51
|
Greischar MA, Read AF, Bjørnstad ON. Synchrony in malaria infections: how intensifying within-host competition can be adaptive. Am Nat 2013; 183:E36-49. [PMID: 24464205 DOI: 10.1086/674357] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Malaria parasites exhibit great diversity in the coordination of their asexual life cycle within the host, ranging from asynchronous growth to tightly synchronized cycles of invasion and emergence from red blood cells. Synchronized reproduction should come at a high cost--intensifying competition among offspring--so why would some Plasmodium species engage in such behavior and others not? We use a delayed differential equation model to show that synchronized infections can be favored when (1) there is limited interference among parasites competing for red blood cells, (2) transmission success is an accelerating function of sexual parasite abundance, (3) the target of saturating immunity is short-lived, and (4) coinfections with asynchronous parasites are rare. As a consequence, synchrony may be beneficial or costly, in line with the diverse patterns of synchronization observed in natural and lab infections. By allowing us to characterize diverse temporal dynamics, the model framework provides a basis for making predictions about disease severity and for projecting evolutionary responses to interventions.
Collapse
Affiliation(s)
- Megan A Greischar
- Center for Infectious Disease Dynamics, Departments of Entomology and Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | | | | |
Collapse
|
52
|
O'Donnell AJ, Mideo N, Reece SE. Disrupting rhythms in Plasmodium chabaudi: costs accrue quickly and independently of how infections are initiated. Malar J 2013; 12:372. [PMID: 24160251 PMCID: PMC3819465 DOI: 10.1186/1475-2875-12-372] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/23/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the blood, the synchronous malaria parasite, Plasmodium chabaudi, exhibits a cell-cycle rhythm of approximately 24 hours in which transitions between developmental stages occur at particular times of day in the rodent host. Previous experiments reveal that when the timing of the parasite's cell-cycle rhythm is perturbed relative to the circadian rhythm of the host, parasites suffer a (~50%) reduction in asexual stages and gametocytes. Why it matters for parasites to have developmental schedules in synchronization with the host's rhythm is unknown. The experiment presented here investigates this issue by: (a) validating that the performance of P. chabaudi is negatively affected by mismatch to the host circadian rhythm; (b) testing whether the effect of mismatch depends on the route of infection or the developmental stage of inoculated parasites; and, (c) examining whether the costs of mismatch are due to challenges encountered upon initial infection and/or due to ongoing circadian host processes operating during infection. METHODS The experiment simultaneously perturbed the time of day infections were initiated, the stage of parasite inoculated, and the route of infection. The performance of parasites during the growth phase of infections was compared across the cross-factored treatment groups (i e, all combinations of treatments were represented). RESULTS The data show that mismatch to host rhythms is costly for parasites, reveal that this phenomenon does not depend on the developmental stage of parasites nor the route of infection, and suggest that processes operating at the initial stages of infection are responsible for the costs of mismatch. Furthermore, mismatched parasites are less virulent, in that they cause less anaemia to their hosts. CONCLUSION It is beneficial for parasites to be in synchronization with their host's rhythm, regardless of the route of infection or the parasite stage inoculated. Given that arrested cell-cycle development (quiescence) is implicated in tolerance to drugs, understanding how parasite schedules are established and maintained in the blood is important.
Collapse
Affiliation(s)
- Aidan J O'Donnell
- Institutes of Evolution, Immunology and Infection Research, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
53
|
Expansion of host cellular niche can drive adaptation of a zoonotic malaria parasite to humans. Nat Commun 2013; 4:1638. [PMID: 23535659 DOI: 10.1038/ncomms2612] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/18/2013] [Indexed: 01/06/2023] Open
Abstract
The macaque malaria parasite Plasmodium knowlesi has recently emerged as an important zoonosis in Southeast Asia. Infections are typically mild but can cause severe disease, achieving parasite densities similar to fatal Plasmodium falciparum infections. Here we show that a primate-adapted P. knowlesi parasite proliferates poorly in human blood due to a strong preference for young red blood cells (RBCs). We establish a continuous in vitro culture system by using human blood enriched for young cells. Mathematical modelling predicts that parasite adaptation for invasion of older RBCs is a likely mechanism leading to high parasite densities in clinical infections. Consistent with this model, we find that P. knowlesi can adapt to invade a wider age range of RBCs, resulting in proliferation in normal human blood. Such cellular niche expansion may increase pathogenesis in humans and will be a key feature to monitor as P. knowlesi emerges in human populations.
Collapse
|
54
|
Cornet S, Bichet C, Larcombe S, Faivre B, Sorci G. Impact of host nutritional status on infection dynamics and parasite virulence in a bird-malaria system. J Anim Ecol 2013; 83:256-65. [DOI: 10.1111/1365-2656.12113] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 06/15/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Stéphane Cornet
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique; Evolution et Contrôle (MIVEGEC); UMR CNRS 5290-IRD 224-UM1-UM2; Montpellier France
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE); UMR CNRS 5175; Montpellier France
| | - Coraline Bichet
- Biogéosciences; UMR CNRS 6282; Université de Bourgogne; Dijon France
| | - Stephen Larcombe
- Edward Grey Institute; Department of Zoology; University of Oxford; Oxford UK
| | - Bruno Faivre
- Biogéosciences; UMR CNRS 6282; Université de Bourgogne; Dijon France
| | - Gabriele Sorci
- Biogéosciences; UMR CNRS 6282; Université de Bourgogne; Dijon France
| |
Collapse
|
55
|
Mideo N, Kennedy DA, Carlton JM, Bailey JA, Juliano JJ, Read AF. Ahead of the curve: next generation estimators of drug resistance in malaria infections. Trends Parasitol 2013; 29:321-8. [PMID: 23746748 PMCID: PMC3694767 DOI: 10.1016/j.pt.2013.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/16/2022]
Abstract
Drug resistance is a major obstacle to controlling infectious diseases. A key challenge is detecting the early signs of drug resistance when little is known about its genetic basis. Focusing on malaria parasites, we propose a way to do this. Newly developing or low level resistance at low frequency in patients can be detected through a phenotypic signature: individual parasite variants clearing more slowly following drug treatment. Harnessing the abundance and resolution of deep sequencing data, our 'selection differential' approach addresses some limitations of extant methods of resistance detection, should allow for the earliest detection of resistance in malaria or other multi-clone infections, and has the power to uncover the true scale of the drug resistance problem.
Collapse
Affiliation(s)
- Nicole Mideo
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | |
Collapse
|
56
|
Krams IA, Suraka V, Rantala MJ, Sepp T, Mierauskas P, Vrublevska J, Krama T. Acute infection of avian malaria impairs concentration of haemoglobin and survival in juvenile altricial birds. J Zool (1987) 2013. [DOI: 10.1111/jzo.12043] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- I. A. Krams
- Institute of Ecology and Earth Sciences; University of Tartu; Tartu Estonia
- Institute of Systematic Biology; University of Daugavpils; Daugavpils Latvia
| | - V. Suraka
- Institute of Systematic Biology; University of Daugavpils; Daugavpils Latvia
- Rīga Stradins University; Rīga Latvia
| | - M. J. Rantala
- Department of Biology; University of Turku; Turku Finland
| | - T. Sepp
- Institute of Ecology and Earth Sciences; University of Tartu; Tartu Estonia
| | - P. Mierauskas
- Department of Environment Policy; Mykolas Romeris University; Vilnius Lithuania
| | - J. Vrublevska
- Institute of Systematic Biology; University of Daugavpils; Daugavpils Latvia
| | - T. Krama
- Institute of Systematic Biology; University of Daugavpils; Daugavpils Latvia
| |
Collapse
|
57
|
Cunningham AA, Dobson AP, Hudson PJ. Disease invasion: impacts on biodiversity and human health. Philos Trans R Soc Lond B Biol Sci 2013; 367:2804-6. [PMID: 22966135 DOI: 10.1098/rstb.2012.0331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
An introduction to the theme issue that includes papers that identify how, where and why infectious diseases in wildlife emerge, while also addressing their possible conservation impacts.
Collapse
Affiliation(s)
- Andrew A Cunningham
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK.
| | | | | |
Collapse
|
58
|
Mideo N, Reece SE, Smith AL, Metcalf CJE. The Cinderella syndrome: why do malaria-infected cells burst at midnight? Trends Parasitol 2013; 29:10-6. [PMID: 23253515 PMCID: PMC3925801 DOI: 10.1016/j.pt.2012.10.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 11/20/2022]
Abstract
An interesting quirk of many malaria infections is that all parasites within a host – millions of them – progress through their cell cycle synchronously. This surprising coordination has long been recognized, yet there is little understanding of what controls it or why it has evolved. Interestingly, the conventional explanation for coordinated development in other parasite species does not seem to apply here. We argue that for malaria parasites, a critical question has yet to be answered: is the coordination due to parasites bursting at the same time or at a particular time? We explicitly delineate these fundamentally different scenarios, possible underlying mechanistic explanations and evolutionary drivers, and discuss the existing corroborating data and key evidence needed to solve this evolutionary mystery.
Collapse
|
59
|
Buckee CO, Wesolowski A, Eagle NN, Hansen E, Snow RW. Mobile phones and malaria: modeling human and parasite travel. Travel Med Infect Dis 2013; 11:15-22. [PMID: 23478045 PMCID: PMC3697114 DOI: 10.1016/j.tmaid.2012.12.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 11/29/2022]
Abstract
Human mobility plays an important role in the dissemination of malaria parasites between regions of variable transmission intensity. Asymptomatic individuals can unknowingly carry parasites to regions where mosquito vectors are available, for example, undermining control programs and contributing to transmission when they travel. Understanding how parasites are imported between regions in this way is therefore an important goal for elimination planning and the control of transmission, and would enable control programs to target the principal sources of malaria. Measuring human mobility has traditionally been difficult to do on a population scale, but the widespread adoption of mobile phones in low-income settings presents a unique opportunity to directly measure human movements that are relevant to the spread of malaria. Here, we discuss the opportunities for measuring human mobility using data from mobile phones, as well as some of the issues associated with combining mobility estimates with malaria infection risk maps to meaningfully estimate routes of parasite importation.
Collapse
Affiliation(s)
- Caroline O Buckee
- Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
60
|
Eckhoff PA. Malaria parasite diversity and transmission intensity affect development of parasitological immunity in a mathematical model. Malar J 2012; 11:419. [PMID: 23241282 PMCID: PMC3557182 DOI: 10.1186/1475-2875-11-419] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 12/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The development of parasitological immunity against malaria affects the ability to detect infection, the efficiency of the local human parasite reservoir at infecting mosquitoes, and the response to reintroduction of parasites to previously cleared areas. Observations of similar age-trends in detected prevalence and mean parasitaemia across more than an order-of-magnitude of variation in baseline transmission complicate simple exposure-driven explanations. METHODS Mathematical models often employ age-dependent immune factors to match the observed trends, while the present model uses a new detailed mechanistic model of parasite transmission dynamics to explain age-trends through the mechanism of parasite diversity. Illustrative simulations are performed for multiple field sites in Tanzania and Nigeria, and observed age-trends and seasonality in parasite prevalence are recreated in silico, proffering possible mechanistic explanations of the observational data. RESULTS Observed temporal dynamics in measured parasitaemia are recreated for each location and age-prevalence outputs are studied. Increasing population-level diversity in malaria surface antigens delays development of broad parasitological immunity. A local parasite population with high diversity can recreate the observed trends in age-prevalence across more than an order of magnitude of variation in transmission intensities. CONCLUSIONS Mechanistic models of human immunity and parasite antigen diversity can recreate the observed temporal patterns for the development of parasitological immunity across a wide range of transmission intensities. This has implications for the distribution of disease burden across the population, the human transmission reservoir, design of elimination campaigns, and development and roll-out of potential vaccines.
Collapse
Affiliation(s)
- Philip A Eckhoff
- Intellectual Ventures Laboratory, 1600 132nd Ave NE, Bellevue, WA 98004, USA.
| |
Collapse
|
61
|
Restif O, Goh YS, Palayret M, Grant AJ, McKinley TJ, Clark MR, Mastroeni P. Quantification of the effects of antibodies on the extra- and intracellular dynamics of Salmonella enterica. J R Soc Interface 2012; 10:20120866. [PMID: 23235264 PMCID: PMC3565705 DOI: 10.1098/rsif.2012.0866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Antibodies are known to be essential in controlling Salmonella infection, but their exact role remains elusive. We recently developed an in vitro model to investigate the relative efficiency of four different human immunoglobulin G (IgG) subclasses in modulating the interaction of the bacteria with human phagocytes. Our results indicated that different IgG subclasses affect the efficacy of Salmonella uptake by human phagocytes. In this study, we aim to quantify the effects of IgG on intracellular dynamics of infection by combining distributions of bacterial numbers per phagocyte observed by fluorescence microscopy with a mathematical model that simulates the in vitro dynamics. We then use maximum likelihood to estimate the model parameters and compare them across IgG subclasses. The analysis reveals heterogeneity in the division rates of the bacteria, strongly suggesting that a subpopulation of intracellular Salmonella, while visible under the microscope, is not dividing. Clear differences in the observed distributions among the four IgG subclasses are best explained by variations in phagocytosis and intracellular dynamics. We propose and compare potential factors affecting the replication and death of bacteria within phagocytes, and we discuss these results in the light of recent findings on dormancy of Salmonella.
Collapse
Affiliation(s)
- Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK.
| | | | | | | | | | | | | |
Collapse
|
62
|
Karesh WB, Dobson A, Lloyd-Smith JO, Lubroth J, Dixon MA, Bennett M, Aldrich S, Harrington T, Formenty P, Loh EH, Machalaba CC, Thomas MJ, Heymann DL. Ecology of zoonoses: natural and unnatural histories. Lancet 2012; 380. [PMID: 23200502 PMCID: PMC7138068 DOI: 10.1016/s0140-6736(12)61678-x] [Citation(s) in RCA: 463] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
More than 60% of human infectious diseases are caused by pathogens shared with wild or domestic animals. Zoonotic disease organisms include those that are endemic in human populations or enzootic in animal populations with frequent cross-species transmission to people. Some of these diseases have only emerged recently. Together, these organisms are responsible for a substantial burden of disease, with endemic and enzootic zoonoses causing about a billion cases of illness in people and millions of deaths every year. Emerging zoonoses are a growing threat to global health and have caused hundreds of billions of US dollars of economic damage in the past 20 years. We aimed to review how zoonotic diseases result from natural pathogen ecology, and how other circumstances, such as animal production, extraction of natural resources, and antimicrobial application change the dynamics of disease exposure to human beings. In view of present anthropogenic trends, a more effective approach to zoonotic disease prevention and control will require a broad view of medicine that emphasises evidence-based decision making and integrates ecological and evolutionary principles of animal, human, and environmental factors. This broad view is essential for the successful development of policies and practices that reduce probability of future zoonotic emergence, targeted surveillance and strategic prevention, and engagement of partners outside the medical community to help improve health outcomes and reduce disease threats.
Collapse
|
63
|
Mechanism-based model of parasite growth and dihydroartemisinin pharmacodynamics in murine malaria. Antimicrob Agents Chemother 2012; 57:508-16. [PMID: 23147722 DOI: 10.1128/aac.01463-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine models are used to study erythrocytic stages of malaria infection, because parasite morphology and development are comparable to those in human malaria infections. Mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) models for antimalarials are scarce, despite their potential to optimize antimalarial combination therapy. The aim of this study was to develop a mechanism-based growth model (MBGM) for Plasmodium berghei and then characterize the parasiticidal effect of dihydroartemisinin (DHA) in murine malaria (MBGM-PK-PD). Stage-specific (ring, early trophozoite, late trophozoite, and schizont) parasite density data from Swiss mice inoculated with Plasmodium berghei were used for model development in S-ADAPT. A single dose of intraperitoneal DHA (10 to 100 mg/kg) or vehicle was administered 56 h postinoculation. The MBGM explicitly reflected all four erythrocytic stages of the 24-hour P. berghei life cycle. Merozoite invasion of erythrocytes was described by a first-order process that declined with increasing parasitemia. An efflux pathway with subsequent return was additionally required to describe the schizont data, thus representing parasite sequestration or trapping in the microvasculature, with a return to circulation. A 1-compartment model with zero-order absorption described the PK of DHA, with an estimated clearance and distribution volume of 1.95 liters h(-1) and 0.851 liter, respectively. Parasite killing was described by a turnover model, with DHA inhibiting the production of physiological intermediates (IC(50), 1.46 ng/ml). Overall, the MBGM-PK-PD described the rise in parasitemia, the nadir following DHA dosing, and subsequent parasite resurgence. This novel model is a promising tool for studying malaria infections, identifying the stage specificity of antimalarials, and providing insight into antimalarial treatment strategies.
Collapse
|
64
|
Basu M, Das T, Ghosh A, Majumder S, Maji AK, Kanjilal SD, Mukhopadhyay I, Roychowdhury S, Banerjee S, Sengupta S. Gene-gene interaction and functional impact of polymorphisms on innate immune genes in controlling Plasmodium falciparum blood infection level. PLoS One 2012; 7:e46441. [PMID: 23071570 PMCID: PMC3470565 DOI: 10.1371/journal.pone.0046441] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/30/2012] [Indexed: 12/19/2022] Open
Abstract
Genetic variations in toll-like receptors and cytokine genes of the innate immune pathways have been implicated in controlling parasite growth and the pathogenesis of Plasmodium falciparum mediated malaria. We previously published genetic association of TLR4 non-synonymous and TNF-α promoter polymorphisms with P.falciparum blood infection level and here we extend the study considerably by (i) investigating genetic dependence of parasite-load on interleukin-12B polymorphisms, (ii) reconstructing gene-gene interactions among candidate TLRs and cytokine loci, (iii) exploring genetic and functional impact of epistatic models and (iv) providing mechanistic insights into functionality of disease-associated regulatory polymorphisms. Our data revealed that carriage of AA (P = 0.0001) and AC (P = 0.01) genotypes of IL12B 3′UTR polymorphism was associated with a significant increase of mean log-parasitemia relative to rare homozygous genotype CC. Presence of IL12B+1188 polymorphism in five of six multifactor models reinforced its strong genetic impact on malaria phenotype. Elevation of genetic risk in two-component models compared to the corresponding single locus and reduction of IL12B (2.2 fold) and lymphotoxin-α (1.7 fold) expressions in patients'peripheral-blood-mononuclear-cells under TLR4Thr399Ile risk genotype background substantiated the role of Multifactor Dimensionality Reduction derived models. Marked reduction of promoter activity of TNF-α risk haplotype (C-C-G-G) compared to wild-type haplotype (T-C-G-G) with (84%) and without (78%) LPS stimulation and the loss of binding of transcription factors detected in-silico supported a causal role of TNF-1031. Significantly lower expression of IL12B+1188 AA (5 fold) and AC (9 fold) genotypes compared to CC and under-representation (P = 0.0048) of allele A in transcripts of patients' PBMCs suggested an Allele-Expression-Imbalance. Allele (A+1188C) dependent differential stability (2 fold) of IL12B-transcripts upon actinomycin-D treatment and observed structural modulation (P = 0.013) of RNA-ensemble were the plausible explanations for AEI. In conclusion, our data provides functional support to the hypothesis that de-regulated receptor-cytokine axis of innate immune pathway influences blood infection level in P. falciparum malaria.
Collapse
Affiliation(s)
- Madhumita Basu
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
| | - Tania Das
- Cancer & Cell Biology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Alip Ghosh
- Centre for Liver Research, The Institute of Post-Graduate Medical Education & Research, Kolkata, West Bengal, India
| | - Subhadipa Majumder
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
| | - Ardhendu Kumar Maji
- Department of Protozoology, The Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Sumana Datta Kanjilal
- Department of Pediatric Medicine, Calcutta National Medical College, Kolkata, West Bengal, India
| | | | - Susanta Roychowdhury
- Cancer & Cell Biology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Soma Banerjee
- Centre for Liver Research, The Institute of Post-Graduate Medical Education & Research, Kolkata, West Bengal, India
| | - Sanghamitra Sengupta
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
65
|
Eckhoff P. P. falciparum infection durations and infectiousness are shaped by antigenic variation and innate and adaptive host immunity in a mathematical model. PLoS One 2012; 7:e44950. [PMID: 23028698 PMCID: PMC3446976 DOI: 10.1371/journal.pone.0044950] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 08/14/2012] [Indexed: 11/29/2022] Open
Abstract
Many questions remain about P. falciparum within-host dynamics, immunity, and transmission–issues that may affect public health campaign planning. These gaps in knowledge concern the distribution of durations of malaria infections, determination of peak parasitemia during acute infection, the relationships among gametocytes and immune responses and infectiousness to mosquitoes, and the effect of antigenic structure on reinfection outcomes. The present model of intra-host dynamics of P. falciparum implements detailed representations of parasite and immune dynamics, with structures based on minimal extrapolations from first-principles biology in its foundations. The model is designed to quickly and readily accommodate gains in mechanistic understanding and to evaluate effects of alternative biological hypothesis through in silico experiments. Simulations follow the parasite from the liver-stage through the detailed asexual cycle to clearance while tracking gametocyte populations. The modeled immune system includes innate inflammatory and specific antibody responses to a repertoire of antigens. The mechanistic focus provides clear explanations for the structure of the distribution of infection durations through the interaction of antigenic variation and innate and adaptive immunity. Infectiousness to mosquitoes appears to be determined not only by the density of gametocytes but also by the level of inflammatory cytokines, which harmonizes an extensive series of study results. Finally, pre-existing immunity can either decrease or increase the duration of infections upon reinfection, depending on the degree of overlap in antigenic repertoires and the strength of the pre-existing immunity.
Collapse
Affiliation(s)
- Philip Eckhoff
- Intellectual Ventures, Bellevue, Washington, United States of America.
| |
Collapse
|
66
|
The evolutionary consequences of blood-stage vaccination on the rodent malaria Plasmodium chabaudi. PLoS Biol 2012; 10:e1001368. [PMID: 22870063 PMCID: PMC3409122 DOI: 10.1371/journal.pbio.1001368] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 06/19/2012] [Indexed: 02/04/2023] Open
Abstract
A candidate malaria vaccine promoted the evolution of more virulent malaria parasites in mice. Malaria vaccine developers are concerned that antigenic escape will erode vaccine efficacy. Evolutionary theorists have raised the possibility that some types of vaccine could also create conditions favoring the evolution of more virulent pathogens. Such evolution would put unvaccinated people at greater risk of severe disease. Here we test the impact of vaccination with a single highly purified antigen on the malaria parasite Plasmodium chabaudi evolving in laboratory mice. The antigen we used, AMA-1, is a component of several candidate malaria vaccines currently in various stages of trials in humans. We first found that a more virulent clone was less readily controlled by AMA-1-induced immunity than its less virulent progenitor. Replicated parasites were then serially passaged through control or AMA-1 vaccinated mice and evaluated after 10 and 21 rounds of selection. We found no evidence of evolution at the ama-1 locus. Instead, virulence evolved; AMA-1-selected parasites induced greater anemia in naïve mice than both control and ancestral parasites. Our data suggest that recombinant blood stage malaria vaccines can drive the evolution of more virulent malaria parasites. Vaccination can drive the evolution of pathogens. Most obviously, molecules targeted by vaccine-induced immunity can change. Such evolution makes vaccines less effective. A different possibility is that more virulent pathogens are favored in vaccinated hosts. In that case, vaccination would create pathogens that cause more harm to unvaccinated individuals. To test this idea, we studied a rodent malaria parasite in laboratory mice immunized with a component of malaria vaccines currently in human trials. We found that a more virulent parasite clone was less well controlled by vaccine-induced immunity than was its less virulent ancestor. We then passaged parasites through sham- or vaccinated mice to study how the parasites might evolve after multiple rounds of infection of mouse hosts. The parasite molecule targeted by the vaccine did not change during this process. Instead, the parasites became more virulent if they evolved in vaccinated hosts. Our data suggest that some vaccines can drive the evolution of more virulent parasites.
Collapse
|
67
|
Metcalf CJE, Long GH, Mideo N, Forester JD, Bjørnstad ON, Graham AL. Revealing mechanisms underlying variation in malaria virulence: effective propagation and host control of uninfected red blood cell supply. J R Soc Interface 2012; 9:2804-13. [PMID: 22718989 PMCID: PMC3479917 DOI: 10.1098/rsif.2012.0340] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Malaria parasite clones with the highest transmission rates to mosquitoes also tend to induce the most severe fitness consequences (or virulence) in mammals. This is in accord with expectations from the virulence–transmission trade-off hypothesis. However, the mechanisms underlying how different clones cause virulence are not well understood. Here, using data from eight murine malaria clones, we apply recently developed statistical methods to infer differences in clone characteristics, including induction of differing host-mediated changes in red blood cell (RBC) supply. Our results indicate that the within-host mechanisms underlying similar levels of virulence are variable and that killing of uninfected RBCs by immune effectors and/or retention of RBCs in the spleen may ultimately reduce virulence. Furthermore, the correlation between clone virulence and the degree of host-induced mortality of uninfected RBCs indicates that hosts increasingly restrict their RBC supply with increasing intrinsic virulence of the clone with which they are infected. Our results demonstrate a role for self-harm in self-defence for hosts and highlight the diversity and modes of virulence of malaria.
Collapse
Affiliation(s)
- C J E Metcalf
- Department of Zoology, Oxford University, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
68
|
Gurarie D, Karl S, Zimmerman PA, King CH, St. Pierre TG, Davis TME. Mathematical modeling of malaria infection with innate and adaptive immunity in individuals and agent-based communities. PLoS One 2012; 7:e34040. [PMID: 22470511 PMCID: PMC3314696 DOI: 10.1371/journal.pone.0034040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 02/21/2012] [Indexed: 11/26/2022] Open
Abstract
Background Agent-based modeling of Plasmodium falciparum infection offers an attractive alternative to the conventional Ross-Macdonald methodology, as it allows simulation of heterogeneous communities subjected to realistic transmission (inoculation patterns). Methodology/Principal Findings We developed a new, agent based model that accounts for the essential in-host processes: parasite replication and its regulation by innate and adaptive immunity. The model also incorporates a simplified version of antigenic variation by Plasmodium falciparum. We calibrated the model using data from malaria-therapy (MT) studies, and developed a novel calibration procedure that accounts for a deterministic and a pseudo-random component in the observed parasite density patterns. Using the parasite density patterns of 122 MT patients, we generated a large number of calibrated parameters. The resulting data set served as a basis for constructing and simulating heterogeneous agent-based (AB) communities of MT-like hosts. We conducted several numerical experiments subjecting AB communities to realistic inoculation patterns reported from previous field studies, and compared the model output to the observed malaria prevalence in the field. There was overall consistency, supporting the potential of this agent-based methodology to represent transmission in realistic communities. Conclusions/Significance Our approach represents a novel, convenient and versatile method to model Plasmodium falciparum infection.
Collapse
Affiliation(s)
- David Gurarie
- Department of Mathematics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Stephan Karl
- School of Physics, The University of Western Australia, Crawley, Western Australia, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia
- * E-mail:
| | - Peter A. Zimmerman
- The Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Charles H. King
- The Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Timothy G. St. Pierre
- School of Physics, The University of Western Australia, Crawley, Western Australia, Australia
| | - Timothy M. E. Davis
- School of Medicine and Pharmacology, The University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia
| |
Collapse
|
69
|
Mideo N, Reece SE. Plasticity in parasite phenotypes: evolutionary and ecological implications for disease. Future Microbiol 2012; 7:17-24. [DOI: 10.2217/fmb.11.134] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Preventing disease is a major goal of applied bioscience and explaining variation in the harm caused by parasites, and their infectiousness, are major goals of evolutionary biology. The emerging field of evolutionary medicine integrates these two ambitions to inform the development of control strategies that retard or withstand unfavorable parasite evolution. However, as parasites live in hostile and changeable environments – the bodies of other organisms – the success of integrating evolutionary biology with medicine requires a better understanding of how natural selection has solved the problems parasites face. There is increasing appreciation that natural selection shapes parasite strategies to survive in the host and transmit between hosts through facultative (plastic) shifts in parasite traits expressed during infections and in different hosts. This article describes how integrating parasite plasticity into biomedical thinking is central to explaining disease outcomes and transmission patterns, as well as predicting the success of control measures.
Collapse
Affiliation(s)
- Nicole Mideo
- Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Sarah E Reece
- Institutes of Evolution, Immunity & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| |
Collapse
|
70
|
Huijben S, Sim DG, Nelson WA, Read AF. The fitness of drug-resistant malaria parasites in a rodent model: multiplicity of infection. J Evol Biol 2011; 24:2410-22. [PMID: 21883612 PMCID: PMC3304104 DOI: 10.1111/j.1420-9101.2011.02369.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Malaria infections normally consist of more than one clonally replicating lineage. Within-host interactions between sensitive and resistant parasites can have profound effects on the evolution of drug resistance. Here, using the Plasmodium chabaudi mouse malaria model, we ask whether the costs and benefits of resistance are affected by the number of co-infecting strains competing with a resistant clone. We found strong competitive suppression of resistant parasites in untreated infections and marked competitive release following treatment. The magnitude of competitive suppression depended on competitor identity. However, there was no overall effect of the diversity of susceptible parasites on the extent of competitive suppression or release. If these findings generalize, then transmission intensity will impact on resistance evolution because of its effect on the frequency of mixed infections, not because of its effect on the distribution of clones per host. This would greatly simplify the computational problems of adequately capturing within-host ecology in models of drug resistance evolution in malaria.
Collapse
Affiliation(s)
- S Huijben
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
71
|
Affiliation(s)
- Karen P Day
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|