang C, Zhao Y, Zhang L, Martine C, Ma H, Huang CH. Nuclear phylogeny and insights into whole-genome duplications and reproductive development of Solanaceae plants. PLANT COMMUNICATIONS 2023:100595. [PMID: 36966360 PMCID: PMC10363554 DOI: 10.1016/j.xplc.2023.100595] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/02/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Solanaceae, the nightshade family, have ∼2700 species, including the important crops potato and tomato, ornamentals, and medicinal plants. Several sequenced Solanaceae genomes show evidence for whole-genome duplication (WGD), providing an excellent opportunity to investigate WGD and its impacts. Here, we generated 93 transcriptomes/genomes and combined them with 87 public datasets, for a total of 180 Solanaceae species representing all four subfamilies and 14 of 15 tribes. Nearly 1700 nuclear genes from these transcriptomic/genomic datasets were used to reconstruct a highly resolved Solanaceae phylogenetic tree with six major clades. The Solanaceae tree supports four previously recognized subfamilies (Goetzeioideae, Cestroideae, Nicotianoideae, and Solanoideae) and the designation of three other subfamilies (Schizanthoideae, Schwenckioideae, and Petunioideae), with the placement of several previously unassigned genera. We placed a Solanaceae-specific whole-genome triplication (WGT1) at ∼81 million years ago (mya), before the divergence of Schizanthoideae from other Solanaceae subfamilies at ∼73 mya. In addition, we detected two gene duplication bursts (GDBs) supporting proposed WGD events and four other GDBs. An investigation of the evolutionary histories of homologs of carpel and fruit developmental genes in 14 gene (sub)families revealed that 21 gene clades have retained gene duplicates. These were likely generated by the Solanaceae WGT1 and may have promoted fleshy fruit development. This study presents a well-resolved Solanaceae phylogeny and a new perspective on retained gene duplicates and carpel/fruit development, providing an improved understanding of Solanaceae evolution.
Collapse
Affiliation(s)
- Jie Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuangzu Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Weibin Xu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuangzu Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Junwen Zhai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Hu
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Jing Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Caifei Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lin Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | | | - Hong Ma
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, State College, PA 16802, USA.
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
52
|
Wei S, Zhang Q, Tang S, Liao W. Genetic and ecophysiological evidence that hybridization facilitated lineage diversification in yellow Camellia (Theaceae) species: a case study of natural hybridization between C. micrantha and C. flavida. BMC PLANT BIOLOGY 2023; 23:154. [PMID: 36944951 PMCID: PMC10031943 DOI: 10.1186/s12870-023-04164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Hybridization is generally considered an important creative evolutionary force, yet this evolutionary process is still poorly characterized in karst plants. In this study, we focus on natural hybridization in yellow Camellia species, a group of habitat specialists confined to karst/non-karst habitats in southwestern China. RESULTS Based on population genome data obtain from double digest restriction-site associated DNA (ddRAD) sequencing, we found evidence for natural hybridization and introgression between C. micrantha and C. flavida, and specifically confirmed their hybrid population, C. "ptilosperma". Ecophysiological results suggested that extreme hydraulic traits were fixed in C. "ptilosperma", these being consistent with its distinct ecological niche, which lies outside its parental ranges. CONCLUSION The identified hybridization event is expected to have played a role in generating novel variation during, in which the hybrid population displays different phenological characteristics and novel ecophysiological traits associated with the colonization of a new niche in limestone karst.
Collapse
Affiliation(s)
- Sujuan Wei
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, 541004, China
| | - Qiwei Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, 541004, China
| | - Shaoqing Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, 541004, China.
| | - Wenbo Liao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
53
|
Mezzasalma M, Brunelli E, Odierna G, Guarino FM. Evolutionary and Genomic Diversity of True Polyploidy in Tetrapods. Animals (Basel) 2023; 13:ani13061033. [PMID: 36978574 PMCID: PMC10044425 DOI: 10.3390/ani13061033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
True polyploid organisms have more than two chromosome sets in their somatic and germline cells. Polyploidy is a major evolutionary force and has played a significant role in the early genomic evolution of plants, different invertebrate taxa, chordates, and teleosts. However, the contribution of polyploidy to the generation of new genomic, ecological, and species diversity in tetrapods has traditionally been underestimated. Indeed, polyploidy represents an important pathway of genomic evolution, occurring in most higher-taxa tetrapods and displaying a variety of different forms, genomic configurations, and biological implications. Herein, we report and discuss the available information on the different origins and evolutionary and ecological significance of true polyploidy in tetrapods. Among the main tetrapod lineages, modern amphibians have an unparalleled diversity of polyploids and, until recently, they were considered to be the only vertebrates with closely related diploid and polyploid bisexual species or populations. In reptiles, polyploidy was thought to be restricted to squamates and associated with parthenogenesis. In birds and mammals, true polyploidy has generally been considered absent (non-tolerated). These views are being changed due to an accumulation of new data, and the impact as well as the different evolutionary and ecological implications of polyploidy in tetrapods, deserve a broader evaluation.
Collapse
Affiliation(s)
- Marcello Mezzasalma
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy
- Correspondence: (M.M.); (E.B.)
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy
- Correspondence: (M.M.); (E.B.)
| | - Gaetano Odierna
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy (F.M.G.)
| | - Fabio Maria Guarino
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy (F.M.G.)
| |
Collapse
|
54
|
Geometric Morphometric Versus Genomic Patterns in a Large Polyploid Plant Species Complex. BIOLOGY 2023; 12:biology12030418. [PMID: 36979110 PMCID: PMC10045763 DOI: 10.3390/biology12030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Plant species complexes represent a particularly interesting example of taxonomically complex groups (TCGs), linking hybridization, apomixis, and polyploidy with complex morphological patterns. In such TCGs, mosaic-like character combinations and conflicts of morphological data with molecular phylogenies present a major problem for species classification. Here, we used the large polyploid apomictic European Ranunculus auricomus complex to study relationships among five diploid sexual progenitor species and 75 polyploid apomictic derivate taxa, based on geometric morphometrics using 11,690 landmarked objects (basal and stem leaves, receptacles), genomic data (97,312 RAD-Seq loci, 48 phased target enrichment genes, 71 plastid regions) from 220 populations. We showed that (1) observed genomic clusters correspond to morphological groupings based on basal leaves and concatenated traits, and morphological groups were best resolved with RAD-Seq data; (2) described apomictic taxa usually overlap within trait morphospace except for those taxa at the space edges; (3) apomictic phenotypes are highly influenced by parental subgenome composition and to a lesser extent by climatic factors; and (4) allopolyploid apomictic taxa, compared to their sexual progenitor, resemble a mosaic of ecological and morphological intermediate to transgressive biotypes. The joint evaluation of phylogenomic, phenotypic, reproductive, and ecological data supports a revision of purely descriptive, subjective traditional morphological classifications.
Collapse
|
55
|
Li C, Binaghi M, Pichon V, Cannarozzi G, Brandão de Freitas L, Hanemian M, Kuhlemeier C. Tight genetic linkage of genes causing hybrid necrosis and pollinator isolation between young species. NATURE PLANTS 2023; 9:420-432. [PMID: 36805038 PMCID: PMC10027609 DOI: 10.1038/s41477-023-01354-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/19/2023] [Indexed: 05/18/2023]
Abstract
The mechanisms of reproductive isolation that cause phenotypic diversification and eventually speciation are a major topic of evolutionary research. Hybrid necrosis is a post-zygotic isolation mechanism in which cell death develops in the absence of pathogens. It is often due to the incompatibility between proteins from two parents. Here we describe a unique case of hybrid necrosis due to an incompatibility between loci on chromosomes 2 and 7 between two pollinator-isolated Petunia species. Typical immune responses as well as endoplasmic reticulum stress responses are induced in the necrotic line. The locus on chromosome 2 encodes ChiA1, a bifunctional GH18 chitinase/lysozyme. The enzymatic activity of ChiA1 is dispensable for the development of necrosis. We propose that the extremely high expression of ChiA1 involves a positive feedback loop between the loci on chromosomes 2 and 7. ChiA1 is tightly linked to major genes involved in the adaptation to different pollinators, a form of pre-zygotic isolation. This linkage of pre- and post-zygotic barriers strengthens reproductive isolation and probably contributes to rapid diversification and speciation.
Collapse
Affiliation(s)
- Chaobin Li
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Marta Binaghi
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Vivien Pichon
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Gina Cannarozzi
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Chemistry/Biology/Pharmacy Information Center, ETH Zürich, Zürich, Switzerland
| | - Loreta Brandão de Freitas
- Department of Genetics, Laboratory of Molecular Evolution, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mathieu Hanemian
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.
| | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
56
|
Mao J, Liang Y, Wang X, Zhang D. Comparison of plastid genomes and ITS of two sister species in Gentiana and a discussion on potential threats for the endangered species from hybridization. BMC PLANT BIOLOGY 2023; 23:101. [PMID: 36800941 PMCID: PMC9940437 DOI: 10.1186/s12870-023-04088-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Gentiana rigescens Franchet is an endangered medicinal herb from the family Gentianaceae with medicinal values. Gentiana cephalantha Franchet is a sister species to G. rigescens possessing similar morphology and wider distribution. To explore the phylogeny of the two species and reveal potential hybridization, we adopted next-generation sequencing technology to acquire their complete chloroplast genomes from sympatric and allopatric distributions, as along with Sanger sequencing to produce the nrDNA ITS sequences. RESULTS The plastid genomes were highly similar between G. rigescens and G. cephalantha. The lengths of the genomes ranged from 146,795 to 147,001 bp in G. rigescens and from 146,856 to 147,016 bp in G. cephalantha. All genomes consisted of 116 genes, including 78 protein-coding genes, 30 tRNA genes, four rRNA genes and four pseudogenes. The total length of the ITS sequence was 626 bp, including six informative sites. Heterozygotes occurred intensively in individuals from sympatric distribution. Phylogenetic analysis was performed based on chloroplast genomes, coding sequences (CDS), hypervariable sequences (HVR), and nrDNA ITS. Analysis based on all the datasets showed that G. rigescens and G. cephalantha formed a monophyly. The two species were well separated in phylogenetic trees using ITS, except for potential hybrids, but were mixed based on plastid genomes. This study supports that G. rigescens and G. cephalantha are closely related, but independent species. However, hybridization was confirmed to occur frequently between G. rigescens and G. cephalantha in sympatric distribution owing to the lack of stable reproductive barriers. Asymmetric introgression, along with hybridization and backcrossing, may probably lead to genetic swamping and even extinction of G. rigescens. CONCLUSION G. rigescens and G. cephalantha are recently diverged species which might not have undergone stable post-zygotic isolation. Though plastid genome shows obvious advantage in exploring phylogenetic relationships of some complicated genera, the intrinsic phylogeny was not revealed because of matrilineal inheritance here; nuclear genomes or regions are hence crucial for uncovering the truth. As an endangered species, G. rigescens faces serious threats from both natural hybridization and human activities; therefore, a balance between conservation and utilization of the species is extremely critical in formulating conservation strategies.
Collapse
Affiliation(s)
- Jiuyang Mao
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
| | - Yuze Liang
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
| | - Xue Wang
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
| | - Dequan Zhang
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China.
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan (Cultivation), Dali, 671000, Yunnan, China.
| |
Collapse
|
57
|
Perrier A, Willi Y. Intraspecific variation in reproductive barriers between two closely related Arabidopsis sister species. J Evol Biol 2023; 36:121-130. [PMID: 36436201 PMCID: PMC10100320 DOI: 10.1111/jeb.14122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/07/2022] [Accepted: 09/25/2022] [Indexed: 11/29/2022]
Abstract
Reproductive isolation (RI) is a critical component of speciation and varies strongly in timing and strength among different sister taxa, depending on, for example the geography of speciation and divergence time. However, these factors may also produce variation in timing and strength among populations within species. Here we tested for variation in the expression of RI among replicate population pairs between the sister taxa Arabidopsis lyrata subsp. lyrata and A. arenicola. While the former is predominantly outcrossing, the latter is predominantly selfing. We focused on intrinsic prezygotic and postzygotic RI as both species occur largely in allopatry. We assessed RI by performing within-population crosses and interspecific between-population crosses, and by raising offspring. RI was generally high between all interspecific population pairs, but it varied in timing and strength depending on population history. Prezygotic isolation was strongest between the closest-related population pair, while early postzygotic isolation was high for all other population pairs. Furthermore, the timing and strength of RI depended strongly on cross direction. Our study provides empirical support that reproductive barriers between species are highly variable among population pairs and asymmetric within population pairs, and this variation seems to follow patterns typically described across species pairs.
Collapse
Affiliation(s)
- Antoine Perrier
- Department of Environmental Sciences, University of Basel, Basel, Switzerland.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Yvonne Willi
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
58
|
De Diego FC, Robbiati FO, Gaitán JJ, Fortunato RH. Morphological and distributional patterns of native and invasive Trifolium (Papilionoideae, Leguminosae) species in southern South America. SYST BIODIVERS 2022. [DOI: 10.1080/14772000.2022.2126022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Fernando Carlos De Diego
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, (C1033AAJ) CABA, Argentina
- Instituto de Recursos Biológicos, CIRN, INTA, Nicolás Repetto y de Los Reseros s/n°, Hurlingham, 1686, Buenos Aires, Argentina
- Escuela Superior de Ingeniería, Informática y Ciencias Agroalimentarias, Universidad de Morón, Cabildo 134, Morón 1708, Buenos Aires, Argentina
| | - Federico Omar Robbiati
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, Córdoba, X5000JJC, Prov. Córdoba, Argentina
| | - Juan José Gaitán
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, (C1033AAJ) CABA, Argentina
- Instituto de Suelos, CIRN, INTA, Nicolás Repetto y de Los Reseros s/n°, Hurlingham, 1686, Buenos Aires, Argentina
- Departamento de Tecnología, Universidad Nacional de Luján, Luján, 6700, Buenos Aires, Argentina
| | - Renée Hersilia Fortunato
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, (C1033AAJ) CABA, Argentina
- Escuela Superior de Ingeniería, Informática y Ciencias Agroalimentarias, Universidad de Morón, Cabildo 134, Morón 1708, Buenos Aires, Argentina
- Instituto de Botánica Darwinion (CONICET/ANCEFN), Labardén 200, Acassuso, 1641, Buenos Aires, Argentina
| |
Collapse
|
59
|
Martin SL, Lujan Toro B, James T, Sauder CA, Laforest M. Insights from the genomes of 4 diploid Camelina spp. G3 (BETHESDA, MD.) 2022; 12:jkac182. [PMID: 35976116 PMCID: PMC9713399 DOI: 10.1093/g3journal/jkac182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/12/2022] [Indexed: 11/12/2022]
Abstract
Plant evolution has been a complex process involving hybridization and polyploidization making understanding the origin and evolution of a plant's genome challenging even once a published genome is available. The oilseed crop, Camelina sativa (Brassicaceae), has a fully sequenced allohexaploid genome with 3 unknown ancestors. To better understand which extant species best represent the ancestral genomes that contributed to C. sativa's formation, we sequenced and assembled chromosome level draft genomes for 4 diploid members of Camelina: C. neglecta C. hispida var. hispida, C. hispida var. grandiflora, and C. laxa using long and short read data scaffolded with proximity data. We then conducted phylogenetic analyses on regions of synteny and on genes described for Arabidopsis thaliana, from across each nuclear genome and the chloroplasts to examine evolutionary relationships within Camelina and Camelineae. We conclude that C. neglecta is closely related to C. sativa's sub-genome 1 and that C. hispida var. hispida and C. hispida var. grandiflora are most closely related to C. sativa's sub-genome 3. Further, the abundance and density of transposable elements, specifically Helitrons, suggest that the progenitor genome that contributed C. sativa's sub-genome 3 maybe more similar to the genome of C. hispida var. hispida than that of C. hispida var. grandiflora. These diploid genomes show few structural differences when compared to C. sativa's genome indicating little change to chromosome structure following allopolyploidization. This work also indicates that C. neglecta and C. hispida are important resources for understanding the genetics of C. sativa and potential resources for crop improvement.
Collapse
Affiliation(s)
- Sara L Martin
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0CA, Canada
| | - Beatriz Lujan Toro
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0CA, Canada
| | - Tracey James
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0CA, Canada
| | - Connie A Sauder
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0CA, Canada
| | - Martin Laforest
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| |
Collapse
|
60
|
Osmolovsky I, Shifrin M, Gamliel I, Belmaker J, Sapir Y. Eco-Geography and Phenology Are the Major Drivers of Reproductive Isolation in the Royal Irises, a Species Complex in the Course of Speciation. PLANTS (BASEL, SWITZERLAND) 2022; 11:3306. [PMID: 36501345 PMCID: PMC9739335 DOI: 10.3390/plants11233306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The continuous nature of speciation implies that different species are found at different stages of divergence, from no- to complete reproductive isolation. This process and its underlying mechanisms are best viewed in incipient species. Moreover, the species complex can offer unique insight into how reproductive isolation (RI) has evolved. The royal irises (Iris section Oncocyclus) are a young group of species in the course of speciation, providing an ideal system for speciation study. We quantified pre- and post-zygotic reproductive barriers between the eight Israeli species of this complex and estimated the total RI among them. We tested for both pre-pollination and post-pollination reproductive barriers. Pre-pollination barriers, i.e., eco-geographic divergence and phenological differentiation were the major contributors to RI among the Iris species. On the other hand, post-pollination barriers, namely pollen-stigma interactions, fruit set, and seed viability had negligible contributions to total RI. The strength of RI was not uniform across the species complex, suggesting that species may have diverged at different rates. Overall, this study in a young, recently diverged group of species provides insight into the first steps of speciation, suggesting a crucial role of the pre-zygotic barriers.
Collapse
Affiliation(s)
- Inna Osmolovsky
- The Botanical Garden, School of Plant Science and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mariana Shifrin
- The Botanical Garden, School of Plant Science and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Inbal Gamliel
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jonathan Belmaker
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yuval Sapir
- The Botanical Garden, School of Plant Science and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
61
|
Allopatric Lineage Divergence of the East Asian Endemic Herb Conandron ramondioides Inferred from Low-Copy Nuclear and Plastid Markers. Int J Mol Sci 2022; 23:ijms232314932. [PMID: 36499259 PMCID: PMC9740071 DOI: 10.3390/ijms232314932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
The evolutionary histories of ornamental plants have been receiving only limited attention. We examined the origin and divergence processes of an East Asian endemic ornamental plant, Conandron ramondioides. C. ramondioides is an understory herb occurring in primary forests, which has been grouped into two varieties. We reconstructed the evolutionary and population demography history of C. ramondioides to infer its divergence process. Nuclear and chloroplast DNA sequences were obtained from 21 Conandron populations on both sides of the East China Sea (ECS) to explore its genetic diversity, structure, and population differentiation. Interestingly, the reconstructed phylogeny indicated that the populations should be classified into three clades corresponding to geographical regions: the Japan (Honshu+Shikoku) clade, the Taiwan-Iriomote clade, and the Southeast China clade. Lineage divergence between the Japan clade and the Taiwan-Iriomote and Southeast China clades occured 1.14 MYA (95% HPD: 0.82-3.86), followed by divergence between the Taiwan-Iriomote and Southeast China clades approximately 0.75 MYA (95% HPD: 0.45-1.3). Furthermore, corolla traits (floral lobe length to tube length ratios) correlated with geographical distributions. Moreover, restricted gene flow was detected among clades. Lastly, the lack of potential dispersal routes across an exposed ECS seafloor during the last glacial maximum suggests that migration among the Conandron clades was unlikely. In summary, the extant Conandron exhibits a disjunct distribution pattern as a result of vicariance rather than long-distance dispersal. We propose that allopatric divergence has occurred in C. ramondioides since the Pleistocene. Our findings highlight the critical influence of species' biological characteristics on shaping lineage diversification of East Asian relic herb species during climate oscillations since the Quaternary.
Collapse
|
62
|
Paetzold C, Barke BH, Hörandl E. Evolution of Transcriptomes in Early-Generation Hybrids of the Apomictic Ranunculus auricomus Complex ( Ranunculaceae). Int J Mol Sci 2022; 23:ijms232213881. [PMID: 36430360 PMCID: PMC9697309 DOI: 10.3390/ijms232213881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Hybridisation in plants may cause a shift from sexual to asexual seed formation (apomixis). Indeed, natural apomictic plants are usually hybrids, but it is still unclear how hybridisation could trigger the shift to apomixis. The genome evolution of older apomictic lineages is influenced by diverse processes such as polyploidy, mutation accumulation, and allelic sequence divergence. To disentangle the effects of hybridisation from these other factors, we analysed the transcriptomes of flowering buds from artificially produced, diploid F2 hybrids of the Ranunculus auricomus complex. The hybrids exhibited unreduced embryo sac formation (apospory) as one important component of apomixis, whereas their parental species were sexual. We revealed 2915 annotated single-copy genes that were mostly under purifying selection according to dN/dS ratios. However, pairwise comparisons revealed, after rigorous filtering, 79 genes under diversifying selection between hybrids and parents, whereby gene annotation assigned ten of them to reproductive processes. Four genes belong to the meiosis-sporogenesis phase (ASY1, APC1, MSP1, and XRI1) and represent, according to literature records, candidate genes for apospory. We conclude that hybridisation could combine novel (or existing) mutations in key developmental genes in certain hybrid lineages, and establish (together with altered gene expression profiles, as observed in other studies) a heritable regulatory mechanism for aposporous development.
Collapse
Affiliation(s)
- Claudia Paetzold
- Department of Botany and Molecular Evolution, Senckenberg Research Institute, 60325 Frankfurt am Main, Germany
| | - Birthe H. Barke
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073 Goettingen, Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073 Goettingen, Germany
- Correspondence:
| |
Collapse
|
63
|
Cheng L, Han Q, Chen F, Li M, Balbuena TS, Zhao Y. Phylogenomics as an effective approach to untangle cross-species hybridization event: A case study in the family Nymphaeaceae. Front Genet 2022; 13:1031705. [PMID: 36406110 PMCID: PMC9670182 DOI: 10.3389/fgene.2022.1031705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Hybridization is common and considered as an important evolutionary force to increase intraspecific genetic diversity. Detecting hybridization events is crucial for understanding the evolutionary history of species and further improving molecular breeding. The studies on identifying hybridization events through the phylogenomic approach are still limited. We proposed the conception and method of identifying allopolyploidy events by phylogenomics. The reconciliation and summary of nuclear multi-labeled gene family trees were adopted to untangle hybridization events from next-generation data in our novel phylogenomic approach. Given horticulturalists’ relatively clear cultivated crossbreeding history, the water lily family is a suitable case for examining recent allopolyploidy events. Here, we reconstructed and confirmed the well-resolved nuclear phylogeny for the Nymphaeales family in the context of geological time as a framework for identifying hybridization signals. We successfully identified two possible allopolyploidy events with the parental lineages for the hybrids in the family Nymphaeaceae based on summarization from multi-labeled gene family trees of Nymphaeales. The lineages where species Nymphaea colorata and Nymphaea caerulea are located may be the progenitors of horticultural cultivated species Nymphaea ‘midnight’ and Nymphaea ‘Woods blue goddess’. The proposed hybridization hypothesis is also supported by horticultural breeding records. Our methodology can be widely applied to identify hybridization events and theoretically facilitate the genome breeding design of hybrid plants.
Collapse
Affiliation(s)
- Lin Cheng
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, Xinyang Normal University, Xinyang, Henan, China
| | - Qunwei Han
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, Xinyang Normal University, Xinyang, Henan, China
| | - Fei Chen
- College of Tropical Crops, Hainan University, Haikou, China
| | - Mengge Li
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, Xinyang Normal University, Xinyang, Henan, China
| | - Tiago Santana Balbuena
- Department of Agricultural, Livestock and Environmental Biotechnology, UNESP, São Paulo, Brazil
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- College of Agriculture, Guizhou University, Guiyang, China
- *Correspondence: Yiyong Zhao, ,
| |
Collapse
|
64
|
Christie K, Fraser LS, Lowry DB. The strength of reproductive isolating barriers in seed plants: Insights from studies quantifying premating and postmating reproductive barriers over the past 15 years. Evolution 2022; 76:2228-2243. [PMID: 35838076 PMCID: PMC9796645 DOI: 10.1111/evo.14565] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 01/22/2023]
Abstract
Speciation is driven by the evolution of reproductive isolating barriers that reduce, and ultimately prevent, substantial gene flow between lineages. Despite its central role in evolutionary biology, the process can be difficult to study because it proceeds differently among groups and may occur over long timescales. Due to this complexity, we typically rely on generalizations of empirical data to describe and understand the process. Previous reviews of reproductive isolation (RI) in flowering plants have suggested that prezygotic or extrinsic barriers generally have a stronger effect on reducing gene flow compared to postzygotic or intrinsic barriers. Past conclusions have rested on relatively few empirical estimates of RI; however, RI data have become increasingly abundant over the past 15 years. We analyzed data from recent studies quantifying multiple pre- and postmating barriers in plants and compared the strengths of isolating barriers across 89 taxa pairs using standardized RI metrics. Individual prezygotic barriers were on average stronger than individual postzygotic barriers, and the total strength of prezygotic RI was approximately twice that of postzygotic RI. These findings corroborate that ecological divergence and extrinsic factors, as opposed to solely the accumulation of genetic incompatibilities, are important to speciation and the maintenance of species boundaries in plants. Despite an emphasis in the literature on asymmetric postmating and postzygotic RI, we found that prezygotic barriers acted equally asymmetrically. Overall, substantial variability in the strengths of 12 isolating barriers highlights the great diversity of mechanisms that contribute to plant diversification.
Collapse
Affiliation(s)
- Kyle Christie
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824,Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizona86011
| | - Linnea S. Fraser
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824
| | - David B. Lowry
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824
| |
Collapse
|
65
|
Natola L, Seneviratne SS, Irwin D. Population genomics of an emergent tri-species hybrid zone. Mol Ecol 2022; 31:5356-5367. [PMID: 35951007 DOI: 10.1111/mec.16650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022]
Abstract
Isolating barriers that drive speciation are commonly studied in the context of two-species hybrid zones. There is, however, evidence that more complex introgressive relationships are common in nature. Here, we use field observations and genomic analysis, including the sequencing and assembly of a novel reference genome, to study an emergent hybrid zone involving two colliding hybrid zones of three woodpecker species: red-breasted, red-naped, and yellow-bellied sapsuckers (Sphyrapicus ruber, S. nuchalis, and S. varius). Surveys of the area surrounding Prince George, British Columbia, Canada, show that all three species are sympatric, and Genotyping-by-Sequencing identifies hybrids from each species pair and birds with ancestry from all three species. Observations of phenotypes and genotypes of mated pairs provide evidence for assortative mating, though there is some heterospecific pairing. Hybridization is more extensive in this tri-species hybrid zone than in two di-species hybrid zones. However, there is no evidence of a hybrid swarm and admixture is constrained to contact zones, so we classify this region as a tension zone and invoke selection against hybrids as a likely mechanism maintaining species boundaries. Analysis of sapsucker age classes does not show disadvantages in hybrid survival to adulthood, so we speculate the selection upholding the tension zone may involve hybrid fecundity. Gene flow among all sapsuckers in di-species hybrid zones suggests introgression probably occurred before the formation of this tri-species hybrid zone, and might result from bridge hybridization, vagrancies, or other three-species interactions.
Collapse
Affiliation(s)
- Libby Natola
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.,Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sampath S Seneviratne
- Avian Sciences and Conservation, Department of Zoology, University of Colombo, Colombo, Sri Lanka
| | - Darren Irwin
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.,Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
66
|
Yang R, Deng YW, Liu Y, Zhao J, Bao L, Ge JP, Wang HF. Genetic structure and trait variation within a maple hybrid zone underscore North China as an overlooked diversity hotspot. Sci Rep 2022; 12:13949. [PMID: 35977961 PMCID: PMC9385851 DOI: 10.1038/s41598-022-17538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Tertiary relict flora in East Asia can be divided into northern and southern regions. North China is a diversity hotspot because it can be the secondary contact zone of ancient lineages from the two regions. To test the extent of ancient lineages hybridization and distinguish between the putative species pair Acer pictum subsp. mono and Acer truncatum, we conducted genetic and ecological studies within a maple hybrid zone in North China. Our results suggest that the two lineages of Acer coexist in the hybrid zone and that adult and offspring populations show typical bimodal genetic patterns. Hybrid individuals are established at intermediate altitudes between the two parental lineages. Flowering phenology is divergent between lineages, whereas the complex sexual system of Acer may ensure pollination among lineages. Leaf and fruit morphologies are different between the northern and southern origin lineages, corresponding to A. pictum subsp. mono and A. truncatum, respectively. Reduced gene flow between lineages suggests that they should be considered as two species. However, large morphological variations within each species and the existence of hybrids offer low reliability of species identification based solely on morphological traits. Our study underscores North China as an overlooked diversity hotspot that requires further study in the future.
Collapse
Affiliation(s)
- Rui Yang
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing, 100875, China.,Northeast Tiger and Leopard Biodiversity National Observation and Research Station, Beijing, 100875, China.,College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ya-Wen Deng
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing, 100875, China.,Northeast Tiger and Leopard Biodiversity National Observation and Research Station, Beijing, 100875, China.,College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yan Liu
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing, 100875, China.,Northeast Tiger and Leopard Biodiversity National Observation and Research Station, Beijing, 100875, China.,College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jing Zhao
- Daheishan Administrative District, Beipiao City, 122000, Liaoning Province, China
| | - Lei Bao
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing, 100875, China.,Northeast Tiger and Leopard Biodiversity National Observation and Research Station, Beijing, 100875, China.,College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jian-Ping Ge
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing, 100875, China.,Northeast Tiger and Leopard Biodiversity National Observation and Research Station, Beijing, 100875, China.,College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hong-Fang Wang
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing, 100875, China. .,Northeast Tiger and Leopard Biodiversity National Observation and Research Station, Beijing, 100875, China. .,College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
67
|
Three types of genes underlying the Gametophyte factor1 locus cause unilateral cross incompatibility in maize. Nat Commun 2022; 13:4498. [PMID: 35922428 PMCID: PMC9349285 DOI: 10.1038/s41467-022-32180-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022] Open
Abstract
Unilateral cross incompatibility (UCI) occurs between popcorn and dent corn, and represents a critical step towards speciation. It has been reported that ZmGa1P, encoding a pectin methylesterase (PME), is a male determinant of the Ga1 locus. However, the female determinant and the genetic relationship between male and female determinants at this locus are unclear. Here, we report three different types, a total of seven linked genes underlying the Ga1 locus, which control UCI phenotype by independently affecting pollen tube growth in both antagonistic and synergistic manners. These include five pollen-expressed PME genes (ZmGa1Ps-m), a silk-expressed PME gene (ZmPME3), and another silk-expressed gene (ZmPRP3), encoding a pathogenesis-related (PR) proteins. ZmGa1Ps-m confer pollen compatibility. Presence of ZmPME3 causes silk to reject incompatible pollen. ZmPRP3 promotes incompatibility pollen tube growth and thereby breaks the blocking effect of ZmPME3. In addition, evolutionary genomics analyses suggest that the divergence of the Ga1 locus existed before maize domestication and continued during breeding improvement. The knowledge gained here deepen our understanding of the complex regulation of cross incompatibility. Unilateral cross incompatibility (UCI) is a type of prezygotic reproductive isolation, which is associated with multiple loci in maize. Here, the authors use genetic analysis to separate the Ga1 locus into two functional components and identify seven linked genes encoding three types of proteins.
Collapse
|
68
|
Xia Z, Dai X, Fan W, Liu C, Zhang M, Bian P, Zhou Y, Li L, Zhu B, Liu S, Li Z, Wang X, Yu M, Xiang Z, Jiang Y, Zhao A. Chromosome-level Genomes Reveal the Genetic Basis of Descending Dysploidy and Sex Determination in Morus Plants. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1119-1137. [PMID: 36055564 DOI: 10.1016/j.gpb.2022.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 07/02/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
Multiple plant lineages have independently evolved sex chromosomes and variable karyotypes to maintain their sessile lifestyles through constant biological innovation. Morus notabilis, a dioecious mulberry species, has the fewest chromosomes among Morus spp., but the genetic basis of sex determination and karyotype evolution in this species has not been identified. In this study, three high-quality genome assemblies were generated for Morus spp. [including dioecious M. notabilis (male and female) and Morus yunnanensis (female)] with genome sizes of 301-329 Mb and were grouped into six pseudochromosomes. Using a combination of genomic approaches, we found that the putative ancestral karyotype of Morus species was close to 14 protochromosomes, and that several chromosome fusion events resulted in descending dysploidy (2n = 2x = 12). We also characterized a ∼ 6.2-Mb sex-determining region on chromosome 3. Four potential male-specific genes, a partially duplicatedDNA helicase gene (named MSDH) and three Ty3_Gypsy long terminal repeat retrotransposons (named MSTG1/2/3), were identified in the Y-linked area and considered to be strong candidate genes for sex determination or differentiation. Population genomic analysis showed that Guangdong accessions in China were genetically similar to Japanese accessions of mulberry. In addition, genomic areas containing selective sweeps that distinguish domesticated mulberry from wild populations in terms of flowering and disease resistance were identified. Our findings provide an important genetic resource for sex identification research and molecular breeding in mulberry.
Collapse
Affiliation(s)
- Zhongqiang Xia
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wei Fan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Meirong Zhang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Peipei Bian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuping Zhou
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Liang Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Baozhong Zhu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Shuman Liu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Zhengang Li
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi 661100, China
| | - Xiling Wang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
| | - Maode Yu
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
69
|
Jalali T, Rosinger HS, Hodgins KA, Fournier‐Level AJ. Pollen competition in hybridizing Cakile species: How does a latecomer win the race? AMERICAN JOURNAL OF BOTANY 2022; 109:1290-1304. [PMID: 35844035 PMCID: PMC9544311 DOI: 10.1002/ajb2.16035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Hybridization between cross-compatible species depends on the extent of competition between alternative mates. Even if stigmatic compatibility allows for hybridization, hybridization requires the heterospecific pollen to be competitive. Here, we determined whether conspecific pollen has an advantage in the race to fertilize ovules and the potential handicap to be overcome by heterospecific pollen in invasive Cakile species. METHODS We used fluorescence microscopy to measure pollen tube growth after conspecific and heterospecific hand-pollination treatments. We then determined siring success in the progeny relative to the timing of heterospecific pollen arrival on the stigma using CAPS markers. RESULTS In the absence of pollen competition, pollination time and pollen recipient species had a significant effect on the ratio of pollen tube growth. In long-styled C. maritima (outcrosser), pollen tubes grew similarly in both directions. In short-styled C. edentula (selfer), conspecific and heterospecific pollen tubes grew differently. Cakile edentula pollen produced more pollen tubes, revealing the potential for a mating asymmetry whereby C. edentula pollen had an advantage relative to C. maritima. In the presence of pollen competition, siring success was equivalent when pollen deposition was synchronous. However, a moderate 1-h advantage in the timing of conspecific pollination resulted in almost complete assortative mating, while an equivalent delay in conspecific pollination resulted in substantial hybrid formation. CONCLUSIONS Hybridization can aid the establishment of invasive species through the transfer of adaptive alleles from cross-compatible species, but also lead to extinction through demographic or genetic swamping. Time of pollen arrival on the stigma substantially affected hybridization rate, pointing to the importance of pollination timing in driving introgression and genetic swamping.
Collapse
Affiliation(s)
- Tara Jalali
- School of BiosciencesThe University of MelbourneParkvilleVictoria3010Australia
| | - Hanna S. Rosinger
- School of Biological SciencesMonash UniversityClaytonVictoria3800Australia
| | - Kathryn A. Hodgins
- School of Biological SciencesMonash UniversityClaytonVictoria3800Australia
| | | |
Collapse
|
70
|
Boza Espinoza TE, Kessler M. A monograph of the genus Polylepis (Rosaceae). PHYTOKEYS 2022; 203:1-274. [PMID: 36761034 PMCID: PMC9849045 DOI: 10.3897/phytokeys.203.83529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/13/2022] [Indexed: 05/27/2023]
Abstract
We present a monograph of the high Andean tree genus Polylepis (Rosaceae), based on a species concept considering morphological, climatic and biogeographic distinctness as indicators of evolutionary independence. In total, we recognize 45 species of Polylepis, grouped in five sections. Polylepissect.Sericeae is represented by 15 species in four subsections, P.sect.Reticulatae by seven species, P.sect.Subsericantes by three species, P.sect.Australes by two species and P.sect.Incanaee by three subsections with 18 species. We describe seven new species, one from Colombia (P.frontinensis), one from Ecuador (P.simpsoniae) and five from Peru (P.acomayensis, P.fjeldsaoi, P.occidentalis, P.pilosissima and P.sacra). Three species from Peru (P.albicans, P.pallidistigma and P.serrata) are re-instated as valid species. Two taxa from Bolivia (P.incanoides and P.nana) are elevated from subspecies to species rank. The morphology, habitat, distribution, ecology and conservation status of each species are documented. We also provide an identification key to the species of the genus and general introductions on taxonomic history, morphology, evolution, ecology and conservation.
Collapse
Affiliation(s)
- Tatiana Erika Boza Espinoza
- Institute for Nature, Earth and Energy (INTE), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, Lima 15088, PeruPontificia Universidad Católica del Perú (PUCP)LimaPeru
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, SwitzerlandUniversity of ZurichZürichSwitzerland
| |
Collapse
|
71
|
Moraes AP, Engel TBJ, Forni-Martins ER, de Barros F, Felix LP, Cabral JS. Are chromosome number and genome size associated with habit and environmental niche variables? Insights from the Neotropical orchids. ANNALS OF BOTANY 2022; 130:11-25. [PMID: 35143612 PMCID: PMC9295925 DOI: 10.1093/aob/mcac021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS The entangled relationship of chromosome number and genome size with species distribution has been the subject of study for almost a century, but remains an open question due to previous ecological and phylogenetic knowledge constraints. To better address this subject, we used the clade Maxillariinae, a widely distributed and karyotypically known orchid group, as a model system to infer such relationships in a robust methodological framework. METHODS Based on the literature and new data, we gathered the chromosome number and genome size for 93 and 64 species, respectively. We built a phylogenetic hypothesis and assessed the best macroevolutionary model for both genomic traits. Additionally, we collected together ecological data (preferences for bioclimatic variables, elevation and habit) used as explanatory variables in multivariate phylogenetic models explaining genomic traits. Finally, the impact of polyploidy was estimated by running the analyses with and without polyploids in the sample. KEY RESULTS The association between genomic and ecological data varied depending on whether polyploids were considered or not. Without polyploids, chromosome number failed to present consistent associations with ecological variables. With polyploids, there was a tendency to waive epiphytism and colonize new habitats outside humid forests. The genome size showed association with ecological variables: without polyploids, genome increase was associated with flexible habits, with higher elevation and with drier summers; with polyploids, genome size increase was associated with colonizing drier environments. CONCLUSIONS The chromosome number and genome size variations, essential but neglected traits in the ecological niche, are shaped in the Maxillariinae by both neutral and adaptive evolution. Both genomic traits are partially correlated to bioclimatic variables and elevation, even when controlling for phylogenetic constraints. While polyploidy was associated with shifts in the environmental niche, the genome size emerges as a central trait in orchid evolution by the association between small genome size and epiphytism, a key innovation to Neotropical orchid diversification.
Collapse
Affiliation(s)
| | - Thaissa Brogliato Junqueira Engel
- Universidade de Campinas – UNICAMP, Instituto de Biologia, Departamento de Biologia Vegetal, Programa de Pós Graduação em Biologia Vegetal, Campinas, 13083-970, São Paulo, Brazil
| | - Eliana R Forni-Martins
- Universidade de Campinas – UNICAMP, Instituto de Biologia, Departamento de Biologia Vegetal, Programa de Pós Graduação em Biologia Vegetal, Campinas, 13083-970, São Paulo, Brazil
| | - Fábio de Barros
- Instituto de Botânica, Núcleo de Pesquisa Orquidário do Estado, São Paulo, 04045-972, São Paulo, Brazil
| | - Leonardo P Felix
- Universidade Federal da Paraíba – UFPB, Campus II, Departamento de Ciências Biológicas, Areia, 58397-000, Paraíba, Brazil
| | - Juliano Sarmento Cabral
- University of Würzburg, Ecosystem Modeling, Center for Computational and Theoretical Biology (CCTB), Klara-Oppenheimer-Weg 32, D-97074, Würzburg, Germany
| |
Collapse
|
72
|
Roberts EK, Tardif S, Wright EA, Platt RN, Bradley RD, Hardy DM. Rapid divergence of a gamete recognition gene promoted macroevolution of Eutheria. Genome Biol 2022; 23:155. [PMID: 35821049 PMCID: PMC9275260 DOI: 10.1186/s13059-022-02721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Speciation genes contribute disproportionately to species divergence, but few examples exist, especially in vertebrates. Here we test whether Zan, which encodes the sperm acrosomal protein zonadhesin that mediates species-specific adhesion to the egg's zona pellucida, is a speciation gene in placental mammals. RESULTS Genomic ontogeny reveals that Zan arose by repurposing of a stem vertebrate gene that was lost in multiple lineages but retained in Eutheria on acquiring a function in egg recognition. A 112-species Zan sequence phylogeny, representing 17 of 19 placental Orders, resolves all species into monophyletic groups corresponding to recognized Orders and Suborders, with <5% unsupported nodes. Three other rapidly evolving germ cell genes (Adam2, Zp2, and Prm1), a paralogous somatic cell gene (TectA), and a mitochondrial gene commonly used for phylogenetic analyses (Cytb) all yield trees with poorer resolution than the Zan tree and inferior topologies relative to a widely accepted mammalian supertree. Zan divergence by intense positive selection produces dramatic species differences in the protein's properties, with ordinal divergence rates generally reflecting species richness of placental Orders consistent with expectations for a speciation gene that acts across a wide range of taxa. Furthermore, Zan's combined phylogenetic utility and divergence exceeds those of all other genes known to have evolved in Eutheria by positive selection, including the only other mammalian speciation gene, Prdm9. CONCLUSIONS Species-specific egg recognition conferred by Zan's functional divergence served as a mode of prezygotic reproductive isolation that promoted the extraordinary adaptive radiation and success of Eutheria.
Collapse
Affiliation(s)
- Emma K. Roberts
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Steve Tardif
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Reproductive Biology Division, JangoBio, Fitchburg, WI USA
| | - Emily A. Wright
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA
| | - Roy N. Platt
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX USA
| | - Robert D. Bradley
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA
- Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, TX USA
| | - Daniel M. Hardy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
| |
Collapse
|
73
|
Murillo-A J, Valencia-D J, Orozco CI, Parra-O C, Neubig KM. Incomplete lineage sorting and reticulate evolution mask species relationships in Brunelliaceae, an Andean family with rapid, recent diversification. AMERICAN JOURNAL OF BOTANY 2022; 109:1139-1156. [PMID: 35709353 DOI: 10.1002/ajb2.16025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
PREMISE To date, phylogenetic relationships within the monogeneric Brunelliaceae have been based on morphological evidence, which does not provide sufficient phylogenetic resolution. Here we use target-enriched nuclear data to improve our understanding of phylogenetic relationships in the family. METHODS We used the Angiosperms353 toolkit for targeted recovery of exonic regions and supercontigs (exons + introns) from low copy nuclear genes from 53 of 70 species in Brunellia, and several outgroup taxa. We removed loci that indicated biased inference of relationships and applied concatenated and coalescent methods to infer Brunellia phylogeny. We identified conflicts among gene trees that may reflect hybridization or incomplete lineage sorting events and assessed their impact on phylogenetic inference. Finally, we performed ancestral-state reconstructions of morphological traits and assessed the homology of character states used to define sections and subsections in Brunellia. RESULTS Brunellia comprises two major clades and several subclades. Most of these clades/subclades do not correspond to previous infrageneric taxa. There is high topological incongruence among the subclades across analyses. CONCLUSIONS Phylogenetic reconstructions point to rapid species diversification in Brunelliaceae, reflected in very short branches between successive species splits. The removal of putatively biased loci slightly improves phylogenetic support for individual clades. Reticulate evolution due to hybridization and/or incomplete lineage sorting likely both contribute to gene-tree discordance. Morphological characters used to define taxa in current classification schemes are homoplastic in the ancestral character-state reconstructions. While target enrichment data allows us to broaden our understanding of diversification in Brunellia, the relationships among subclades remain incompletely understood.
Collapse
Affiliation(s)
- José Murillo-A
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Carrera 30 # 45-03, edificio 425, Bogotá, D.C., Colombia
| | - Janice Valencia-D
- School of Biological Sciences, Southern Illinois University Carbondale, 1125 Lincoln Dr., Carbondale, Illinois, 62901-6509, USA
| | - Clara I Orozco
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Carrera 30 # 45-03, edificio 425, Bogotá, D.C., Colombia
| | - Carlos Parra-O
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Carrera 30 # 45-03, edificio 425, Bogotá, D.C., Colombia
| | - Kurt M Neubig
- School of Biological Sciences, Southern Illinois University Carbondale, 1125 Lincoln Dr., Carbondale, Illinois, 62901-6509, USA
| |
Collapse
|
74
|
Than Kutay Soe, Kunieda M, Sunohara H, Inukai Y, Reyes VP, Nishiuchi S, Doi K. A Novel Combination of Genes Causing Temperature-Sensitive Hybrid Weakness in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:908000. [PMID: 35837460 PMCID: PMC9274174 DOI: 10.3389/fpls.2022.908000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/26/2022] [Indexed: 09/29/2023]
Abstract
Reproductive isolation is an obstacle for plant breeding when a distant cross is demanded. It can be divided into two main types based on different growth stages: prezygotic isolation and postzygotic isolation. The hybrid weakness, which is a type of postzygotic isolation, can become a problem in crop breeding. In order to overcome reproductive isolation, it is necessary to elucidate its mechanism. In this study, genetic analysis for low temperature-dependent hybrid weakness was conducted in a rice F2 population derived from Taichung 65 (T65, Japonica) and Lijiangxintuanheigu (LTH, Japonica). The weak and severe weak plants in F2 showed shorter culm length, late heading, reduced panicle number, decreased grain numbers per panicle, and impaired root development in the field. Our result also showed that hybrid weakness was affected by temperature. It was observed that 24°C enhanced hybrid weakness, whereas 34°C showed recovery from hybrid weakness. In terms of the morphology of embryos, no difference was observed. Therefore, hybrid weakness affects postembryonic development and is independent of embryogenesis. The genotypes of 126 F2 plants were determined through genotyping-by-sequencing and a linkage map consisting of 862 single nucleotide polymorphism markers was obtained. Two major quantitative trait loci (QTLs) were detected on chromosomes 1 [hybrid weakness j 1 (hwj1)] and 11 [hybrid weakness j 2 (hwj2)]. Further genotyping indicated that the hybrid weakness was due to an incompatible interaction between the T65 allele of hwj1 and the LTH allele of hwj2. A large F2 populations consisting of 5,722 plants were used for fine mapping of hwj1 and hwj2. The two loci, hwj1 and hwj2, were mapped in regions of 65-kb on chromosome 1 and 145-kb on chromosome 11, respectively. For hwj1, the 65-kb region contained 11 predicted genes, while in the hwj2 region, 22 predicted genes were identified, two of which are disease resistance-related genes. The identified genes along these regions serve as preliminary information on the molecular networks associated with hybrid weakness in rice.
Collapse
Affiliation(s)
- Than Kutay Soe
- Laboratory of Information Sciences in Agricultural Lands, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Department of Botany, University of Yangon, Yangon, Myanmar
| | - Mai Kunieda
- Laboratory of Information Sciences in Agricultural Lands, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hidehiko Sunohara
- Laboratory of Information Sciences in Agricultural Lands, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Environmental Control Center Co., Ltd., Hachioji, Japan
| | - Yoshiaki Inukai
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Japan
| | - Vincent Pamugas Reyes
- Laboratory of Information Sciences in Agricultural Lands, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shunsaku Nishiuchi
- Laboratory of Information Sciences in Agricultural Lands, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kazuyuki Doi
- Laboratory of Information Sciences in Agricultural Lands, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
75
|
Zhang HP, Tao ZB, Trunschke J, Shrestha M, Scaccabarozzi D, Wang H, Ren ZX. Reproductive Isolation Among Three Nocturnal Moth-Pollinated Sympatric Habenaria Species (Orchidaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:908852. [PMID: 35812980 PMCID: PMC9257206 DOI: 10.3389/fpls.2022.908852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Comparison and quantification of multiple pre- and post-pollination barriers to interspecific hybridization are important to understand the factors promoting reproductive isolation. Such isolating factors have been studied recently in many flowering plant species which seek after the general roles and relative strengths of different pre- and post-pollination barriers. In this study, we quantified six isolating factors (ecogeographic isolation, phenological isolation, pollinator isolation, pollinia-pistil interactions, fruit production, and seed development) that could possibly be acting as reproductive barriers at different stages among three sympatric Habenaria species (H. limprichtii, H. davidii, and H. delavayi). These three species overlap geographically but occupy different microhabitats varying in soil water content. They were isolated through pollinator interactions both ethologically (pollinator preference) and mechanically (pollinia attachment site), but to a variable degree for different species pairs. Interspecific crosses between H. limprichtii and H. davidii result in high fruit set, and embryo development suggested weak post-pollination barriers, whereas bidirectional crosses of H. delavayi with either of the other two species fail to produce fruits. Our results revealed that pollinators were the most important isolating barrier including both ethological and mechanical mechanisms, to maintain the boundaries among these three sympatric Habenaria species. Our study also highlights the importance of a combination of pre-and post-pollination barriers for species co-existence in Orchidaceae.
Collapse
Affiliation(s)
- Hai-Ping Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Bin Tao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan, China
| | - Judith Trunschke
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
| | - Mani Shrestha
- Department of Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Daniela Scaccabarozzi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- Lijiang Forest Biodiversity National Observation and Research Station, Lijiang, China
| | - Zong-Xin Ren
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- Lijiang Forest Biodiversity National Observation and Research Station, Lijiang, China
| |
Collapse
|
76
|
Wang D, Xu X, Zhang H, Xi Z, Abbott RJ, Fu J, Liu JQ. Abiotic niche divergence of hybrid species from their progenitors. Am Nat 2022; 200:634-645. [DOI: 10.1086/721372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
77
|
Xiong H, Wang D, Shao C, Yang X, Yang J, Ma T, Davis CC, Liu L, Xi Z. Species Tree Estimation and the Impact of Gene Loss Following Whole-Genome Duplication. Syst Biol 2022; 71:1348-1361. [PMID: 35689633 PMCID: PMC9558847 DOI: 10.1093/sysbio/syac040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Whole-genome duplication (WGD) occurs broadly and repeatedly across the history of eukaryotes and is recognized as a prominent evolutionary force, especially in plants. Immediately following WGD, most genes are present in two copies as paralogs. Due to this redundancy, one copy of a paralog pair commonly undergoes pseudogenization and is eventually lost. When speciation occurs shortly after WGD; however, differential loss of paralogs may lead to spurious phylogenetic inference resulting from the inclusion of pseudoorthologs–paralogous genes mistakenly identified as orthologs because they are present in single copies within each sampled species. The influence and impact of including pseudoorthologs versus true orthologs as a result of gene extinction (or incomplete laboratory sampling) are only recently gaining empirical attention in the phylogenomics community. Moreover, few studies have yet to investigate this phenomenon in an explicit coalescent framework. Here, using mathematical models, numerous simulated data sets, and two newly assembled empirical data sets, we assess the effect of pseudoorthologs on species tree estimation under varying degrees of incomplete lineage sorting (ILS) and differential gene loss scenarios following WGD. When gene loss occurs along the terminal branches of the species tree, alignment-based (BPP) and gene-tree-based (ASTRAL, MP-EST, and STAR) coalescent methods are adversely affected as the degree of ILS increases. This can be greatly improved by sampling a sufficiently large number of genes. Under the same circumstances, however, concatenation methods consistently estimate incorrect species trees as the number of genes increases. Additionally, pseudoorthologs can greatly mislead species tree inference when gene loss occurs along the internal branches of the species tree. Here, both coalescent and concatenation methods yield inconsistent results. These results underscore the importance of understanding the influence of pseudoorthologs in the phylogenomics era. [Coalescent method; concatenation method; incomplete lineage sorting; pseudoorthologs; single-copy gene; whole-genome duplication.]
Collapse
Affiliation(s)
- Haifeng Xiong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Danying Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Chen Shao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xuchen Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jialin Yang
- Department of Statistics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, MA 02138, USA
| | - Liang Liu
- Department of Statistics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
78
|
He H, Sadahisa K, Yokoi S, Tezuka T. Parental Genome Imbalance Causes Hybrid Seed Lethality as Well as Ovary Abscission in Interspecific and Interploidy Crosses in Nicotiana. FRONTIERS IN PLANT SCIENCE 2022; 13:899206. [PMID: 35665169 PMCID: PMC9161172 DOI: 10.3389/fpls.2022.899206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Enhanced ovary abscission after pollination and hybrid seed lethality result in post-zygotic reproductive isolation in plant interspecific crosses. However, the connection between these barriers remains unclear. Here, we report that an imbalance in parental genomes or endosperm balance number (EBN) causes hybrid seed lethality and ovary abscission in both interspecific and intraspecific-interploidy crosses in the genus Nicotiana. Auxin treatment suppressed ovary abscission, but not hybrid seed lethality, in an interspecific cross between Nicotiana suaveolens and N. tabacum, suggesting that ovary abscission-related genes are located downstream of those involved in hybrid seed lethality. We performed interploidy crosses among N. suaveolens tetraploids, octoploids, and neopolyploids and revealed hybrid seed lethality and ovary abscission in interploid crosses. Furthermore, a higher maternal EBN than paternal EBN caused these barriers, as previously observed in N. suaveolens × N. tabacum crosses. Altogether, these results suggest that maternal excess of EBN causes hybrid seed lethality, which in turn leads to ovary abscission through the same mechanism in both interspecific and interploidy crosses.
Collapse
Affiliation(s)
- Hai He
- Laboratory of Plant Breeding and Propagation, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Kumi Sadahisa
- Laboratory of Plant Breeding and Propagation, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Shuji Yokoi
- Laboratory of Plant Breeding and Propagation, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
- Laboratory of Breeding and Genetics, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
- Education and Research Field, School of Agriculture, Osaka Metropolitan University, Sakai, Japan
- Bioeconomy Research Institute, Research Center for the 21st Century, Osaka Metropolitan University, Sakai, Japan
| | - Takahiro Tezuka
- Laboratory of Plant Breeding and Propagation, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
- Laboratory of Breeding and Genetics, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
- Education and Research Field, School of Agriculture, Osaka Metropolitan University, Sakai, Japan
| |
Collapse
|
79
|
Hodel RGJ, Massatti R, Knowles LL. Hybrid enrichment of adaptive variation revealed by genotype-environment associations in montane sedges. Mol Ecol 2022; 31:3722-3737. [PMID: 35560840 PMCID: PMC9327521 DOI: 10.1111/mec.16502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022]
Abstract
The role of hybridization in diversification is complex and may result in many possible outcomes. Not only can hybridization produce new lineages, but those lineages may contain unique combinations of adaptive genetic variation derived from parental taxa that allow hybrid‐origin lineages to occupy unique environmental space relative to one (or both) parent(s). We document such a case of hybridization between two sedge species, Carex nova and Carex nelsonii (Cyperaceae), that occupy partially overlapping environmental space in the southern Rocky Mountains, USA. In the region hypothesized to be the origin of the hybrid lineage, one parental taxon (C. nelsonii) is at the edge of its environmental tolerance. Hybrid‐origin individuals display mixed ancestry between the parental taxa—of nearly 7000 unlinked loci sampled, almost 30% showed evidence of excess ancestry from one parental lineage—approximately half displayed a genomic background skewed towards one parent, and half skewed towards the other. To test whether excess ancestry loci may have conferred an adaptive advantage to the hybrid‐origin lineage, we conducted genotype–environment association analyses on different combinations of loci—with and without excess ancestry—and with multiple contrasts between the hybrids and parental taxa. Loci with skewed ancestry showed significant environmental associations distinguishing the hybrid lineage from one parent (C. nelsonii), whereas loci with relatively equal representation of parental ancestries showed no such environmental associations. Moreover, the overwhelming majority of candidate adaptive loci with respect to environmental gradients also had excess ancestry from a parental lineage, implying these loci have facilitated the persistence of the hybrid lineage in an environment unsuitable to at least one parent.
Collapse
Affiliation(s)
- Richard G J Hodel
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC, USA
| | - Rob Massatti
- U.S. Geological Survey, Southwest Biological Science Center, Flagstaff, AZ, USA
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
80
|
Meng Q, Manghwar H, Hu W. Study on Supergenus Rubus L.: Edible, Medicinal, and Phylogenetic Characterization. PLANTS (BASEL, SWITZERLAND) 2022; 11:1211. [PMID: 35567211 PMCID: PMC9102695 DOI: 10.3390/plants11091211] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Rubus L. is one of the most diverse genera belonging to Rosaceae; it consists of more than 700 species with a worldwide distribution. It thus provides an ideal natural "supergenus" for studying the importance of its edible, medicinal, and phylogenetic characteristics for application in our daily lives and fundamental scientific studies. The Rubus genus includes many economically important species, such as blackberry (R. fruticosus L.), red raspberry (R. ideaus L.), black raspberry (R. occidentalis L.), and raspberry (R. chingii Hu), which are widely utilized in the fresh fruit market and the medicinal industry. Although Rubus species have existed in human civilization for hundreds of years, their utilization as fruit and in medicine is still largely inadequate, and many questions on their complex phylogenetic relationships need to be answered. In this review, we briefly summarize the history and progress of studies on Rubus, including its domestication as a source of fresh fruit, its medicinal uses in pharmacology, and its systematic position in the phylogenetic tree. Recent available evidence indicates that (1) thousands of Rubus cultivars were bred via time- and labor-consuming methods from only a few wild species, and new breeding strategies and germplasms were thus limited; (2) many kinds of species in Rubus have been used as medicinal herbs, though only a few species (R. ideaus L., R. chingii Hu, and R. occidentalis L.) have been well studied; (3) the phylogeny of Rubus is very complex, with the main reason for this possibly being the existence of multiple reproductive strategies (apomixis, hybridization, and polyploidization). Our review addresses the utilization of Rubus, summarizing major relevant achievements and proposing core prospects for future application, and thus could serve as a useful roadmap for future elite cultivar breeding and scientific studies.
Collapse
Affiliation(s)
- Qinglin Meng
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Q.M.); (H.M.)
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Q.M.); (H.M.)
| | - Weiming Hu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Q.M.); (H.M.)
| |
Collapse
|
81
|
Tavares MM, Ferro M, Leal BSS, Palma‐Silva C. Speciation with gene flow between two Neotropical sympatric species (
Pitcairnia
spp.: Bromeliaceae). Ecol Evol 2022; 12:e8834. [PMID: 35509614 PMCID: PMC9055293 DOI: 10.1002/ece3.8834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Marília Manuppella Tavares
- Departamento de Biologia Vegetal Instituto de Biologia Universidade Estadual de Campinas Campinas Brazil
| | - Milene Ferro
- Departamento de Biologia Geral e Aplicada Universidade Estadual Paulista Rio Claro Brazil
| | - Bárbara Simões Santos Leal
- Departamento de Biologia Vegetal Instituto de Biologia Universidade Estadual de Campinas Campinas Brazil
| | - Clarisse Palma‐Silva
- Departamento de Biologia Vegetal Instituto de Biologia Universidade Estadual de Campinas Campinas Brazil
| |
Collapse
|
82
|
Lucek K, Augustijnen H, Escudero M. A holocentric twist to chromosomal speciation? Trends Ecol Evol 2022; 37:655-662. [PMID: 35484024 DOI: 10.1016/j.tree.2022.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
Chromosomal rearrangements trigger speciation by acting as barriers to gene flow. However, the underlying theory was developed with monocentric chromosomes in mind. Holocentric chromosomes, lacking a centromeric region, have repeatedly evolved and account for a significant fraction of extant biodiversity. Because chromosomal rearrangements may be more likely retained in holocentric species, holocentricity could provide a twist to chromosomal speciation. Here, we discuss how the abundance of chromosome-scale genomes, combined with novel analytical tools, offer the opportunity to assess the impacts of chromosomal rearrangements on rates of speciation by outlining a phylogenetic framework that aligns with the two major lines of chromosomal speciation theory. We further highlight how holocentric species could help to test for causal roles of chromosomal rearrangements in speciation.
Collapse
Affiliation(s)
- Kay Lucek
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Hannah Augustijnen
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
| | - Marcial Escudero
- Department of Plant Biology and Ecology, University of Seville, Reina Mercedes, ES-41012 Seville, Spain
| |
Collapse
|
83
|
Wu S, Wang Y, Wang Z, Shrestha N, Liu J. Species divergence with gene flow and hybrid speciation on the Qinghai-Tibet Plateau. THE NEW PHYTOLOGIST 2022; 234:392-404. [PMID: 35020198 DOI: 10.1111/nph.17956] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The Qinghai-Tibet Plateau (QTP) sensu lato (sl), comprising the platform, the Himalaya and the Hengduan Mountains, is characterized by a large number of endemic plant species. This evolutionary cradle may have arisen from explosive species diversification because of geographic isolation. However, gene flow has been widely detected during the speciation processes of all groups examined, suggesting that natural selection may have also played an important role during species divergence in this region. In addition, natural hybrids have been recovered in almost all species-rich genera. This suggests that numerous species in this region are still 'on the speciation pathway to complete reproductive isolation (RI)'. Such hybrids could directly develop into new species through hybrid polyploidization and homoploid hybrid speciation (HHS). HHS may take place more easily than previously thought through alternate inheritance of alleles of parents at multiple RI loci. Therefore, isolation, selection and hybridization could together have promoted species diversification of numerous plant genera on the QTP sl. We emphasize the need for identification and functional analysis of alleles of major genes for speciation, and especially encourage investigations of parallel adaptive divergence causing RI across different lineages within similar but specific habitats in this region.
Collapse
Affiliation(s)
- Shengdan Wu
- State Key Laboratory of Grassland Agro-Ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Yi Wang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zefu Wang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Nawal Shrestha
- State Key Laboratory of Grassland Agro-Ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
84
|
Wang Z, Jiang Y, Yang X, Bi H, Li J, Mao X, Ma Y, Ru D, Zhang C, Hao G, Wang J, Abbott RJ, Liu J. Molecular signatures of parallel adaptive divergence causing reproductive isolation and speciation across two genera. Innovation (N Y) 2022; 3:100247. [PMID: 35519515 PMCID: PMC9065898 DOI: 10.1016/j.xinn.2022.100247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/16/2022] [Indexed: 11/18/2022] Open
Abstract
Parallel evolution of reproductive isolation (PERI) provides strong evidence for natural selection playing a fundamental role in the origin of species. However, PERI has been rarely demonstrated for well established species drawn from different genera. In particular, parallel molecular signatures for the same genes in response to similar habitat divergence in such different lineages is lacking. Here, based on whole-genome sequencing data, we first explore the speciation process in two sister species of Carpinus (Betulaceae) in response to divergence for temperature and soil-iron concentration in habitats they occupy in northern and southwestern China, respectively. We then determine whether parallel molecular mutations occur during speciation in this pair of species and also in another sister-species pair of the related genus, Ostryopsis, which occupy similarly divergent habitats in China. We show that gene flow occurred during the origin of both pairs of sister species since approximately 9.8 or approximately 2 million years ago, implying strong natural selection during divergence. Also, in both species pairs we detected concurrent positive selection in a gene (LHY) for flowering time and in two paralogous genes (FRO4 and FRO7) of a gene family known to be important for iron tolerance. These changes were in addition to changes in other major genes related to these two traits. The different alleles of these particular candidate genes possessed by the sister species of Carpinus were functionally tested and indicated likely to alter flowering time and iron tolerance as previously demonstrated in the pair of Ostryopsis sister species. Allelic changes in these genes may have effectively resulted in high levels of prezygotic reproductive isolation to evolve between sister species of each pair. Our results show that PERI can occur in different genera at different timescales and involve similar signatures of molecular evolution at genes or paralogues of the same gene family, causing reproductive isolation as a consequence of adaptation to similarly divergent habitats. PERI provides strong evidence for natural selection playing a fundamental role in the origin of species PERI is rarely demonstrated for well-established species drawn from different genera We detected PERI across two genera (Carpinus and Ostryopsis) in the family Betulaceae PERI can occur in different genera at different timescales and involve molecular signatures at similar pathways
Collapse
Affiliation(s)
- Zefu Wang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuanzhong Jiang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiaoyue Yang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Hao Bi
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jialiang Li
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xingxing Mao
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yazhen Ma
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Dafu Ru
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Cheng Zhang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Guoqian Hao
- Sichuan Tea College, Yibin University, Yibin 644000, China
| | - Jing Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | | | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Corresponding author
| |
Collapse
|
85
|
Zhang M, Lv S, Wang Y, Wang S, Chen C, Wang C, Wang Y, Zhang H, Ji W. Fine mapping and distribution analysis of hybrid necrosis genes Ne1 and Ne2 in wheat in China. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1177-1189. [PMID: 35088104 DOI: 10.1007/s00122-021-04023-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Flanking markers useful for identifying hybrid necrosis alleles were identified by fine mapping Ne1 and Ne2 and the distribution of the two necrosis genes was investigated in Chinese elite wheat varieties. Hybrid necrosis of wheat is caused by the interaction of two dominant complementary genes Ne1 and Ne2 present separately in normal parents and is regarded as a barrier to gene transfer in wheat breeding. However, the necrosis alleles still occur at a high frequency in modern wheat varieties. In this study, we constructed two high-density genetic maps of Ne1 and Ne2 in winter wheat. In these cultivars, Ne1 was found to be located in a span interval of 0.50 centimorgan (cM) on chromosome 5BL delimited by markers Nwu_5B_4137 and Nwu_5B_5114, while Ne2 co-segregated with markers Lseq102 and TC67744 on 2BS. Statistical analysis confirmed that the dosage effect of Ne1 and Ne2 also existed in moderate and severe hybrid necrosis systems, and the symptoms of necrosis can also be affected by the genetic background. Furthermore, we clarified the discrete distribution and proportion of the Ne1 and Ne2 in the 10 China's agro-ecological production zones. We concluded that 26.2% and 33.2% of the 1364 cultivars (lines) were genotyped with Ne1Ne1ne2ne2 and ne1ne1Ne2Ne2, respectively and introduced modern cultivars should directly affect the frequencies of necrosis genes in modern Chinese cultivars (lines), especially that of Ne2. Taking investigations in spring wheat together, we proposed that hybrid necrosis alleles could positively affect breeding owing to their linked excellent genes such as Lr13. Additionally, based on the pedigrees and hybridization tests, we speculated that the Ne1 and Ne2 in winter wheat may directly originate from wild emmer and introduced cultivars or hexaploid triticale, respectively.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shikai Lv
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, 810008, Qinghai, China
| | - Yanzhen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Siwen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Chunhuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
86
|
Yu H, Sui X, Sun M, Yin X, Deane DC. Relative Importance of Ecological, Evolutionary and Anthropogenic Pressures on Extinction Risk in Chinese Angiosperm Genera. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.844509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
China has many threatened plant species, which are exposed to environmental degradation and other anthropogenic pressures. We assessed support for potential extinction pathways in Chinese angiosperm genera and quantified possible threats to phylogenetic diversity. We compiled a database and phylogeny for 27,409 Chinese angiosperm species in 2,453 genera. For each genus, we used the International Union for Conservation of Nature (IUCN) Red List classifications to quantify extinction risk and calculated predictors corresponding to their ecological, evolutionary characteristics and exposure to human pressures. We first tested for phylogenetic clustering in extinction risk among genera and then tested support for direct and indirect causal pathways involving our predictors using piecewise structural equation models. Finally, we quantified the potential loss of phylogenetic diversity under different extinction scenarios. We found that extinction risk is non-randomly distributed among Chinese angiosperm genera, with the proportion of threatened species higher in range-limited and species-rich taxa. Habitat loss had a significant positive effect on threatened species richness. Phylogenetic diversity loss under scenarios: the decreasing habitat loss and relative extinction rate were high. Thus, genera would suffer from high extinction risk, if species in these genera occupy similar niches and overlapping ranges. While diversification or speciation via niche divergence might increase range-limited species vulnerable to stochastic extinction, this could reduce extinction risk of the whole clade by expanding its range and climatic niche tolerance. Endemic genera with higher extinction rates, less climatic niche divergence, and lower range segregation are especially vulnerable to anthropogenic disturbances.
Collapse
|
87
|
Liang S, Zhang X, Wei R. Ecological adaptation shaped the genetic structure of homoploid ferns against strong dispersal capacity. Mol Ecol 2022; 31:2679-2697. [DOI: 10.1111/mec.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Si‐Qi Liang
- State Key Laboratory of Systematic and Evolutionary Botany Institute of Botany The Chinese Academy of Sciences Beijing 100093 China
- University of Chinese Academy of Sciences College of Life Sciences Beijing 100049 China
| | - Xian‐Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany Institute of Botany The Chinese Academy of Sciences Beijing 100093 China
| | - Ran Wei
- State Key Laboratory of Systematic and Evolutionary Botany Institute of Botany The Chinese Academy of Sciences Beijing 100093 China
| |
Collapse
|
88
|
Blaxter M, Archibald JM, Childers AK, Coddington JA, Crandall KA, Di Palma F, Durbin R, Edwards SV, Graves JAM, Hackett KJ, Hall N, Jarvis ED, Johnson RN, Karlsson EK, Kress WJ, Kuraku S, Lawniczak MKN, Lindblad-Toh K, Lopez JV, Moran NA, Robinson GE, Ryder OA, Shapiro B, Soltis PS, Warnow T, Zhang G, Lewin HA. Why sequence all eukaryotes? Proc Natl Acad Sci U S A 2022; 119:e2115636118. [PMID: 35042801 PMCID: PMC8795522 DOI: 10.1073/pnas.2115636118] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes-about 2 million species-should be sequenced to high quality to produce a digital library of life on Earth, beginning with strategic phylogenetic, ecological, and high-impact priorities. Here we discuss why we should sequence all eukaryotic species, not just a representative few scattered across the many branches of the tree of life. We suggest that many questions of evolutionary and ecological significance will only be addressable when whole-genome data representing divergences at all of the branchings in the tree of life or all species in natural ecosystems are available. We envisage that a genomic tree of life will foster understanding of the ongoing processes of speciation, adaptation, and organismal dependencies within entire ecosystems. These explorations will resolve long-standing problems in phylogenetics, evolution, ecology, conservation, agriculture, bioindustry, and medicine.
Collapse
Affiliation(s)
- Mark Blaxter
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom;
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada
| | - Anna K Childers
- Bee Research Laboratory, Agricultural Research Service, US Department of Agriculture (USDA), Beltsville, MD 20705
| | - Jonathan A Coddington
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
| | - Keith A Crandall
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, George Washington University, Washington, DC 20052
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC 20013
| | - Federica Di Palma
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Richard Durbin
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Jennifer A M Graves
- School of Life Sciences, La Trobe University, Bundoora, VIC 751 23, Australia
- University of Canberra, Bruce, ACT 2617, Australia
| | - Kevin J Hackett
- Crop Production and Protection, Office of National Programs, Agricultural Research Service, USDA, Beltsville, MD 20705
| | - Neil Hall
- Earlham Institute, Norwich, Norfolk NR4 7UZ, United Kingdom
| | - Erich D Jarvis
- Laboratory of the Neurogenetics of Language, The Rockefeller University, New York, NY 10065
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Rebecca N Johnson
- National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
| | - Elinor K Karlsson
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - W John Kress
- Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012
| | - Shigehiro Kuraku
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | | | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 751 23, Sweden
| | - Jose V Lopez
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004
- Guy Harvey Oceanographic Center, Dania Beach, FL 33004
| | - Nancy A Moran
- Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Oliver A Ryder
- Conservation Genetics, Division of Biology, San Diego Zoo Wildlife Alliance, Escondido, CA 92027
- Department of Evolution, Behavior and Ecology, University of California, San Diego, La Jolla, CA 92039
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611
- Biodiversity Institute, University of Florida, Gainesville, FL 32611
| | - Tandy Warnow
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61301
| | - Guojie Zhang
- Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
- China National Genebank, Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Harris A Lewin
- Department of Evolution and Ecology, College of Biological Sciences, University of California, Davis, CA 95616
- Department of Population Health and Reproduction, University of California, Davis, CA 95616
| |
Collapse
|
89
|
Hörandl E. Novel Approaches for Species Concepts and Delimitation in Polyploids and Hybrids. PLANTS (BASEL, SWITZERLAND) 2022; 11:204. [PMID: 35050093 PMCID: PMC8781807 DOI: 10.3390/plants11020204] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 05/08/2023]
Abstract
Hybridization and polyploidization are important processes for plant evolution. However, classification of hybrid or polyploid species has been notoriously difficult because of the complexity of processes and different evolutionary scenarios that do not fit with classical species concepts. Polyploid complexes are formed via combinations of allopolyploidy, autopolyploidy and homoploid hybridization with persisting sexual reproduction, resulting in many discrete lineages that have been classified as species. Polyploid complexes with facultative apomixis result in complicated net-work like clusters, or rarely in agamospecies. Various case studies illustrate the problems that apply to traditional species concepts to hybrids and polyploids. Conceptual progress can be made if lineage formation is accepted as an inevitable consequence of meiotic sex, which is established already in the first eukaryotes as a DNA restoration tool. The turnaround of the viewpoint that sex forms species as lineages helps to overcome traditional thinking of species as "units". Lineage formation and self-sustainability is the prerequisite for speciation and can also be applied to hybrids and polyploids. Species delimitation is aided by the improved recognition of lineages via various novel -omics methods, by understanding meiosis functions, and by recognizing functional phenotypes by considering morphological-physiological-ecological adaptations.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073 Göttingen, Germany
| |
Collapse
|
90
|
Zhang WP, Cao L, Lin XR, Ding YM, Liang Y, Zhang DY, Pang EL, Renner SS, Bai WN. Dead-End Hybridization in Walnut Trees Revealed by Large-Scale Genomic Sequence Data. Mol Biol Evol 2022; 39:msab308. [PMID: 34687315 PMCID: PMC8760940 DOI: 10.1093/molbev/msab308] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although hybridization plays a large role in speciation, some unknown fraction of hybrid individuals never reproduces, instead remaining as genetic dead-ends. We investigated a morphologically distinct and culturally important Chinese walnut, Juglans hopeiensis, suspected to have arisen from hybridization of Persian walnut (J. regia) with Asian butternuts (J. cathayensis, J. mandshurica, and hybrids between J. cathayensis and J. mandshurica). Based on 151 whole-genome sequences of the relevant taxa, we discovered that all J. hopeiensis individuals are first-generation hybrids, with the time for the onset of gene flow estimated as 370,000 years, implying both strong postzygotic barriers and the presence of J. regia in China by that time. Six inversion regions enriched for genes associated with pollen germination and pollen tube growth may be involved in the postzygotic barriers that prevent sexual reproduction in the hybrids. Despite its long-recurrent origination and distinct traits, J. hopeiensis does not appear on the way to speciation.
Collapse
Affiliation(s)
- Wei-Ping Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lei Cao
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xin-Rui Lin
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ya-Mei Ding
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yu Liang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Er-Li Pang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, MO, USA
| | - Wei-Ning Bai
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
91
|
Bozinovic G, Feng Z, Shea D, Oleksiak MF. Cardiac physiology and metabolic gene expression during late organogenesis among F. heteroclitus embryo families from crosses between pollution-sensitive and -resistant parents. BMC Ecol Evol 2022; 22:3. [PMID: 34996355 PMCID: PMC8739662 DOI: 10.1186/s12862-022-01959-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 01/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The teleost fish Fundulus heteroclitus inhabit estuaries heavily polluted with persistent and bioaccumulative chemicals. While embryos of parents from polluted sites are remarkably resistant to toxic sediment and develop normally, embryos of parents from relatively clean estuaries, when treated with polluted sediment extracts, are developmentally delayed, displaying deformities characteristic of pollution-induced embryotoxicity. To gain insight into parental effects on sensitive and resistant phenotypes during late organogenesis, we established sensitive, resistant, and crossed embryo families using five female and five male parents from relatively clean and predominantly PAH-polluted estuaries each, measured heart rates, and quantified individual embryo expression of 179 metabolic genes. RESULTS Pollution-induced embryotoxicity manifested as morphological deformities, significant developmental delays, and altered cardiac physiology was evident among sensitive embryos resulting from crosses between females and males from relatively clean estuaries. Significantly different heart rates among several geographically unrelated populations of sensitive, resistant, and crossed embryo families during late organogenesis and pre-hatching suggest site-specific adaptive cardiac physiology phenotypes relative to pollution exposure. Metabolic gene expression patterns (32 genes, 17.9%, at p < 0.05; 11 genes, 6.1%, at p < 0.01) among the embryo families indicate maternal pollutant deposition in the eggs and parental effects on gene expression and metabolic alterations. CONCLUSION Heart rate differences among sensitive, resistant, and crossed embryos is a reliable phenotype for further explorations of adaptive mechanisms. While metabolic gene expression patterns among embryo families are suggestive of parental effects on several differentially expressed genes, a definitive adaptive signature and metabolic cost of resistant phenotypes is unclear and shows unexpected sensitive-resistant crossed embryo expression profiles. Our study highlights physiological and metabolic gene expression differences during a critical embryonic stage among pollution sensitive, resistant, and crossed embryo families, which may contribute to underlying resistance mechanisms observed in natural F. heteroclitus populations living in heavily contaminated estuaries.
Collapse
Affiliation(s)
- Goran Bozinovic
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA.
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
- Division of Biological Sciences, University of California San Diego, San Diego, CA, USA.
| | - Zuying Feng
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
| | - Damian Shea
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Marjorie F Oleksiak
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| |
Collapse
|
92
|
Wong ELY, Hiscock SJ, Filatov DA. The Role of Interspecific Hybridisation in Adaptation and Speciation: Insights From Studies in Senecio. FRONTIERS IN PLANT SCIENCE 2022; 13:907363. [PMID: 35812981 PMCID: PMC9260247 DOI: 10.3389/fpls.2022.907363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/03/2022] [Indexed: 05/08/2023]
Abstract
Hybridisation is well documented in many species, especially plants. Although hybrid populations might be short-lived and do not evolve into new lineages, hybridisaiton could lead to evolutionary novelty, promoting adaptation and speciation. The genus Senecio (Asteraceae) has been actively used to unravel the role of hybridisation in adaptation and speciation. In this article, we first briefly describe the process of hybridisation and the state of hybridisation research over the years. We then discuss various roles of hybridisation in plant adaptation and speciation illustrated with examples from different Senecio species, but also mention other groups of organisms whenever necessary. In particular, we focus on the genomic and transcriptomic consequences of hybridisation, as well as the ecological and physiological aspects from the hybrids' point of view. Overall, this article aims to showcase the roles of hybridisation in speciation and adaptation, and the research potential of Senecio, which is part of the ecologically and economically important family, Asteraceae.
Collapse
Affiliation(s)
- Edgar L. Y. Wong
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- *Correspondence: Edgar L. Y. Wong,
| | - Simon J. Hiscock
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Oxford Botanic Garden and Arboretum, Oxford, United Kingdom
| | - Dmitry A. Filatov
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
93
|
Chen C, Zheng Z, Wu D, Tan L, Yang C, Liu S, Lu J, Cheng Y, Sha L, Wang Y, Kang H, Fan X, Zhou Y, Zhang C, Zhang H. Morphological, cytological, and molecular evidences for natural hybridization between Roegneria stricta and Roegneria turczaninovii (Triticeae: Poaceae). Ecol Evol 2022; 12:e8517. [PMID: 35136562 PMCID: PMC8809439 DOI: 10.1002/ece3.8517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 12/05/2022] Open
Abstract
Some plants with low fertility are morphologically intermediate between Roegneria stricta and Roegneria turczaninovii, and were suspected to be natural hybrids between these species. In this study, karyotype analysis showed that natural hybrids and their putative parents were tetraploids (2n = 4x = 28). Meiotic pairing in natural hybrids is more irregular than its putative parents. Results of genomic in situ hybridization and fluorescence in situ hybridization indicate that natural hybrids contain the same genome as their putative parents. The nuclear gene DNA meiotic recombinase 1 (DMC1) and the chloroplast gene rps16 of natural hybrids and their putative parents were analyzed for evidence of hybridization. The results from molecular data supported by morphology and cytology demonstrated that the plants represent natural hybrids between R. stricta and R. turczaninovii. The study is important for understanding species evolution in the genus since it demonstrates for the first time the existence of populations of natural homoploid hybrids in Roegneria. The study also reports for the first time that the composition of the genomic formula of R. turczaninovii is StY, confirming that the current taxonomic status is correct.
Collapse
Affiliation(s)
- Chen Chen
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Zilue Zheng
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Dandan Wu
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Lu Tan
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Cairong Yang
- College of Chemistry and Life SciencesChengdu Normal UniversityChengduChina
| | - Songqing Liu
- College of Chemistry and Life SciencesChengdu Normal UniversityChengduChina
| | - Jiale Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Lina Sha
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Yi Wang
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Houyang Kang
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Xing Fan
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Yonghong Zhou
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | | | - Haiqin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
| |
Collapse
|
94
|
Nesterov VN, Senator SA, Saxonov SV, Vasyukov VM, Bogdanova ES, Rozentsvet OA. Morphological, Ecological, Physiological, and Biochemical Features of Achillea × submicrantha Tzvelev (Asteraceae) Compared to Parental Species. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021060133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
95
|
Chromosome numbers and meiotic behavior in some species of Asteraceae from high altitudinal regions of Kashmir Himalayas. JOURNAL OF ASIA-PACIFIC BIODIVERSITY 2021. [DOI: 10.1016/j.japb.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
96
|
Dedukh D, Marta A, Janko K. Challenges and Costs of Asexuality: Variation in Premeiotic Genome Duplication in Gynogenetic Hybrids from Cobitis taenia Complex. Int J Mol Sci 2021; 22:ijms222212117. [PMID: 34830012 PMCID: PMC8622741 DOI: 10.3390/ijms222212117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
The transition from sexual reproduction to asexuality is often triggered by hybridization. The gametogenesis of many hybrid asexuals involves premeiotic genome endoreplication leading to bypass hybrid sterility and forming clonal gametes. However, it is still not clear when endoreplication occurs, how many gonial cells it affects and whether its rate differs among clonal lineages. Here, we investigated meiotic and premeiotic cells of diploid and triploid hybrids of spined loaches (Cypriniformes: Cobitis) that reproduce by gynogenesis. We found that in naturally and experimentally produced F1 hybrids asexuality is achieved by genome endoreplication, which occurs in gonocytes just before entering meiosis or, rarely, one or a few divisions before meiosis. However, genome endoreplication was observed only in a minor fraction of the hybrid's gonocytes, while the vast majority of gonocytes were unable to duplicate their genomes and consequently could not proceed beyond pachytene due to defects in bivalent formation. We also noted that the rate of endoreplication was significantly higher among gonocytes of hybrids from natural clones than of experimentally produced F1 hybrids. Thus, asexuality and hybrid sterility are intimately related phenomena and the transition from sexual reproduction to asexuality must overcome significant problems with genome incompatibilities with a possible impact on reproductive potential.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the CAS, Rumburská 89, 277 21 Liběchov, Czech Republic;
- Correspondence: (D.D.); (K.J.)
| | - Anatolie Marta
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the CAS, Rumburská 89, 277 21 Liběchov, Czech Republic;
- Department of Zoology, Faculty of Science, Charles University in Prague, 128 00 Prague, Czech Republic
- Institute of Zoology, MD-2028, Academiei 1, 2001 Chisinau, Moldova
| | - Karel Janko
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the CAS, Rumburská 89, 277 21 Liběchov, Czech Republic;
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
- Correspondence: (D.D.); (K.J.)
| |
Collapse
|
97
|
Morgan C, White MA, Franklin FCH, Zickler D, Kleckner N, Bomblies K. Evolution of crossover interference enables stable autopolyploidy by ensuring pairwise partner connections in Arabidopsis arenosa. Curr Biol 2021; 31:4713-4726.e4. [PMID: 34480856 PMCID: PMC8585506 DOI: 10.1016/j.cub.2021.08.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/23/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022]
Abstract
Polyploidy is a major driver of evolutionary change. Autopolyploids, which arise by within-species whole-genome duplication, carry multiple nearly identical copies of each chromosome. This presents an existential challenge to sexual reproduction. Meiotic chromosome segregation requires formation of DNA crossovers (COs) between two homologous chromosomes. How can this outcome be achieved when more than two essentially equivalent partners are available? We addressed this question by comparing diploid, neo-autotetraploid, and established autotetraploid Arabidopsis arenosa using new approaches for analysis of meiotic CO patterns in polyploids. We discover that crossover interference, the classical process responsible for patterning of COs in diploid meiosis, is defective in the neo-autotetraploid but robust in the established autotetraploid. The presented findings suggest that, initially, diploid-like interference fails to act effectively on multivalent pairing and accompanying pre-CO recombination interactions and that stable autopolyploid meiosis can emerge by evolution of a “supercharged” interference process, which can now act effectively on such configurations. Thus, the basic interference mechanism responsible for simplifying CO patterns along chromosomes in diploid meiosis has evolved the capability to also simplify CO patterns among chromosomes in autopolyploids, thereby promoting bivalent formation. We further show that evolution of stable autotetraploidy preadapts meiosis to higher ploidy, which in turn has interesting mechanistic and evolutionary implications. In a neo-autotetraploid, aberrant crossover interference confers aberrant meiosis In a stable autotetraploid, regular crossover interference confers regular meiosis Crossover and synaptic patterns point to evolution of “supercharged” interference Accordingly, evolution of stable autotetraploidy preadapts to higher ploidies
Collapse
Affiliation(s)
- Chris Morgan
- John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Martin A White
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | | | - Denise Zickler
- University Paris-Saclay, Commissariat à l'Energie Atomique at aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| | | |
Collapse
|
98
|
Wang W, Chen L, Wang X, Duan J, Flynn RD, Wang Y, Clark CB, Sun L, Zhang D, Wang DR, Kessler SA, Ma J. A transposon-mediated reciprocal translocation promotes environmental adaptation but compromises domesticability of wild soybeans. THE NEW PHYTOLOGIST 2021; 232:1765-1777. [PMID: 34363228 DOI: 10.1111/nph.17671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Large structural variations frequently occur in higher plants; however, the impact of such variations on plant diversification, adaptation and domestication remains elusive. Here, we mapped and characterised a reciprocal chromosomal translocation in soybeans and assessed its effects on diversification and adaptation of wild (Glycine soja) and semiwild (Glycine gracilis) soybeans, and domestication of cultivated soybean (Glycine max), by tracing the distribution of the translocation in the USDA Soybean Germplasm Collection and population genetics analysis. We demonstrate that the translocation occurred through CACTA transposon-mediated chromosomal breakage in wild soybean c. 0.34 Ma and is responsible for semisterility in translocation heterozygotes and reduces their reproductive fitness. The translocation has differentiated Continental (i.e. China and Russia) populations from Maritime (i.e. Korea and Japan) populations of G. soja and predominately adapted to cold and dry climates. Further analysis revealed that the divergence of G. max from G. soja predates the translocation event and that G. gracilis is an evolutionary intermediate between G. soja and G. max. Our results highlight the effects of a chromosome rearrangement on the processes leading to plant divergence and adaptation, and provides evidence that suggests G. gracilis, rather than G. soja, as the ancestor of cultivated soybean.
Collapse
Affiliation(s)
- Weidong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Liyang Chen
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Jingbo Duan
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Rachel D Flynn
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Ying Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
- College of Plant Science, Jilin University, Changchun, Jilin, 130062, China
| | - Chancelor B Clark
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Lianjun Sun
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Dajian Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Diane R Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sharon A Kessler
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
99
|
Mouse models of aneuploidy to understand chromosome disorders. Mamm Genome 2021; 33:157-168. [PMID: 34719726 PMCID: PMC8913467 DOI: 10.1007/s00335-021-09930-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/20/2021] [Indexed: 12/04/2022]
Abstract
An organism or cell carrying a number of chromosomes that is not a multiple of the haploid count is in a state of aneuploidy. This condition results in significant changes in the level of expression of genes that are gained or lost from the aneuploid chromosome(s) and most cases in humans are not compatible with life. However, a few aneuploidies can lead to live births, typically associated with deleterious phenotypes. We do not understand why phenotypes arise from aneuploid syndromes in humans. Animal models have the potential to provide great insight, but less than a handful of mouse models of aneuploidy have been made, and no ideal system exists in which to study the effects of aneuploidy per se versus those of raised gene dosage. Here, we give an overview of human aneuploid syndromes, the effects on physiology of having an altered number of chromosomes and we present the currently available mouse models of aneuploidy, focusing on models of trisomy 21 (which causes Down syndrome) because this is the most common, and therefore, the most studied autosomal aneuploidy. Finally, we discuss the potential role of carrying an extra chromosome on aneuploid phenotypes, independent of changes in gene dosage, and methods by which this could be investigated further.
Collapse
|
100
|
Morgan EJ, Čertner M, Lučanová M, Deniz U, Kubíková K, Venon A, Kovářík O, Lafon Placette C, Kolář F. Disentangling the components of triploid block and its fitness consequences in natural diploid-tetraploid contact zones of Arabidopsis arenosa. THE NEW PHYTOLOGIST 2021; 232:1449-1462. [PMID: 33768528 DOI: 10.1111/nph.17357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Hybrid seed inviability (HSI) is an important mechanism of reproductive isolation and speciation. HSI varies in strength among populations of diploid species but it remains to be tested whether similar processes affect natural variation in HSI within ploidy-variable species (triploid block). Here we used extensive endosperm, seed and F1 -hybrid phenotyping to explore HSI variation within a diploid-autotetraploid species. By leveraging 12 population pairs from three ploidy contact zones, we tested for the effect of interploidy crossing direction (parent of origin), ploidy divergence and spatial arrangement in shaping reproductive barriers in a naturally relevant context. We detected strong parent-of-origin effects on endosperm development, F1 germination and survival, which was also reflected in the rates of triploid formation in the field. Endosperm cellularization failure was least severe and F1 -hybrid performance was slightly better in the primary contact zone, with genetically closest diploid and tetraploid lineages. We demonstrated overall strong parent-of-origin effects on HSI in a ploidy variable species, which translate to fitness effects and contribute to interploidy reproductive isolation in a natural context. Subtle intraspecific variation in these traits suggests the fitness consequences of HSI are predominantly a constitutive property of the species regardless of the evolutionary background of its populations.
Collapse
Affiliation(s)
- Emma J Morgan
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic
| | - Martin Čertner
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| | - Magdalena Lučanová
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, CZ-370 05, Czech Republic
| | - Utku Deniz
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic
| | - Kateřina Kubíková
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic
| | - Anthony Venon
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic
| | - Oleg Kovářík
- Datamole Inc., Vítězné Náměstí 2, Prague, CZ-160 00, Czech Republic
| | - Clément Lafon Placette
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| |
Collapse
|