51
|
Russo BC, Duncan JK, Wiscovitch AL, Hachey AC, Goldberg MB. Activation of Shigella flexneri type 3 secretion requires a host-induced conformational change to the translocon pore. PLoS Pathog 2019; 15:e1007928. [PMID: 31725799 PMCID: PMC6879154 DOI: 10.1371/journal.ppat.1007928] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/26/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Type 3 secretion systems (T3SSs) are conserved bacterial nanomachines that inject virulence proteins (effectors) into eukaryotic cells during infection. Due to their ability to inject heterologous proteins into human cells, these systems are being developed as therapeutic delivery devices. The T3SS assembles a translocon pore in the plasma membrane and then docks onto the pore. Docking activates effector secretion through the pore and into the host cytosol. Here, using Shigella flexneri, a model pathogen for the study of type 3 secretion, we determined the molecular mechanisms by which host intermediate filaments trigger docking and enable effector secretion. We show that the interaction of intermediate filaments with the translocon pore protein IpaC changed the pore's conformation in a manner that was required for docking. Intermediate filaments repositioned residues of the Shigella pore protein IpaC that are located on the surface of the pore and in the pore channel. Restricting these conformational changes blocked docking in an intermediate filament-dependent manner. These data demonstrate that a host-induced conformational change to the pore enables T3SS docking and effector secretion, providing new mechanistic insight into the regulation of type 3 secretion.
Collapse
Affiliation(s)
- Brian C. Russo
- Center for Bacterial Pathogenesis, Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeffrey K. Duncan
- Center for Bacterial Pathogenesis, Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Alexandra L. Wiscovitch
- Center for Bacterial Pathogenesis, Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Research Scholar Initiative, The Graduate School of Arts and Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Austin C. Hachey
- Center for Bacterial Pathogenesis, Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Marcia B. Goldberg
- Center for Bacterial Pathogenesis, Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
52
|
Tachiyama S, Chang Y, Muthuramalingam M, Hu B, Barta ML, Picking WL, Liu J, Picking WD. The cytoplasmic domain of MxiG interacts with MxiK and directs assembly of the sorting platform in the Shigella type III secretion system. J Biol Chem 2019; 294:19184-19196. [PMID: 31699894 DOI: 10.1074/jbc.ra119.009125] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/25/2019] [Indexed: 01/23/2023] Open
Abstract
Many Gram-negative bacteria use type III secretion systems (T3SSs) to inject virulence effector proteins into eukaryotic cells. The T3SS apparatus (T3SA) is structurally conserved among diverse bacterial pathogens and consists of a cytoplasmic sorting platform, an envelope-spanning basal body, and an extracellular needle with tip complex. The sorting platform is essential for effector recognition and powering secretion. Studies using bacterial "minicells" have revealed an unprecedented level of structural detail of the sorting platform; however, many of the structure-function relationships within this complex remain enigmatic. Here, we report on improved cryo-electron tomographic approaches to enhance the resolution of the Shigella T3SA sorting platform (at ≤2 nm resolution) done in concert with biochemical and genetic methods to define the sorting platform interactome and interactions with the T3SA inner membrane ring (IR). We observed that the sorting platform consists of "pods" with 6-fold symmetry that interact with the Spa47 ATPase via radial extensions comprising MxiN. Most importantly, MxiK maintained an interaction with the IR via specific interactions with the cytoplasmic domain of the IR protein MxiG (MxiGC), which is a noncanonical forkhead-associated domain, and MxiK has an elongated structure that interacts with the IR via MxiGC T4 lysozyme-mediated insertional mutagenesis of MxiK revealed its orientation within the sorting platform and enabled disruption of interactions with its binding partners, which abolished sorting platform assembly. Finally, a comparison with the homologous interactions in the Salmonella T3SS sorting platform revealed clear differences in their IR-sorting platform interfaces that have possible mechanistic implications.
Collapse
Affiliation(s)
- Shoichi Tachiyama
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Yunjie Chang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06516.,Microbial Sciences Institute, Yale University, West Haven, Connecticut 06516
| | | | - Bo Hu
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030
| | - Michael L Barta
- Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas 66047
| | - Wendy L Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06516 .,Microbial Sciences Institute, Yale University, West Haven, Connecticut 06516
| | - William D Picking
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045 .,Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| |
Collapse
|
53
|
Milne-Davies B, Helbig C, Wimmi S, Cheng DWC, Paczia N, Diepold A. Life After Secretion- Yersinia enterocolitica Rapidly Toggles Effector Secretion and Can Resume Cell Division in Response to Changing External Conditions. Front Microbiol 2019; 10:2128. [PMID: 31572334 PMCID: PMC6753693 DOI: 10.3389/fmicb.2019.02128] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Many pathogenic bacteria use the type III secretion system (T3SS) injectisome to manipulate host cells by injecting virulence-promoting effector proteins into the host cytosol. The T3SS is activated upon host cell contact, and its activation is accompanied by an arrest of cell division; hence, many species maintain a T3SS-inactive sibling population to propagate efficiently within the host. The enteric pathogen Yersinia enterocolitica utilizes the T3SS to prevent phagocytosis and inhibit inflammatory responses. Unlike other species, almost all Y. enterocolitica are T3SS-positive at 37°C, which raises the question, how these bacteria are able to propagate within the host, that is, when and how they stop secretion and restart cell division after a burst of secretion. Using a fast and quantitative in vitro secretion assay, we have examined the initiation and termination of type III secretion. We found that effector secretion begins immediately once the activating signal is present, and instantly stops when this signal is removed. Following effector secretion, the bacteria resume division within minutes after being introduced to a non-secreting environment, and the same bacteria are able to re-initiate effector secretion at later time points. Our results indicate that Y. enterocolitica use their type III secretion system to promote their individual survival when necessary, and are able to quickly switch their behavior toward replication afterwards, possibly gaining an advantage during infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
54
|
Molecular Organization of Soluble Type III Secretion System Sorting Platform Complexes. J Mol Biol 2019; 431:3787-3803. [DOI: 10.1016/j.jmb.2019.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/11/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022]
|
55
|
Singh N, Wagner S. Investigating the assembly of the bacterial type III secretion system injectisome by in vivo photocrosslinking. Int J Med Microbiol 2019; 309:151331. [DOI: 10.1016/j.ijmm.2019.151331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
|
56
|
Bernal I, Römermann J, Flacht L, Lunelli M, Uetrecht C, Kolbe M. Structural analysis of ligand-bound states of the Salmonella type III secretion system ATPase InvC. Protein Sci 2019; 28:1888-1901. [PMID: 31393998 PMCID: PMC6739812 DOI: 10.1002/pro.3704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022]
Abstract
Translocation of virulence effector proteins through the type III secretion system (T3SS) is essential for the virulence of many medically relevant Gram‐negative bacteria. The T3SS ATPases are conserved components that specifically recognize chaperone–effector complexes and energize effector secretion through the system. It is thought that functional T3SS ATPases assemble into a cylindrical structure maintained by their N‐terminal domains. Using size‐exclusion chromatography coupled to multi‐angle light scattering and native mass spectrometry, we show that in the absence of the N‐terminal oligomerization domain the Salmonella T3SS ATPase InvC can form monomers and dimers in solution. We also present for the first time a 2.05 å resolution crystal structure of InvC lacking the oligomerization domain (InvCΔ79) and map the amino acids suggested for ATPase intersubunit interaction, binding to other T3SS proteins and chaperone–effector recognition. Furthermore, we validate the InvC ATP‐binding site by co‐crystallization of InvCΔ79 with ATPγS (2.65 å) and ADP (2.80 å). Upon ATP‐analogue recognition, these structures reveal remodeling of the ATP‐binding site and conformational changes of two loops located outside of the catalytic site. Both loops face the central pore of the predicted InvC cylinder and are essential for the function of the T3SS ATPase. Our results present a fine functional and structural correlation of InvC and provide further details of the homo‐oligomerization process and ATP‐dependent conformational changes underlying the T3SS ATPase activity. PDB Code(s): 6RAE, 6RAD and 6SDX
Collapse
Affiliation(s)
- Ivonne Bernal
- Department of Structural Infection Biology, Center for Structural Systems Biology (CSSB), Helmholtz-Center for Infection Research (HZI), Hamburg, Germany
| | - Jonas Römermann
- Department of Structural Infection Biology, Center for Structural Systems Biology (CSSB), Helmholtz-Center for Infection Research (HZI), Hamburg, Germany
| | - Lara Flacht
- Department of Structural Infection Biology, Center for Structural Systems Biology (CSSB), Helmholtz-Center for Infection Research (HZI), Hamburg, Germany.,Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Michele Lunelli
- Department of Structural Infection Biology, Center for Structural Systems Biology (CSSB), Helmholtz-Center for Infection Research (HZI), Hamburg, Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.,European XFEL GmbH, Schenefeld, Germany
| | - Michael Kolbe
- Department of Structural Infection Biology, Center for Structural Systems Biology (CSSB), Helmholtz-Center for Infection Research (HZI), Hamburg, Germany.,MIN-Faculty University Hamburg, Hamburg, Germany
| |
Collapse
|
57
|
Lou L, Zhang P, Piao R, Wang Y. Salmonella Pathogenicity Island 1 (SPI-1) and Its Complex Regulatory Network. Front Cell Infect Microbiol 2019; 9:270. [PMID: 31428589 PMCID: PMC6689963 DOI: 10.3389/fcimb.2019.00270] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/12/2019] [Indexed: 11/30/2022] Open
Abstract
Salmonella species can infect a diverse range of birds, reptiles, and mammals, including humans. The type III protein secretion system (T3SS) encoded by Salmonella pathogenicity island 1 (SPI-1) delivers effector proteins required for intestinal invasion and the production of enteritis. The T3SS is regarded as the most important virulence factor of Salmonella. SPI-1 encodes transcription factors that regulate the expression of some virulence factors of Salmonella, while other transcription factors encoded outside SPI-1 participate in the expression of SPI-1-encoded genes. SPI-1 genes are responsible for the invasion of host cells, regulation of the host immune response, e.g., the host inflammatory response, immune cell recruitment and apoptosis, and biofilm formation. The regulatory network of SPI-1 is very complex and crucial. Here, we review the function, effectors, and regulation of SPI-1 genes and their contribution to the pathogenicity of Salmonella.
Collapse
Affiliation(s)
- Lixin Lou
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Peng Zhang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rongli Piao
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Gastroenterology, First Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
58
|
Abstract
Type III protein secretion systems (T3SSs), or injectisomes, are multiprotein nanomachines present in many Gram-negative bacteria that have a sustained long-standing close relationship with a eukaryotic host. These secretion systems have evolved to modulate host cellular functions through the activity of the effector proteins they deliver. To reach their destination, T3SS effectors must cross the multibarrier bacterial envelope and the eukaryotic cell membrane. Passage through the bacterial envelope is mediated by the needle complex, a central component of T3SSs that expands both the inner and outer membranes of Gram-negative bacteria. A set of T3SS secreted proteins, known as translocators, form a channel in the eukaryotic plasma membrane through which the effector proteins are delivered to reach the host cell cytosol. While the effector proteins are tailored to the specific lifestyle of the bacterium that encodes them, the injectisome is conserved among the different T3SSs. The central role of T3SSs in pathogenesis and their high degree of conservation make them a desirable target for the development of antimicrobial therapies against several important bacterial pathogens.
Collapse
|
59
|
Guo EZ, Desrosiers DC, Zalesak J, Tolchard J, Berbon M, Habenstein B, Marlovits T, Loquet A, Galán JE. A polymorphic helix of a Salmonella needle protein relays signals defining distinct steps in type III secretion. PLoS Biol 2019; 17:e3000351. [PMID: 31260457 PMCID: PMC6625726 DOI: 10.1371/journal.pbio.3000351] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/12/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Type III protein-secretion machines are essential for the interactions of many pathogenic or symbiotic bacterial species with their respective eukaryotic hosts. The core component of these machines is the injectisome, a multiprotein complex that mediates the selection of substrates, their passage through the bacterial envelope, and ultimately their delivery into eukaryotic target cells. The injectisome is composed of a large cytoplasmic complex or sorting platform, a multiring base embedded in the bacterial envelope, and a needle-like filament that protrudes several nanometers from the bacterial surface and is capped at its distal end by the tip complex. A characteristic feature of these machines is that their activity is stimulated by contact with target host cells. The sensing of target cells, thought to be mediated by the distal tip of the needle filament, generates an activating signal that must be transduced to the secretion machine by the needle filament. Here, through a multidisciplinary approach, including solid-state NMR (SSNMR) and cryo electron microscopy (cryo-EM) analyses, we have identified critical residues of the needle filament protein of a Salmonella Typhimurium type III secretion system that are involved in the regulation of the activity of the secretion machine. We found that mutations in the needle filament protein result in various specific phenotypes associated with different steps in the type III secretion process. More specifically, these studies reveal an important role for a polymorphic helix of the needle filament protein and the residues that line the lumen of its central channel in the control of type III secretion.
Collapse
Affiliation(s)
- Emily Z. Guo
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Daniel C. Desrosiers
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jan Zalesak
- Institute of Molecular Biotechnology (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - James Tolchard
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN-CNRS Université de Bordeaux, Pessac, France
| | - Mélanie Berbon
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN-CNRS Université de Bordeaux, Pessac, France
| | - Birgit Habenstein
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN-CNRS Université de Bordeaux, Pessac, France
| | - Thomas Marlovits
- Institute of Molecular Biotechnology (IMBA), Vienna Biocenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
- Center for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf (UKE) and German Electron Synchrotron Centre (DESY), Hamburg, Germany
| | - Antoine Loquet
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN-CNRS Université de Bordeaux, Pessac, France
| | - Jorge E. Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
60
|
The Structure of an Injectisome Export Gate Demonstrates Conservation of Architecture in the Core Export Gate between Flagellar and Virulence Type III Secretion Systems. mBio 2019; 10:mBio.00818-19. [PMID: 31239376 PMCID: PMC6593402 DOI: 10.1128/mbio.00818-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Export of proteins through type III secretion systems (T3SS) is critical for motility and virulence of many major bacterial pathogens. Proteins are exported through a genetically defined export gate complex consisting of three proteins. We have recently shown at 4.2 Å that the flagellar complex of these three putative membrane proteins (FliPQR in flagellar systems, SctRST in virulence systems) assembles into an extramembrane helical assembly that likely seeds correct assembly of the rod. Here we present the structure of an equivalent complex from the Shigella virulence system at 3.5 Å by cryo-electron microscopy. This higher-resolution structure yields a more precise description of the structure and confirms the prediction of structural conservation in this core complex. Analysis of particle heterogeneity also suggests how the SctS/FliQ subunits sequentially assemble in the complex.IMPORTANCE Although predicted on the basis of sequence conservation, the work presented here formally demonstrates that all classes of type III secretion systems, flagellar or virulence, share the same architecture at the level of the core structures. This absolute conservation of the unusual extramembrane structure of the core export gate complex now allows work to move to focusing on both mechanistic studies of type III but also on fundamental studies of how such a complex is assembled.
Collapse
|
61
|
Slater SL, Sågfors AM, Pollard DJ, Ruano-Gallego D, Frankel G. The Type III Secretion System of Pathogenic Escherichia coli. Curr Top Microbiol Immunol 2019; 416:51-72. [PMID: 30088147 DOI: 10.1007/82_2018_116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infection with enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC), enteroinvasive E. coli (EIEC) and Shigella relies on the elaboration of a type III secretion system (T3SS). Few strains also encode a second T3SS, named ETT2. Through the integration of coordinated intracellular and extracellular cues, the modular T3SS is assembled within the bacterial cell wall, as well as the plasma membrane of the host cell. As such, the T3SS serves as a conduit, allowing the chaperone-regulated translocation of effector proteins directly into the host cytosol to subvert eukaryotic cell processes. Recent technological advances revealed high structural resolution of the T3SS apparatus and how it could be exploited to treat enteric disease. This chapter summarises the current knowledge of the structure and function of the E. coli T3SSs.
Collapse
Affiliation(s)
- Sabrina L Slater
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Agnes M Sågfors
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Dominic J Pollard
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - David Ruano-Gallego
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.
| |
Collapse
|
62
|
Ohgita T, Saito H. Biophysical Mechanism of Protein Export by Bacterial Type III Secretion System. Chem Pharm Bull (Tokyo) 2019; 67:341-344. [PMID: 30930438 DOI: 10.1248/cpb.c18-00947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type III secretion system (T3SS) is a protein injection nano-machine consisting of syringe and needle-like structure spanning bacterial inner and outer membranes. Bacteria insert the tip of T3SS needle to host cell membranes, and deliver effector proteins directly into host cells via T3SS to prime the host cell environment for infection. Thus inhibition of T3SS would be a potent strategy for suppressing bacterial infection. We previously demonstrated that T3SS needle rotates by proton-motive force (PMF) with the same mechanism as two evolutionally related rotary protein motors, flagellum and ATP synthase (FASEB J., 27, 2013, Ohgita et al.). Inhibition of needle rotation resulted in suppression of effector secretion, indicating the requirement of needle rotation for effector export. Simulation analysis of protein export by the T3SS needle suggests the importance of a hydrophobic helical groove formed by the conserved aromatic residue in the needle components. Based on these results, we have proposed a novel model of protein export by the T3SS needle, in which effector proteins are exported by PMF-dependent needle rotation oppositely to the hydrophobic helical groove in the needle. Quantitative examinations of the correlation between the speeds of T3SS rotation and the amount of effector export support this model. In this review, we summarize our current understanding of T3SS, and discuss our novel model of the protein export mechanism of T3SS based on the needle rotation.
Collapse
Affiliation(s)
- Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University
| |
Collapse
|
63
|
Chen X, Yu C, Li S, Li X, Liu Q. Integration Host Factor Is Essential for Biofilm Formation, Extracellular Enzyme, Zeamine Production, and Virulence in Dickeya zeae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:325-335. [PMID: 30226395 DOI: 10.1094/mpmi-04-18-0096-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dickeya zeae is a globally important pathogenic bacterium that infects many crops, including rice, maize, potato, and banana. Bacterial foot rot of rice caused by D. zeae is one of the most important bacterial diseases of rice in China and some Southeast Asian countries. To investigate the functions of integration host factor (IHF) in D. zeae, we generated knockout mutants of ihfA and ihfB. Phenotypic assays showed that both the ΔihfA and ΔihfB strains had greatly reduced mobility, biofilm formation, extracellular protease, and pectinase activities, and toxin production compared with the wild-type strain. In addition, the mutants did not inhibit the germination of rice seeds, failed to cause soft rot in potatoes and a hypersensitive response in tobacco, and were avirulent in rice. Quantitative reverse-transcription polymerase chain reaction analysis demonstrated that IHF positively regulates the expression of zmsA, hrpN/Y, pelA/B/C, pehX, celZ, prtG, fliC, and DGC (diguanylate cyclase). Electrophoretic mobility shift assays further confirmed that IhfA binds to the promoter region of the DGC gene and may alter the levels of a second bacterial messenger, c-di-GMP, to regulate the pathogenicity or other physiological functions of D. zeae. In summary, IHF is an important integrated regulator of pathogenicity in D. zeae.
Collapse
Affiliation(s)
- Xuefeng Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Chengpeng Yu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shuangchun Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xinwei Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qiongguang Liu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
64
|
Abstract
Many bacteria have evolved specialized nanomachines with the remarkable ability to inject multiple bacterially encoded effector proteins into eukaryotic or prokaryotic cells. Known as type III, type IV, and type VI secretion systems, these machines play a central role in the pathogenic or symbiotic interactions between multiple bacteria and their eukaryotic hosts, or in the establishment of bacterial communities in a diversity of environments. Here we focus on recent progress elucidating the structure and assembly pathways of these machines. As many of the interactions shaped by these machines are of medical importance, they provide an opportunity to develop novel therapeutic approaches to combat important human diseases.
Collapse
Affiliation(s)
- Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA.
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, Birkbeck, Malet Street, London WC1E 7HX, UK; Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
65
|
Lara-Tejero M, Qin Z, Hu B, Butan C, Liu J, Galán JE. Role of SpaO in the assembly of the sorting platform of a Salmonella type III secretion system. PLoS Pathog 2019; 15:e1007565. [PMID: 30668610 PMCID: PMC6358110 DOI: 10.1371/journal.ppat.1007565] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/01/2019] [Accepted: 01/04/2019] [Indexed: 11/23/2022] Open
Abstract
Many bacterial pathogens and symbionts use type III secretion machines to interact with their hosts by injecting bacterial effector proteins into host target cells. A central component of this complex machine is the cytoplasmic sorting platform, which orchestrates the engagement and preparation of type III secreted proteins for their delivery to the needle complex, the substructure of the type III secretion system that mediates their passage through the bacterial envelope. The sorting platform is thought to be a dynamic structure whose components alternate between assembled and disassembled states. However, how this dynamic behavior is controlled is not understood. In S. Typhimurium a core component of the sorting platform is SpaO, which is synthesized in two tandemly translated products, a full length (SpaOL) and a short form (SpaOS) composed of the C-terminal 101 amino acids. Here we show that in the absence of SpaOS the assembly of the needle substructure of the needle complex, which requires a functional sorting platform, can still occur although with reduced efficiency. Consistent with this observation, in the absence of SpaOS secretion of effectors proteins, which requires a fully assembled injectisome, is only slightly compromised. In the absence of SpaOS we detect a significant number of fully assembled needle complexes that are not associated with fully assembled sorting platforms. We also find that although binding of SpaOL to SpaOS can be detected in the absence of other components of the sorting platform, this interaction is not detected in the context of a fully assembled sorting platform suggesting that SpaOS may not be a core structural component of the sorting platform. Consistent with this observation we find that SpaOS and OrgB, a component of the sorting platform, share the same binding surface on SpaOL. We conclude that SpaOS regulates the assembly of the sorting platform during type III secretion. Many pathogenic and symbiotic gram-negative bacteria utilize type III secretion systems to deliver bacterial proteins, known as effectors, directly into the host cell cytosol to promote their survival and the colonization of tissues. Type III secretion systems or injectisomes are large, multiprotein complexes composed of several substructures: the needle complex, a multiring structure with a protruding needle-like appendage anchored in the bacterial envelope; the export apparatus, a set of membrane proteins that form a gate in the inner-membrane for the passage of effector proteins; and the sorting platform, a large cytosolic complex that delivers the effectors to the needle complex in an orderly fashion. In this study, we characterize SpaO, the core component of the Salmonella Typhimurium sorting platform. The spaO gene encodes two simultaneously translated products, a full length protein (SpaOL) and a shorter product (SpaOS) encompassing the last 101 aa of the full length product. Here we find that in the absence of SpaOS, the sorting platform still forms and functions although slightly less efficiently than in the wild-type situation, and therefore we conclude that SpaOS is most likely not a central structural component of the sorting platform and may play a regulatory role during the cycles of assembly and disassembly that the sorting platform undergoes. In addition, we identify residues critical for the interaction between SpaOL and OrgB and SpaOL and SpaOS and conclude that those interactions might be mutually exclusive further supporting the idea that SpaOS may not be a core structural component of the sorting platform. N-terminal residues in SpaOL are shown to be critical for the formation of the sorting platform. Our findings provide insights into the sorting platform substructure, a highly conserved element in type III secretion systems and may contribute to the development of novel therapeutic avenues to fight infection.
Collapse
Affiliation(s)
- Maria Lara-Tejero
- Department of Microbial Pathogenesis Yale University School of Medicine, New haven, CT, United States of America
- * E-mail:
| | - Zhuan Qin
- Department of Microbial Pathogenesis Yale University School of Medicine, New haven, CT, United States of America
- Microbial Science Institute, Yale University School of Medicine, New haven, CT, United States of America
| | - Bo Hu
- Department of Microbiology and Molecular Genetics McGovern Medical School, The University of Texas Health Science Center at Houston, TX, United States of America
- Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX, United States of America
| | - Carmen Butan
- Department of Microbial Pathogenesis Yale University School of Medicine, New haven, CT, United States of America
| | - Jun Liu
- Department of Microbial Pathogenesis Yale University School of Medicine, New haven, CT, United States of America
- Microbial Science Institute, Yale University School of Medicine, New haven, CT, United States of America
| | - Jorge E. Galán
- Department of Microbial Pathogenesis Yale University School of Medicine, New haven, CT, United States of America
| |
Collapse
|
66
|
Takaya A, Takeda H, Tashiro S, Kawashima H, Yamamoto T. Chaperone-mediated secretion switching from early to middle substrates in the type III secretion system encoded by Salmonella pathogenicity island 2. J Biol Chem 2019; 294:3783-3793. [PMID: 30651351 DOI: 10.1074/jbc.ra118.005072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/07/2019] [Indexed: 11/06/2022] Open
Abstract
The bacterial type III secretion system (T3SS) delivers virulence proteins, called effectors, into eukaryotic cells. T3SS comprises a transmembrane secretion apparatus and a complex network of specialized chaperones that target protein substrates to this secretion apparatus. However, the regulation of secretion switching from early (needle and inner rod) to middle (tip/filament and translocators) substrates is incompletely understood. Here, we investigated chaperone-mediated secretion switching from early to middle substrates in the T3SS encoded by Salmonella pathogenicity island 2 (SPI2), essential for systemic infection. Our findings revealed that the protein encoded by ssaH regulates the secretion of an inner rod and early substrate, SsaI. Structural modeling revealed that SsaH is structurally similar to class III chaperones, known to associate with proteins in various pathogenic bacteria. The SPI2 protein SsaE was identified as a class V chaperone homolog and partner of SsaH. A pulldown analysis disclosed that SsaH and SsaE form a heterodimer, which interacted with another early substrate, the needle protein SsaG. Moreover, SsaE also helped stabilize SsaH and a middle substrate, SseB. We also found that SsaE regulates cellular SsaH levels to translocate the early substrates SsaG and SsaI and then promotes the translocation of SseB by stabilizing it. In summary, our results indicate that the class III chaperone SsaH facilitates SsaI secretion, and a heterodimer of SsaH and the type V chaperone SsaE then switches secretion to SsaG. This is the first report of a chaperone system that regulates both early and middle substrates during substrate switching for T3SS assembly.
Collapse
Affiliation(s)
- Akiko Takaya
- From the Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Hikari Takeda
- From the Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Shogo Tashiro
- From the Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Hiroto Kawashima
- From the Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Tomoko Yamamoto
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| |
Collapse
|
67
|
Diepold A. Assembly and Post-assembly Turnover and Dynamics in the Type III Secretion System. Curr Top Microbiol Immunol 2019; 427:35-66. [PMID: 31218503 DOI: 10.1007/82_2019_164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The type III secretion system (T3SS) is one of the largest transmembrane complexes in bacteria, comprising several intricately linked and embedded substructures. The assembly of this nanomachine is a hierarchical process which is regulated and controlled by internal and external cues at several critical points. Recently, it has become obvious that the assembly of the T3SS is not a unidirectional and deterministic process, but that parts of the T3SS constantly exchange or rearrange. This article aims to give an overview on the assembly and post-assembly dynamics of the T3SS, with a focus on emerging general concepts and adaptations of the general assembly pathway.
Collapse
Affiliation(s)
- Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany.
| |
Collapse
|
68
|
|
69
|
Molecular Organization and Assembly of the Export Apparatus of Flagellar Type III Secretion Systems. Curr Top Microbiol Immunol 2019; 427:91-107. [PMID: 31172377 DOI: 10.1007/82_2019_170] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The bacterial flagellum is a supramolecular motility machine consisting of the basal body, the hook, and the filament. For construction of the flagellum beyond the cellular membranes, a type III protein export apparatus uses ATP and proton-motive force (PMF) across the cytoplasmic membrane as the energy sources to transport flagellar component proteins from the cytoplasm to the distal end of the growing flagellar structure. The protein export apparatus consists of a PMF-driven transmembrane export gate complex and a cytoplasmic ATPase complex. In addition, the basal body C ring acts as a sorting platform for the cytoplasmic ATPase complex that efficiently brings export substrates and type III export chaperone-substrate complexes from the cytoplasm to the export gate complex. In this book chapter, we will summarize our current understanding of molecular organization and assembly of the flagellar type III protein export apparatus.
Collapse
|
70
|
Picking WD, Barta ML. The Tip Complex: From Host Cell Sensing to Translocon Formation. Curr Top Microbiol Immunol 2019; 427:173-199. [PMID: 31218507 DOI: 10.1007/82_2019_171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Type III secretion systems are used by some Gram-negative bacteria to inject effector proteins into targeted eukaryotic cells for the benefit of the bacterium. The type III secretion injectisome is a complex nanomachine comprised of four main substructures including a cytoplasmic sorting platform, an envelope-spanning basal body, an extracellular needle and an exposed needle tip complex. Upon contact with a host cell, secretion is induced, resulting in the formation of a translocon pore in the host membrane. Translocon formation completes the conduit needed for effector secretion into the host cell. Control of type III secretion occurs in response to environmental signals, with the final signal being host cell contact. Secretion control occurs primarily at two sites-the cytoplasmic sorting platform, which determines secretion hierarchy, and the needle tip complex, which is critical for sensing and responding to environmental signals. The best-characterized injectisomes are those from Yersinia, Shigella and Salmonella species where there is a wealth of information on the tip complex and the two translocator proteins. Of these systems, the best characterized from a secretion regulation standpoint is Shigella. In the Shigella system, the tip complex and the first secreted translocon both contribute to secretion control and, thus, both are considered components of the tip complex. In this review, all three of these type III secretion systems are described with discussion focused on the structure and formation of the injectisome tip complex and what is known of the transition from nascent tip complex to assembled translocon pore.
Collapse
Affiliation(s)
- William D Picking
- Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, 66047, KS, USA.
| | - Michael L Barta
- Higuchi Biosciences, 2099 Constant Ave., Lawrence, 66047, KS, USA.,Catalent Pharma Solutions, 10245 Hickman Mills Drive, Kansas City, 64137, MO, USA
| |
Collapse
|
71
|
Bamyaci S, Nordfelth R, Forsberg Å. Identification of specific sequence motif of YopN of Yersinia pseudotuberculosis required for systemic infection. Virulence 2018; 10:10-25. [PMID: 30488778 PMCID: PMC6298760 DOI: 10.1080/21505594.2018.1551709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Type III secretion systems (T3SSs) are tightly regulated key virulence mechanisms shared by many Gram-negative pathogens. YopN, one of the substrates, is also crucial in regulation of expression, secretion and activation of the T3SS of pathogenic Yersinia species. Interestingly, YopN itself is also targeted into host cells but so far no activity or direct role for YopN inside host cells has been described. Recently, we were able show that the central region of YopN is required for efficient translocation of YopH and YopE into host cells. This was also shown to impact the ability of Yersinia to block phagocytosis. One difficulty in studying YopN is to generate mutants that are not impaired in regulation of the T3SS. In this study we extended our previous work and were able to generate specific mutants within the central region of YopN. These mutants were predicted to be crucial for formation of a putative coiled-coil domain (CCD). Similar to the previously described deletion mutant of the central region, these mutants were all impaired in translocation of YopE and YopH. Interestingly, these YopN variants were not translocated into host cells. Importantly, when these mutants were introduced in cis on the virulence plasmid, they retained full regulatory function of T3SS expression and secretion. This allowed us to evaluate one of the mutants, yopNGAGA, in the systemic mouse infection model. Using in vivo imaging technology we could verify that the mutant was also attenuated in vivo and highly impaired to establish systemic infection.
Collapse
Affiliation(s)
- Sarp Bamyaci
- a Department of Molecular Biology, Umeå Centre for Microbial Research UCMR , Umeå University , Umeå , Sweden.,b Department of Molecular Biology, Laboratory for Molecular Infection Medicine MIMS , Umeå University , Umeå , Sweden
| | - Roland Nordfelth
- a Department of Molecular Biology, Umeå Centre for Microbial Research UCMR , Umeå University , Umeå , Sweden.,b Department of Molecular Biology, Laboratory for Molecular Infection Medicine MIMS , Umeå University , Umeå , Sweden
| | - Åke Forsberg
- a Department of Molecular Biology, Umeå Centre for Microbial Research UCMR , Umeå University , Umeå , Sweden.,b Department of Molecular Biology, Laboratory for Molecular Infection Medicine MIMS , Umeå University , Umeå , Sweden
| |
Collapse
|
72
|
Park D, Lara-Tejero M, Waxham MN, Li W, Hu B, Galán JE, Liu J. Visualization of the type III secretion mediated Salmonella-host cell interface using cryo-electron tomography. eLife 2018; 7:39514. [PMID: 30281019 PMCID: PMC6175578 DOI: 10.7554/elife.39514] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/24/2018] [Indexed: 02/01/2023] Open
Abstract
Many important gram-negative bacterial pathogens use highly sophisticated type III protein secretion systems (T3SSs) to establish complex host-pathogen interactions. Bacterial-host cell contact triggers the activation of the T3SS and the subsequent insertion of a translocon pore into the target cell membrane, which serves as a conduit for the passage of effector proteins. Therefore the initial interaction between T3SS-bearing bacteria and host cells is the critical step in the deployment of the protein secretion machine, yet this process remains poorly understood. Here, we use high-throughput cryo-electron tomography (cryo-ET) to visualize the T3SS-mediated Salmonella-host cell interface. Our analysis reveals the intact translocon at an unprecedented level of resolution, its deployment in the host cell membrane, and the establishment of an intimate association between the bacteria and the target cells, which is essential for effector translocation. Our studies provide critical data supporting the long postulated direct injection model for effector translocation.
Collapse
Affiliation(s)
- Donghyun Park
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States.,Microbial Sciences Institute, Yale University School of Medicine, New Haven, United States
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Texas, United States
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States.,Microbial Sciences Institute, Yale University School of Medicine, New Haven, United States
| | - Bo Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Texas, United States.,Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Texas, United States
| | - Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States.,Microbial Sciences Institute, Yale University School of Medicine, New Haven, United States.,Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Texas, United States
| |
Collapse
|
73
|
SsaV Interacts with SsaL to Control the Translocon-to-Effector Switch in the Salmonella SPI-2 Type Three Secretion System. mBio 2018; 9:mBio.01149-18. [PMID: 30279280 PMCID: PMC6168863 DOI: 10.1128/mbio.01149-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Salmonella Typhimurium is an intracellular pathogen that uses the SPI-2 type III secretion system to deliver virulence proteins across the vacuole membrane surrounding intracellular bacteria. This involves a tightly regulated hierarchy of protein secretion controlled by two molecular switches. We found that SPI-2-encoded proteins SsaP and SsaU are involved in the first but not the second secretion switch. We identify key amino acids of the inner membrane protein SsaV that are required to interact with the so-called gatekeeper protein SsaL and show that the dissociation of SsaV-SsaL causes the second switch, leading to delivery of effector proteins. Our results provide insights into the molecular events controlling virulence-associated type III secretion and suggest a broader model describing how the process is regulated. Nonflagellar type III secretion systems (nf T3SSs) form a cell surface needle-like structure and an associated translocon that deliver bacterial effector proteins into eukaryotic host cells. This involves a tightly regulated hierarchy of protein secretion. A switch involving SctP and SctU stops secretion of the needle protein. The gatekeeper protein SctW is required for secretion of translocon proteins and controls a second switch to start effector secretion. Salmonella enterica serovar Typhimurium encodes two T3SSs in Salmonella pathogenicity island 1 (SPI-1) and SPI-2. The acidic vacuole containing intracellular bacteria stimulates assembly of the SPI-2 T3SS and its translocon. Sensing the nearly neutral host cytosolic pH is required for effector translocation. Here, we investigated the involvement of SPI-2-encoded proteins SsaP (SctP), SsaU (SctU), SsaV (SctV), and SsaL (SctW) in regulation of secretion. We found that SsaP and SsaU are involved in the first but not the second secretion switch. A random-mutagenesis screen identified amino acids of SsaV that regulate translocon and effector secretion. Single substitutions in subdomain 4 of SsaV or InvA (SPI-1-encoded SctV) phenocopied mutations of their corresponding gatekeepers with respect to translocon and effector protein secretion and host cell interactions. SsaL interacted with SsaV in bacteria exposed to low ambient pH but not after the pH was raised to 7.2. We propose that SsaP and SsaU enable the apparatus to become competent for a secretion switch and facilitate the SsaL-SsaV interaction. This mediates secretion of translocon proteins until neutral pH is sensed, which causes their dissociation, resulting in arrest of translocon secretion and derepression of effector translocation.
Collapse
|
74
|
Wagner S, Grin I, Malmsheimer S, Singh N, Torres-Vargas CE, Westerhausen S. Bacterial type III secretion systems: a complex device for the delivery of bacterial effector proteins into eukaryotic host cells. FEMS Microbiol Lett 2018; 365:5068689. [PMID: 30107569 PMCID: PMC6140923 DOI: 10.1093/femsle/fny201] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
Virulence-associated type III secretion systems (T3SS) serve the injection of bacterial effector proteins into eukaryotic host cells. They are able to secrete a great diversity of substrate proteins in order to modulate host cell function, and have evolved to sense host cell contact and to inject their substrates through a translocon pore in the host cell membrane. T3SS substrates contain an N-terminal signal sequence and often a chaperone-binding domain for cognate T3SS chaperones. These signals guide the substrates to the machine where substrates are unfolded and handed over to the secretion channel formed by the transmembrane domains of the export apparatus components and by the needle filament. Secretion itself is driven by the proton motive force across the bacterial inner membrane. The needle filament measures 20-150 nm in length and is crowned by a needle tip that mediates host-cell sensing. Secretion through T3SS is a highly regulated process with early, intermediate and late substrates. A strict secretion hierarchy is required to build an injectisome capable of reaching, sensing and penetrating the host cell membrane, before host cell-acting effector proteins are deployed. Here, we review the recent progress on elucidating the assembly, structure and function of T3SS injectisomes.
Collapse
Affiliation(s)
- Samuel Wagner
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), partner-site Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Iwan Grin
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Silke Malmsheimer
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Nidhi Singh
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Claudia E Torres-Vargas
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Sibel Westerhausen
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| |
Collapse
|
75
|
Krampen L, Malmsheimer S, Grin I, Trunk T, Lührmann A, de Gier JW, Wagner S. Revealing the mechanisms of membrane protein export by virulence-associated bacterial secretion systems. Nat Commun 2018; 9:3467. [PMID: 30150748 PMCID: PMC6110835 DOI: 10.1038/s41467-018-05969-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/31/2018] [Indexed: 02/08/2023] Open
Abstract
Many bacteria export effector proteins fulfilling their function in membranes of a eukaryotic host. These effector membrane proteins appear to contain signals for two incompatible bacterial secretion pathways in the same protein: a specific export signal, as well as transmembrane segments that one would expect to mediate targeting to the bacterial inner membrane. Here, we show that the transmembrane segments of effector proteins of type III and type IV secretion systems indeed integrate in the membrane as required in the eukaryotic host, but that their hydrophobicity in most instances is just below the threshold required for mediating targeting to the bacterial inner membrane. Furthermore, we show that binding of type III secretion chaperones to both the effector’s chaperone-binding domain and adjacent hydrophobic transmembrane segments also prevents erroneous targeting. These results highlight the evolution of a fine discrimination between targeting pathways that is critical for the virulence of many bacterial pathogens. Many bacteria export effector proteins even when two incompatible signal sequences are present, one which would lead to export and the other to inner membrane targeting. Here the authors show that such proteins feature decreased hydrophobicity or cognate chaperone binding to prevent erroneous targeting.
Collapse
Affiliation(s)
- Lea Krampen
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Silke Malmsheimer
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Iwan Grin
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Thomas Trunk
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany.,Section for Genetics and Evolutionary Biology, University of Oslo, Blindernveien 31, 0371, Oslo, Norway
| | - Anja Lührmann
- Institute of Microbiology, University Hospital Erlangen, Wasserturmstr. 3-5, 91054, Erlangen, Germany
| | - Jan-Willem de Gier
- Center for Biomembrane Research, Stockholm University, Svante-Arrhenius väg 16, SE-106 91, Stockholm, Sweden
| | - Samuel Wagner
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany. .,German Center for Infection Research (DZIF), Partner-site Tübingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany.
| |
Collapse
|
76
|
YopN Is Required for Efficient Effector Translocation and Virulence in Yersinia pseudotuberculosis. Infect Immun 2018; 86:IAI.00957-17. [PMID: 29760214 DOI: 10.1128/iai.00957-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/05/2018] [Indexed: 11/20/2022] Open
Abstract
Type III secretion systems (T3SSs) are used by various Gram-negative pathogens to subvert the host defense by a host cell contact-dependent mechanism to secrete and translocate virulence effectors. While the effectors differ between pathogens and determine the pathogenic life style, the overall mechanism of secretion and translocation is conserved. T3SSs are regulated at multiple levels, and some secreted substrates have also been shown to function in regulation. In Yersinia, one of the substrates, YopN, has long been known to function in the host cell contact-dependent regulation of the T3SS. Prior to contact, through its interaction with TyeA, YopN blocks secretion. Upon cell contact, TyeA dissociates from YopN, which is secreted by the T3SS, resulting in the induction of the system. YopN has also been shown to be translocated into target cells by a T3SS-dependent mechanism. However, no intracellular function has yet been assigned to YopN. The regulatory role of YopN involves the N-terminal and C-terminal parts, while less is known about the role of the central region of YopN. Here, we constructed different in-frame deletion mutants within the central region. The deletion of amino acids 76 to 181 resulted in an unaltered regulation of Yop expression and secretion but triggered reduced YopE and YopH translocation within the first 30 min after infection. As a consequence, this deletion mutant lost its ability to block phagocytosis by macrophages. In conclusion, we were able to differentiate the function of YopN in translocation and virulence from its function in regulation.
Collapse
|
77
|
Kato J, Dey S, Soto JE, Butan C, Wilkinson MC, De Guzman RN, Galan JE. A protein secreted by the Salmonella type III secretion system controls needle filament assembly. eLife 2018; 7:e35886. [PMID: 30015613 PMCID: PMC6066329 DOI: 10.7554/elife.35886] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
Type III protein secretion systems (T3SS) are encoded by several pathogenic or symbiotic bacteria. The central component of this nanomachine is the needle complex. Here we show in a Salmonella Typhimurium T3SS that assembly of the needle filament of this structure requires OrgC, a protein encoded within the T3SS gene cluster. Absence of OrgC results in significantly reduced number of needle substructures but does not affect needle length. We show that OrgC is secreted by the T3SS and that exogenous addition of OrgC can complement a ∆orgC mutation. We also show that OrgC interacts with the needle filament subunit PrgI and accelerates its polymerization into filaments in vitro. The structure of OrgC shows a novel fold with a shared topology with a domain from flagellar capping proteins. These findings identify a novel component of T3SS and provide new insight into the assembly of the type III secretion machine.
Collapse
Affiliation(s)
- Junya Kato
- Department of Microbial PathogenesisYale University School of MedicineNew HavenUnited States
| | - Supratim Dey
- Department of Molecular BiosciencesUniversity of KansasLawrenceUnited States
| | - Jose E Soto
- Department of Microbial PathogenesisYale University School of MedicineNew HavenUnited States
| | - Carmen Butan
- Department of Microbial PathogenesisYale University School of MedicineNew HavenUnited States
| | - Mason C Wilkinson
- Department of Molecular BiosciencesUniversity of KansasLawrenceUnited States
| | - Roberto N De Guzman
- Department of Molecular BiosciencesUniversity of KansasLawrenceUnited States
| | - Jorge E Galan
- Department of Microbial PathogenesisYale University School of MedicineNew HavenUnited States
| |
Collapse
|
78
|
High-Throughput Screening of Type III Secretion Determinants Reveals a Major Chaperone-Independent Pathway. mBio 2018; 9:mBio.01050-18. [PMID: 29921672 PMCID: PMC6016238 DOI: 10.1128/mbio.01050-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Numerous Gram-negative bacterial pathogens utilize type III secretion systems (T3SSs) to inject tens of effector proteins directly into the cytosol of host cells. Through interactions with cognate chaperones, type III effectors are defined and recruited to the sorting platform, a cytoplasmic component of these membrane-embedded nanomachines. However, notably, a comprehensive review of the literature reveals that the secretion of most type III effectors has not yet been linked to a chaperone, raising questions regarding the existence of unknown chaperones as well as the universality of chaperones in effector secretion. Here, we describe the development of the first high-throughput type III secretion (T3S) assay, a semiautomated solid-plate-based assay, which enables the side-by-side comparison of secretion of over 20 Shigella effectors under a multitude of conditions. Strikingly, we found that the majority of Shigella effectors are secreted at equivalent levels by wild-type and variants of Shigella that no longer encode one or all known Shigella T3S effector chaperones. In addition, we found that Shigella effectors are efficiently secreted from a laboratory strain of Escherichia coli expressing the core Shigella type III secretion apparatus (T3SA) but no other Shigella-specific proteins. Furthermore, we observed that the sequences necessary and sufficient to define chaperone-dependent and -independent effectors are fundamentally different. Together, these findings support the existence of a major, previously unrecognized, noncanonical chaperone-independent secretion pathway that is likely common to many T3SSs. Many bacterial pathogens use specialized nanomachines, including type III secretion systems, to directly inject virulence proteins (effectors) into host cells. Here, we present the first extensive analysis of chaperone dependence in the process of type III effector secretion, providing strong evidence for the existence of a previously unrecognized chaperone-independent pathway. This noncanonical pathway is likely common to many bacteria, as an extensive review of the literature reveals that the secretion of multiple type III effectors has not yet been knowingly linked to a chaperone. While additional studies will be required to discern the molecular details of this pathway, its prevalence suggests that it can likely serve as a new target for the development of antimicrobial agents.
Collapse
|
79
|
Runte CS, Jain U, Getz LJ, Secord S, Kuwae A, Abe A, LeBlanc JJ, Stadnyk AW, Kaper JB, Hansen AM, Thomas NA. Tandem tyrosine phosphosites in the Enteropathogenic Escherichia coli chaperone CesT are required for differential type III effector translocation and virulence. Mol Microbiol 2018; 108:536-550. [PMID: 29509331 DOI: 10.1111/mmi.13948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2018] [Indexed: 11/29/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) use a type 3 secretion system (T3SS) for injection of effectors into host cells and intestinal colonization. Here, we demonstrate that the multicargo chaperone CesT has two strictly conserved tyrosine phosphosites, Y152 and Y153 that regulate differential effector secretion in EPEC. Conservative substitution of both tyrosine residues to phenylalanine strongly attenuated EPEC type 3 effector injection into host cells, and limited Tir effector mediated intimate adherence during infection. EPEC expressing a CesT Y152F variant were deficient for NleA effector expression and exhibited significantly reduced translocation of NleA into host cells during infection. Other effectors were observed to be dependent on CesT Y152 for maximal translocation efficiency. Unexpectedly, EPEC expressing a CesT Y153F variant exhibited significantly enhanced effector translocation of many CesT-interacting effectors, further implicating phosphosites Y152 and Y153 in CesT functionality. A mouse infection model of intestinal disease using Citrobacter rodentium revealed that CesT tyrosine substitution variants displayed delayed colonization and were more rapidly cleared from the intestine. These data demonstrate genetically separable functions for tandem tyrosine phosphosites within CesT. Therefore, CesT via its C-terminal tyrosine phosphosites, has relevant roles beyond typical type III secretion chaperones that interact and stabilize effector proteins.
Collapse
Affiliation(s)
- Cameron S Runte
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Umang Jain
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Landon J Getz
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sabrina Secord
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Asaomi Kuwae
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Akio Abe
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Jason J LeBlanc
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Medicine, Division of Infectious Diseases, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew W Stadnyk
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - James B Kaper
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anne-Marie Hansen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nikhil A Thomas
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Medicine, Division of Infectious Diseases, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
80
|
Hu M, Zhao W, Li H, Gu J, Yan Q, Zhou X, Pan Z, Cui G, Jiao X. Immunization with recombinant Salmonella expressing SspH2-EscI protects mice against wild type Salmonella infection. BMC Vet Res 2018. [PMID: 29523140 PMCID: PMC5845362 DOI: 10.1186/s12917-018-1404-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Enhancing caspase-1 activation in macrophages is helpful for the clearance of intracellular bacteria in mice. Our previous studies have shown that EscI, an inner rod protein of type III system in E. coli can enhance caspase-1 activation. The purpose of this study was to further analyze the prospect of EscI in the vaccine design. Results A recombinant Salmonella expressing SspH2-EscI fusion protein using the promotor of Salmonella effector SspH2, X4550(pYA3334-P-SspH2-EscI), was constructed. A control recombinant Salmonella expressing SspH2 only X4550(pYA3334-P-SspH2) was also constructed. In the early stage of in vitro infection of mouse peritoneal macrophages, X4550(pYA3334-P-SspH2-EscI) could significantly (P < 0.05) enhance intracellular caspase-1 activation and pyroptotic cell death of macrophages, when compared with X4550(pYA3334-P-SspH2). Except for the intracellular pH value, the levels of reactive oxygen species, intracellular concentration of calcium ions, nitric oxide and mitochondrial membrane potential in macrophages were not significantly different between the cells infected with X4550(pYA3334-P-SspH2-EscI) and those infected with X4550(pYA3334-P-SspH2). Besides, only lower inflammatory cytokines secretion was induced by X4550(pYA3334-P-SspH2-EscI) than X4550(pYA3334-P-SspH2). After intravenous immunization of mice (1 × 106 cfu/mouse), the colonization of X4550(pYA3334-P-SspH2-EscI) in mice was significantly limited at one week post immunization (wpi), when compared with X4550(pYA3334-P-SspH2) (P < 0.05). The population of activated CD8+T lymphocytes in mouse spleens induced by X4550(pYA3334-P-SspH2-EscI) was lower than that induced by X4550(pYA3334-P-SspH2) at 2–3 wpi, and the ratio of CD4+T cells to CD8+T cells decreased. The blood coagulation assay indicated that no significant difference was found between X4550(pYA3334-P-SspH2-EscI) and uninfected control, while X4550(pYA3334-P-SspH2) could induce the quick coagulation. Notably, immunization of X4550(pYA3334-P-SspH2-EscI) could limit the colonization of challenged Salmonella strains in the early stage of infection and provide more effective protection. Conclusion The activation of caspase-1 in macrophages by EscI can be used in the design of live attenuated Salmonella vaccine candidate.
Collapse
Affiliation(s)
- Maozhi Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Weixin Zhao
- College of Tourism & Cuisine (College of Food Science and Engineering), Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Hongying Li
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Jie Gu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Qiuxiang Yan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaohui Zhou
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, 06269-3089, USA
| | - Zhiming Pan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Guiyou Cui
- College of Tourism & Cuisine (College of Food Science and Engineering), Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xinan Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|
81
|
Castiblanco LF, Triplett LR, Sundin GW. Regulation of Effector Delivery by Type III Secretion Chaperone Proteins in Erwinia amylovora. Front Microbiol 2018; 9:146. [PMID: 29472907 PMCID: PMC5809446 DOI: 10.3389/fmicb.2018.00146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/23/2018] [Indexed: 11/16/2022] Open
Abstract
Type III secretion (TTS) chaperones are critical for the delivery of many effector proteins from Gram-negative bacterial pathogens into host cells, functioning in the stabilization and hierarchical delivery of the effectors to the type III secretion system (TTSS). The plant pathogen Erwinia amylovora secretes at least four TTS effector proteins: DspE, Eop1, Eop3, and Eop4. DspE specifically interacts with the TTS chaperone protein DspF, which stabilizes the effector protein in the cytoplasm and promotes its efficient translocation through the TTSS. However, the role of E. amylovora chaperones in regulating the delivery of other secreted effectors is unknown. In this study, we identified functional interactions between the effector proteins DspE, Eop1, and Eop3 with the TTS chaperones DspF, Esc1 and Esc3 in yeast. Using site-directed mutagenesis, secretion, and translocation assays, we demonstrated that the three TTS chaperones have additive roles for the secretion and translocation of DspE into plant cells whereas DspF negatively affects the translocation of Eop1 and Eop3. Collectively, these results indicate that TTS chaperone proteins exhibit a cooperative behavior to orchestrate the effector secretion and translocation dynamics in E. amylovora.
Collapse
Affiliation(s)
- Luisa F Castiblanco
- Department of Plant, Soil and Microbial Sciences, Center for Microbial Pathogenesis, Michigan State University, East Lansing, MI, United States
| | - Lindsay R Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, Center for Microbial Pathogenesis, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
82
|
Bai F, Li Z, Umezawa A, Terada N, Jin S. Bacterial type III secretion system as a protein delivery tool for a broad range of biomedical applications. Biotechnol Adv 2018; 36:482-493. [PMID: 29409784 DOI: 10.1016/j.biotechadv.2018.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/08/2018] [Accepted: 01/30/2018] [Indexed: 12/16/2022]
Abstract
A protein delivery tool based on bacterial type III secretion system (T3SS) has been broadly applied in biomedical researches. In this review, we summarize various applications of the T3SS-mediate protein delivery which enables translocation of proteins directly into mammalian cells without protein purification. Some of the remarkable advancements include delivery of antigens for therapeutic vaccines, nucleases for genome editing, transcription factors for cellular reprogramming and stem cells differentiation, and signaling molecules for post-translational proteomics studies. With continued improvement of the T3SS-mediated protein delivery tools, even wider application of the technology is anticipated.
Collapse
Affiliation(s)
- Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhenpeng Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Naohiro Terada
- Department of Pathology College of Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Shouguang Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
83
|
Büttner D. Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol Rev 2018; 40:894-937. [PMID: 28201715 PMCID: PMC5091034 DOI: 10.1093/femsre/fuw026] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/03/2016] [Indexed: 01/30/2023] Open
Abstract
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed.
Collapse
Affiliation(s)
- Daniela Büttner
- Genetics Department, Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
84
|
Rocha JM, Richardson CJ, Zhang M, Darch CM, Cai E, Diepold A, Gahlmann A. Single-molecule tracking in liveYersinia enterocoliticareveals distinct cytosolic complexes of injectisome subunits. Integr Biol (Camb) 2018; 10:502-515. [DOI: 10.1039/c8ib00075a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Single-molecule tracking of bound (blue trajectories) and diffusive (red trajectories) injectisome subunits reveals the formation of distinct cytosolic complexes.
Collapse
Affiliation(s)
| | | | - Mingxing Zhang
- Department of Chemistry, University of Virginia
- Charlottesville
- USA
| | | | - Eugene Cai
- Department of Chemistry, University of Virginia
- Charlottesville
- USA
| | - Andreas Diepold
- Department of Ecophysiology
- Max Planck Institute for Terrestrial Microbiology
- Marburg
- Germany
| | - Andreas Gahlmann
- Department of Chemistry, University of Virginia
- Charlottesville
- USA
- Department of Molecular Physiology & Biological Physics, University of Virginia School of Medicine
- Charlottesville
| |
Collapse
|
85
|
El Qaidi S, Wu M, Zhu C, Hardwidge PR. Salmonella, E. coli, and Citrobacter Type III Secretion System Effector Proteins that Alter Host Innate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1111:205-218. [PMID: 30411307 DOI: 10.1007/5584_2018_289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bacteria deliver virulence proteins termed 'effectors' to counteract host innate immunity. Protein-protein interactions within the host cell ultimately subvert the generation of an inflammatory response to the infecting pathogen. Here we briefly describe a subset of T3SS effectors produced by enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli (EPEC), Citrobacter rodentium, and Salmonella enterica that inhibit innate immune pathways. These effectors are interesting for structural and mechanistic reasons, as well as for their potential utility in being engineered to treat human autoimmune disorders associated with perturbations in NF-κB signaling.
Collapse
Affiliation(s)
- Samir El Qaidi
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Miaomiao Wu
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Congrui Zhu
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
86
|
Furukawa M, Goji N, Janzen TW, Thomas MC, Ogunremi D, Blais B, Misawa N, Amoako KK. Rapid detection and serovar identification of common Salmonella enterica serovars in Canada using a new pyrosequencing assay. Can J Microbiol 2017; 64:75-86. [PMID: 29088546 DOI: 10.1139/cjm-2017-0496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Serotyping of Salmonella enterica subsp. enterica is a critical step for foodborne salmonellosis investigation. To identify Salmonella enterica subsp. enterica serovars, we have developed a new assay based on a triplex polymerase chain reaction (PCR) with pyrosequencing for amplicon confirmation and phylogenetic discrimination of strains. The top 54 most prevalent serovars of S. enterica in Canada were examined with a total of 23 single-nucleotide polymorphisms (SNPs) and (or) single-nucleotide variations (SNVs) located on 3 genes (fliD, sopE2, and spaO). Seven of the most common serovars, Newport, Typhi, Javiana, Infantis, Thompson, Heidelberg, and Enteritidis, were successfully distinguished from the other serovars based on their unique SNP-SNV combinations. The remaining serovars, including Typhimurium, ssp I:4,[5],12:i:-, and Saintpaul, were further divided into 47 subgroups that demonstrate the relatedness to phylogenetic classifications of each serovar. This pyrosequencing assay is not only cost-effective, rapid, and user-friendly, but also provides phylogenetic information by analyzing 23 selected SNPs. With the added layer of confidence in the PCR results and the accuracy and speed of pyrosequencing, this novel method would benefit the food industry and provides a tool for rapid outbreak investigation through quick detection and identification of common S. enterica serovars in Canada.
Collapse
Affiliation(s)
- Maika Furukawa
- a Canadian Food Inspection Agency (CFIA) National Centres for Animal Disease, Lethbridge Laboratory, P.O. Box 640, Township Road 9-1, Lethbridge, AB T1J 3Z4, Canada.,b Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Noriko Goji
- a Canadian Food Inspection Agency (CFIA) National Centres for Animal Disease, Lethbridge Laboratory, P.O. Box 640, Township Road 9-1, Lethbridge, AB T1J 3Z4, Canada
| | - Timothy W Janzen
- a Canadian Food Inspection Agency (CFIA) National Centres for Animal Disease, Lethbridge Laboratory, P.O. Box 640, Township Road 9-1, Lethbridge, AB T1J 3Z4, Canada
| | - Matthew C Thomas
- a Canadian Food Inspection Agency (CFIA) National Centres for Animal Disease, Lethbridge Laboratory, P.O. Box 640, Township Road 9-1, Lethbridge, AB T1J 3Z4, Canada
| | - Dele Ogunremi
- c Canadian Food Inspection Agency (CFIA) Ontario Laboratory Network, 3851 Fallowfield Road, Ottawa, ON K2H 8P9, Canada
| | - Burton Blais
- d Canadian Food Inspection Agency (CFIA) Ontario Laboratory Network, Building 22, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Naoaki Misawa
- b Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan.,e Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Kingsley K Amoako
- a Canadian Food Inspection Agency (CFIA) National Centres for Animal Disease, Lethbridge Laboratory, P.O. Box 640, Township Road 9-1, Lethbridge, AB T1J 3Z4, Canada
| |
Collapse
|
87
|
A dynamic and adaptive network of cytosolic interactions governs protein export by the T3SS injectisome. Nat Commun 2017; 8:15940. [PMID: 28653671 PMCID: PMC5490264 DOI: 10.1038/ncomms15940] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/15/2017] [Indexed: 12/03/2022] Open
Abstract
Many bacteria use a type III secretion system (T3SS) to inject effector proteins into host cells. Selection and export of the effectors is controlled by a set of soluble proteins at the cytosolic interface of the membrane spanning type III secretion ‘injectisome’. Combining fluorescence microscopy, biochemical interaction studies and fluorescence correlation spectroscopy, we show that in live Yersinia enterocolitica bacteria these soluble proteins form complexes both at the injectisome and in the cytosol. Binding to the injectisome stabilizes these cytosolic complexes, whereas the free cytosolic complexes, which include the type III secretion ATPase, constitute a highly dynamic and adaptive network. The extracellular calcium concentration, which triggers activation of the T3SS, directly influences the cytosolic complexes, possibly through the essential component SctK/YscK, revealing a potential mechanism involved in the regulation of type III secretion. Bacterial type III secretion systems (T3SS) play important roles in pathogenesis. Here, Diepold et al. show the dynamic nature of complexes formed of essential T3SS components in live bacteria, and that extracellular calcium concentrations influence these cytosolic complexes likely via SctK/YscK.
Collapse
|
88
|
In Situ Molecular Architecture of the Salmonella Type III Secretion Machine. Cell 2017; 168:1065-1074.e10. [PMID: 28283062 DOI: 10.1016/j.cell.2017.02.022] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/07/2017] [Accepted: 02/08/2017] [Indexed: 11/21/2022]
Abstract
Type III protein secretion systems have specifically evolved to deliver bacterially encoded proteins into target eukaryotic cells. The core elements of this multi-protein machine are the envelope-associated needle complex, the inner membrane export apparatus, and a large cytoplasmic sorting platform. Here, we report a high-resolution in situ structure of the Salmonella Typhimurium type III secretion machine obtained by high-throughput cryo-electron tomography and sub-tomogram averaging. Through molecular modeling and comparative analysis of machines assembled with protein-tagged components or from different deletion mutants, we determined the molecular architecture of the secretion machine in situ and localized its structural components. We also show that docking of the sorting platform results in significant conformational changes in the needle complex to provide the symmetry adaptation required for the assembly of the entire secretion machine. These studies provide major insight into the structure and assembly of a broadly distributed protein secretion machine.
Collapse
|
89
|
Visualization and characterization of individual type III protein secretion machines in live bacteria. Proc Natl Acad Sci U S A 2017; 114:6098-6103. [PMID: 28533372 PMCID: PMC5468683 DOI: 10.1073/pnas.1705823114] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Type III protein secretion machines have evolved to deliver bacterially encoded effector proteins into eukaryotic cells. Although electron microscopy has provided a detailed view of these machines in isolation or fixed samples, little is known about their organization in live bacteria. Here we report the visualization and characterization of the Salmonella type III secretion machine in live bacteria by 2D and 3D single-molecule switching superresolution microscopy. This approach provided access to transient components of this machine, which previously could not be analyzed. We determined the subcellular distribution of individual machines, the stoichiometry of the different components of this machine in situ, and the spatial distribution of the substrates of this machine before secretion. Furthermore, by visualizing this machine in Salmonella mutants we obtained major insights into the machine's assembly. This study bridges a major resolution gap in the visualization of this nanomachine and may serve as a paradigm for the examination of other bacterially encoded molecular machines.
Collapse
|
90
|
Control of type III protein secretion using a minimal genetic system. Nat Commun 2017; 8:14737. [PMID: 28485369 PMCID: PMC5436071 DOI: 10.1038/ncomms14737] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/27/2017] [Indexed: 01/12/2023] Open
Abstract
Gram-negative bacteria secrete proteins using a type III secretion system (T3SS), which functions as a needle-like molecular machine. The many proteins involved in T3SS construction are tightly regulated due to its role in pathogenesis and motility. Here, starting with the 35 kb Salmonella pathogenicity island 1 (SPI-1), we eliminated internal regulation and simplified the genetics by removing or recoding genes, scrambling gene order and replacing all non-coding DNA with synthetic genetic parts. This process results in a 16 kb cluster that shares no sequence identity, regulation or organizational principles with SPI-1. Building this simplified system led to the discovery of essential roles for an internal start site (SpaO) and small RNA (InvR). Further, it can be controlled using synthetic regulatory circuits, including under SPI-1 repressing conditions. This work reveals an incredible post-transcriptional robustness in T3SS assembly and aids its control as a tool in biotechnology.
Collapse
|
91
|
Hu M, Zhao W, Gao W, Li W, Meng C, Yan Q, Wang Y, Zhou X, Geng S, Pan Z, Cui G, Jiao X. Recombinant Salmonella expressing SspH2-EscI fusion protein limits its colonization in mice. BMC Immunol 2017; 18:21. [PMID: 28468643 PMCID: PMC5415771 DOI: 10.1186/s12865-017-0203-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 04/24/2017] [Indexed: 12/20/2022] Open
Abstract
Background Activation of inflammasome contributes to the clearance of intracellular bacteria. C-terminus of E. coli EscI protein can activate NLRC4 (NLR family, CARD domain containing-4) inflammasome in macrophages. The purpose of this study was to determine if activation of NLRC4 inflammasome by EscI can reduce the colonization of Salmonella in mice. Results A recombinant S. typhimurium strain expressing fusion protein of the N-terminal SspH2 (a Salmonella type III secretion system 2 effector) and C-terminal EscI was constructed and designated as X4550(pYA3334-SspH2-EscI). In vitro assay showed that X4550(pYA3334-SspH2-EscI) significantly enhanced IL-1β and IL-18 secretion (P < 0.05) and pyroptotic cell death of mouse peritoneal macrophages, compared with those infected with control strain, X4550(pYA3334-SspH2). In vivo studies showed that colonization of X4550(pYA3334-SspH2-EscI) in both spleen and liver were significantly lower than that of X4550(pYA3334-SspH2) (P < 0.05). The bacterial counts of X4550(pYA3334-SspH2-EscI) in mice decreased, while those of X4550(pYA3334-SspH2) increased over the time after infection. Additionally, X4550(pYA3334-SspH2-EscI) induced a less pathological alteration in spleen and liver than X4550(pYA3334-SspH2). Conclusion Fusion protein SspH2-EscI may be translocated into macrophages and activate NLRC4 inflammasome, which limits Salmonella colonization in spleen and liver of mice.
Collapse
Affiliation(s)
- Maozhi Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Weixin Zhao
- College of Tourism & Cuisine (College of Food Science and Engineering), Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Wei Gao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Wenhua Li
- College of Tourism & Cuisine (College of Food Science and Engineering), Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chuang Meng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Qiuxiang Yan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yuyang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaohui Zhou
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, 06269-3089, CT, USA
| | - Shizhong Geng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhiming Pan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Guiyou Cui
- College of Tourism & Cuisine (College of Food Science and Engineering), Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xinan Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
92
|
Abstract
Type III secretion systems (T3SSs) are protein transport nanomachines that are found in Gram-negative bacterial pathogens and symbionts. Resembling molecular syringes, T3SSs form channels that cross the bacterial envelope and the host cell membrane, which enable bacteria to inject numerous effector proteins into the host cell cytoplasm and establish trans-kingdom interactions with diverse hosts. Recent advances in cryo-electron microscopy and integrative imaging have provided unprecedented views of the architecture and structure of T3SSs. Furthermore, genetic and molecular analyses have elucidated the functions of many effectors and key regulators of T3SS assembly and secretion hierarchy, which is the sequential order by which the protein substrates are secreted. As essential virulence factors, T3SSs are attractive targets for vaccines and therapeutics. This Review summarizes our current knowledge of the structure and function of this important protein secretion machinery. A greater understanding of T3SSs should aid mechanism-based drug design and facilitate their manipulation for biotechnological applications.
Collapse
|
93
|
Negative Autogenous Control of the Master Type III Secretion System Regulator HrpL in Pseudomonas syringae. mBio 2017; 8:mBio.02273-16. [PMID: 28119474 PMCID: PMC5263251 DOI: 10.1128/mbio.02273-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The type III secretion system (T3SS) is a principal virulence determinant of the model bacterial plant pathogen Pseudomonas syringae T3SS effector proteins inhibit plant defense signaling pathways in susceptible hosts and elicit evolved immunity in resistant plants. The extracytoplasmic function sigma factor HrpL coordinates the expression of most T3SS genes. Transcription of hrpL is dependent on sigma-54 and the codependent enhancer binding proteins HrpR and HrpS for hrpL promoter activation. hrpL is oriented adjacently to and divergently from the HrpL-dependent gene hrpJ, sharing an intergenic upstream regulatory region. We show that association of the RNA polymerase (RNAP)-HrpL complex with the hrpJ promoter element imposes negative autogenous control on hrpL transcription in P. syringae pv. tomato DC3000. The hrpL promoter was upregulated in a ΔhrpL mutant and was repressed by plasmid-borne hrpL In a minimal Escherichia coli background, the activity of HrpL was sufficient to achieve repression of reconstituted hrpL transcription. This repression was relieved if both the HrpL DNA-binding function and the hrp-box sequence of the hrpJ promoter were compromised, implying dependence upon the hrpJ promoter. DNA-bound RNAP-HrpL entirely occluded the HrpRS and partially occluded the integration host factor (IHF) recognition elements of the hrpL promoter in vitro, implicating inhibition of DNA binding by these factors as a cause of negative autogenous control. A modest increase in the HrpL concentration caused hypersecretion of the HrpA1 pilus protein but intracellular accumulation of later T3SS substrates. We argue that negative feedback on HrpL activity fine-tunes expression of the T3SS regulon to minimize the elicitation of plant defenses. IMPORTANCE The United Nations Food and Agriculture Organization has warned that agriculture will need to satisfy a 50% to 70% increase in global food demand if the human population reaches 9 billion by 2050 as predicted. However, diseases caused by microbial pathogens represent a major threat to food security, accounting for over 10% of estimated yield losses in staple wheat, rice, and maize crops. Understanding the decision-making strategies employed by pathogens to coordinate virulence and to evade plant defenses is vital for informing crop resistance traits and management strategies. Many plant-pathogenic bacteria utilize the needle-like T3SS to inject virulence factors into host plant cells to suppress defense signaling. Pseudomonas syringae is an economically and environmentally devastating plant pathogen. We propose that the master regulator of its entire T3SS gene set, HrpL, downregulates its own expression to minimize elicitation of plant defenses. Revealing such conserved regulatory strategies will inform future antivirulence strategies targeting plant pathogens.
Collapse
|
94
|
Zilkenat S, Dietsche T, Monjarás Feria JV, Torres-Vargas CE, Mebrhatu MT, Wagner S. Blue Native PAGE Analysis of Bacterial Secretion Complexes. Methods Mol Biol 2017; 1615:321-351. [PMID: 28667624 DOI: 10.1007/978-1-4939-7033-9_26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacterial protein secretion systems serve to translocate substrate proteins across up to three biological membranes, a task accomplished by hydrophobic, membrane-spanning macromolecular complexes. The overexpression, purification, and biochemical characterization of these complexes is often difficult, impeding progress in understanding the structure and function of these systems. Blue native (BN) polyacrylamide gel electrophoresis (PAGE) allows for the investigation of these transmembrane complexes right from their originating membranes, without the need for long preparative steps, and is amenable to the parallel characterization of a number of samples under near-native conditions. Here we present protocols for sample preparation, one-dimensional BN PAGE and two-dimensional BN/sodium dodecyl sulfate (SDS)-PAGE, as well as for downstream analysis by staining, immunoblotting, and mass spectrometry on the example of the type III secretion system encoded on Salmonella pathogenicity island 1.
Collapse
Affiliation(s)
- Susann Zilkenat
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Tobias Dietsche
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Julia V Monjarás Feria
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Claudia E Torres-Vargas
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Mehari Tesfazgi Mebrhatu
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Samuel Wagner
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany.
- German Center for Infection Research (DZIF), Partner-site Tübingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany.
| |
Collapse
|
95
|
Dietsche T, Tesfazgi Mebrhatu M, Brunner MJ, Abrusci P, Yan J, Franz-Wachtel M, Schärfe C, Zilkenat S, Grin I, Galán JE, Kohlbacher O, Lea S, Macek B, Marlovits TC, Robinson CV, Wagner S. Structural and Functional Characterization of the Bacterial Type III Secretion Export Apparatus. PLoS Pathog 2016; 12:e1006071. [PMID: 27977800 PMCID: PMC5158082 DOI: 10.1371/journal.ppat.1006071] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/17/2016] [Indexed: 02/04/2023] Open
Abstract
Bacterial type III protein secretion systems inject effector proteins into eukaryotic host cells in order to promote survival and colonization of Gram-negative pathogens and symbionts. Secretion across the bacterial cell envelope and injection into host cells is facilitated by a so-called injectisome. Its small hydrophobic export apparatus components SpaP and SpaR were shown to nucleate assembly of the needle complex and to form the central “cup” substructure of a Salmonella Typhimurium secretion system. However, the in vivo placement of these components in the needle complex and their function during the secretion process remained poorly defined. Here we present evidence that a SpaP pentamer forms a 15 Å wide pore and provide a detailed map of SpaP interactions with the export apparatus components SpaQ, SpaR, and SpaS. We further refine the current view of export apparatus assembly, consolidate transmembrane topology models for SpaP and SpaR, and present intimate interactions of the periplasmic domains of SpaP and SpaR with the inner rod protein PrgJ, indicating how export apparatus and needle filament are connected to create a continuous conduit for substrate translocation. Many Gram-negative bacteria use type III secretion systems to inject bacterial proteins into eukaryotic host cells in order to promote their own survival and colonization. These systems are large molecular machines with the ability to transport proteins across three cell membranes in one step. It is believed that the only gated barrier of these systems lies in the bacterial cytoplasmic membrane but it was unclear so far how this gate looks like and of which components it is composed. Here we present evidence based on in depth biochemical and genetic characterization that an assembly of five SpaP proteins forms this gate in the cytoplasmic membrane of the type III secretion system of Salmonella pathogenicity island 1. We further show that one subunit each of the proteins SpaQ, SpaR, and SpaS are closely associated to the SpaP gate and may function in the gating mechanism, and that the protein PrgJ is attached to this gate on the outside to connect it to the hollow needle filament projecting towards the host cell. Our findings elucidate a hitherto ill-defined aspect of type III secretion systems and may help to develop novel antiinfective therapies targeting these virulence-associated molecular devices.
Collapse
Affiliation(s)
- Tobias Dietsche
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Section of Cellular and Molecular Microbiology, Tübingen, Germany
| | - Mehari Tesfazgi Mebrhatu
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Section of Cellular and Molecular Microbiology, Tübingen, Germany
| | - Matthias J. Brunner
- Center for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf (UKE) and German Electron Synchrotron Centre (DESY), Hamburg, Germany
- Institute of Molecular Biotechnology (IMBA), Vienna Biocenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Patrizia Abrusci
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jun Yan
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | | | | | - Susann Zilkenat
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Section of Cellular and Molecular Microbiology, Tübingen, Germany
| | - Iwan Grin
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Section of Cellular and Molecular Microbiology, Tübingen, Germany
| | - Jorge E. Galán
- Yale University School of Medicine, Department of Microbial Pathogenesis, New Haven, Connecticut, United States of America
| | - Oliver Kohlbacher
- University of Tübingen, Center for BioinformaticsTübingen, Germany
- Max Planck Institute for Developmental Biology, Biomolecular Interactions, Tübingen, Germany
| | - Susan Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Boris Macek
- University of Tübingen, Proteome Center Tübingen, Tübingen, Germany
| | - Thomas C. Marlovits
- Center for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf (UKE) and German Electron Synchrotron Centre (DESY), Hamburg, Germany
- Institute of Molecular Biotechnology (IMBA), Vienna Biocenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Samuel Wagner
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Section of Cellular and Molecular Microbiology, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner-site Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
96
|
Abstract
Type III secretion systems (T3SSs) afford Gram-negative bacteria an intimate means of altering the biology of their eukaryotic hosts--the direct delivery of effector proteins from the bacterial cytoplasm to that of the eukaryote. This incredible biophysical feat is accomplished by nanosyringe "injectisomes," which form a conduit across the three plasma membranes, peptidoglycan layer, and extracellular space that form a barrier to the direct delivery of proteins from bacterium to host. The focus of this chapter is T3SS function at the structural level; we will summarize the core findings that have shaped our understanding of the structure and function of these systems and highlight recent developments in the field. In turn, we describe the T3SS secretory apparatus, consider its engagement with secretion substrates, and discuss the posttranslational regulation of secretory function. Lastly, we close with a discussion of the future prospects for the interrogation of structure-function relationships in the T3SS.
Collapse
|
97
|
Functional Characterization of EscK (Orf4), a Sorting Platform Component of the Enteropathogenic Escherichia coli Injectisome. J Bacteriol 2016; 199:JB.00538-16. [PMID: 27795324 DOI: 10.1128/jb.00538-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023] Open
Abstract
The type III secretion system (T3SS) is a supramolecular machine used by many bacterial pathogens to translocate effector proteins directly into the eukaryotic host cell cytoplasm. Enteropathogenic Escherichia coli (EPEC) is an important cause of infantile diarrheal disease in underdeveloped countries. EPEC virulence relies on a T3SS encoded within a chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE). In this work, we pursued the functional characterization of the LEE-encoded protein EscK (previously known as Orf4). We provide evidence indicating that EscK is crucial for efficient T3S and belongs to the SctK (OrgA/YscK/MxiK) protein family, whose members have been implicated in the formation of a sorting platform for secretion of T3S substrates. Bacterial fractionation studies showed that EscK localizes to the inner membrane independently of the presence of any other T3SS component. Combining yeast two-hybrid screening and pulldown assays, we identified an interaction between EscK and the C-ring/sorting platform component EscQ. Site-directed mutagenesis of conserved residues revealed amino acids that are critical for EscK function and for its interaction with EscQ. In addition, we found that T3S substrate overproduction is capable of compensating for the absence of EscK. Overall, our data suggest that EscK is a structural component of the EPEC T3SS sorting platform, playing a central role in the recruitment of T3S substrates for boosting the efficiency of the protein translocation process. IMPORTANCE The type III secretion system (T3SS) is an essential virulence determinant for enteropathogenic Escherichia coli (EPEC) colonization of intestinal epithelial cells. Multiple EPEC effector proteins are injected via the T3SS into enterocyte cells, leading to diarrheal disease. The T3SS is encoded within a genomic pathogenicity island termed the locus of enterocyte effacement (LEE). Here we unravel the function of EscK, a previously uncharacterized LEE-encoded protein. We show that EscK is central for T3SS biogenesis and function. EscK forms a protein complex with EscQ, the main component of the cytoplasmic sorting platform, serving as a docking site for T3S substrates. Our results provide a comprehensive functional analysis of an understudied component of T3SSs.
Collapse
|
98
|
Gaytán MO, Martínez-Santos VI, Soto E, González-Pedrajo B. Type Three Secretion System in Attaching and Effacing Pathogens. Front Cell Infect Microbiol 2016; 6:129. [PMID: 27818950 PMCID: PMC5073101 DOI: 10.3389/fcimb.2016.00129] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
Enteropathogenic Escherichia coli and enterohemorrhagic E. coli are diarrheagenic bacterial human pathogens that cause severe gastroenteritis. These enteric pathotypes, together with the mouse pathogen Citrobacter rodentium, belong to the family of attaching and effacing pathogens that form a distinctive histological lesion in the intestinal epithelium. The virulence of these bacteria depends on a type III secretion system (T3SS), which mediates the translocation of effector proteins from the bacterial cytosol into the infected cells. The core architecture of the T3SS consists of a multi-ring basal body embedded in the bacterial membranes, a periplasmic inner rod, a transmembrane export apparatus in the inner membrane, and cytosolic components including an ATPase complex and the C-ring. In addition, two distinct hollow appendages are assembled on the extracellular face of the basal body creating a channel for protein secretion: an approximately 23 nm needle, and a filament that extends up to 600 nm. This filamentous structure allows these pathogens to get through the host cells mucus barrier. Upon contact with the target cell, a translocation pore is assembled in the host membrane through which the effector proteins are injected. Assembly of the T3SS is strictly regulated to ensure proper timing of substrate secretion. The different type III substrates coexist in the bacterial cytoplasm, and their hierarchical secretion is determined by specialized chaperones in coordination with two molecular switches and the so-called sorting platform. In this review, we present recent advances in the understanding of the T3SS in attaching and effacing pathogens.
Collapse
Affiliation(s)
- Meztlli O Gaytán
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Verónica I Martínez-Santos
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Eduardo Soto
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| |
Collapse
|
99
|
Pfeilmeier S, Caly DL, Malone JG. Bacterial pathogenesis of plants: future challenges from a microbial perspective: Challenges in Bacterial Molecular Plant Pathology. MOLECULAR PLANT PATHOLOGY 2016; 17:1298-313. [PMID: 27170435 PMCID: PMC6638335 DOI: 10.1111/mpp.12427] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 05/03/2023]
Abstract
Plant infection is a complicated process. On encountering a plant, pathogenic microorganisms must first adapt to life on the epiphytic surface, and survive long enough to initiate an infection. Responsiveness to the environment is critical throughout infection, with intracellular and community-level signal transduction pathways integrating environmental signals and triggering appropriate responses in the bacterial population. Ultimately, phytopathogens must migrate from the epiphytic surface into the plant tissue using motility and chemotaxis pathways. This migration is coupled with overcoming the physical and chemical barriers to entry into the plant apoplast. Once inside the plant, bacteria use an array of secretion systems to release phytotoxins and protein effectors that fulfil diverse pathogenic functions (Fig. ) (Melotto and Kunkel, ; Phan Tran et al., ). As our understanding of the pathways and mechanisms underpinning plant pathogenicity increases, a number of central research challenges are emerging that will profoundly shape the direction of research in the future. We need to understand the bacterial phenotypes that promote epiphytic survival and surface adaptation in pathogenic bacteria. How do these pathways function in the context of the plant-associated microbiome, and what impact does this complex microbial community have on the onset and severity of plant infections? The huge importance of bacterial signal transduction to every stage of plant infection is becoming increasingly clear. However, there is a great deal to learn about how these signalling pathways function in phytopathogenic bacteria, and the contribution they make to various aspects of plant pathogenicity. We are increasingly able to explore the structural and functional diversity of small-molecule natural products from plant pathogens. We need to acquire a much better understanding of the production, deployment, functional redundancy and physiological roles of these molecules. Type III secretion systems (T3SSs) are important and well-studied contributors to bacterial disease. Several key unanswered questions will shape future investigations of these systems. We need to define the mechanism of hierarchical and temporal control of effector secretion. For successful infection, effectors need to interact with host components to exert their function. Advanced biochemical, proteomic and cell biological techniques will enable us to study the function of effectors inside the host cell in more detail and on a broader scale. Population genomics analyses provide insight into evolutionary adaptation processes of phytopathogens. The determination of the diversity and distribution of type III effectors (T3Es) and other virulence genes within and across pathogenic species, pathovars and strains will allow us to understand how pathogens adapt to specific hosts, the evolutionary pathways available to them, and the possible future directions of the evolutionary arms race between effectors and molecular plant targets. Although pathogenic bacteria employ a host of different virulence and proliferation strategies, as a result of the space constraints, this review focuses mainly on the hemibiotrophic pathogens. We discuss the process of plant infection from the perspective of these important phytopathogens, and highlight new approaches to address the outstanding challenges in this important and fast-moving field.
Collapse
Affiliation(s)
- Sebastian Pfeilmeier
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Delphine L Caly
- Université de Lille, EA 7394, ICV - Institut Charles Viollette, Lille, F-59000, France
| | - Jacob G Malone
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
- University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
100
|
Guo Z, Li X, Li J, Yang X, Zhou Y, Lu C, Shen Y. Licoflavonol is an inhibitor of the type three secretion system of Salmonella enterica serovar Typhimurium. Biochem Biophys Res Commun 2016; 477:998-1004. [DOI: 10.1016/j.bbrc.2016.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/03/2016] [Indexed: 10/21/2022]
|