51
|
Electrocatalytic dual hydrogenation of organic substrates with a Faradaic efficiency approaching 200%. Nat Catal 2023. [DOI: 10.1038/s41929-023-00923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
52
|
Catalytic Reductive Amination of Aromatic Aldehydes on Co-Containing Composites. CHEMISTRY 2023. [DOI: 10.3390/chemistry5010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
The performance of a series of cobalt-based composites in catalytic amination of aromatic aldehydes by amines in the presence of hydrogen as well as hydrogenation of quinoline was studied. The composites were prepared by pyrolysis of CoII acetate, organic precursor (imidazole, 1,10-phenantroline, 1,2-diaminobenzene or melamine) deposited on aerosil (SiO2). These composites contained nanoparticles of metallic Co together with N-doped carboneous particles. Quantitative yields of the target amine in a reaction of p-methoxybenzaldehyde with n-butylamine were obtained at p(H2) = 150 bar, T = 150 °C for all composites. It was found that amination of p-methoxybenzaldehyde with n-butylamine and benzylamine at p(H2) = 100 bar, T = 100 °C led to the formation of the corresponding amines with the yields of 72–96%. In the case of diisopropylamine, amination did not occur, and p-methoxybenzyl alcohol was the sole or the major reaction product. Reaction of p-chlorobenzaldehyde with n-butylamine on the Co-containing composites at p(H2) = 100 bar, T = 100 °C resulted in the formation of N-butyl-N-p-chlorobenzylamine in 60–89% yields. Among the considered materials, the composite prepared by decomposition of CoII complex with 1,2-diaminobenzene on aerosil showed the highest yields of the target products and the best selectivity in all studied reactions.
Collapse
|
53
|
Roemer M, Proschogo N, Luck I. Copper(I) Chloride Mediated Amination of Halobenzenes via Azides: Scope, Mechanistic Aspects, and C-C Cleavage Reactions. J Org Chem 2023; 88:1522-1532. [PMID: 36668998 DOI: 10.1021/acs.joc.2c02549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Selective azidation-amination of long-chain alkanoyl halobenzenes with sodium azide, promoted by copper(I) chloride, is reported. The protocol is, apart from CuCl and NaN3, additive free and allows the isolation of versatile amine-azides. Alkyl cleavage occurs as a side reaction through an unusual Schmidt-type azide insertion adjacent to the carbonyl group, forming alkyl nitriles possibly via radical pathways. Mechanistic studies involving 15N labeling experiments and test substrates indicate that the reaction occurs via 1-azido-4-alkanoyl benzenes. The amination is applicable for substrates with electron-withdrawing groups and proceeds under mild conditions. The mechanism of the amine formation involves nitrenes. Intermediates were trapped by carrying out the reaction in the presence of the 2,2,6,6-(tetramethylpiperidin-1-yl)oxyl stable radical and characterized by high-resolution mass spectrometry. The intermediates are consistent with earlier mechanistic proposals.
Collapse
Affiliation(s)
- Max Roemer
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nicholas Proschogo
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ian Luck
- Sydney Analytical Core Research Facility, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
54
|
Wang GB, Xie KH, Kan JL, Xu HP, Zhao F, Wang YJ, Geng Y, Dong YB. In situ utilization of photogenerated hydrogen for hydrogenation reaction over a covalent organic framework. Chem Commun (Camb) 2023; 59:1493-1496. [PMID: 36655848 DOI: 10.1039/d2cc06228c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A fully sp2-carbon conjugated COF (Py-FTP-COF) was designed and synthesized, exhibiting excellent hydrogen evolution rate of 5.22 mmol g-1 h-1. More importantly, in situ hydrogenation of nitroarenes under visible-light irradiation without any additional hydrogen source was successfully accomplished for the first time over COF-based materials.
Collapse
Affiliation(s)
- Guang-Bo Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Ke-Hui Xie
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Jing-Lan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Hai-Peng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Fei Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yan-Jing Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yan Geng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
55
|
Mao Q, Mu X, Deng K, Yu H, Wang Z, Xu Y, Li X, Wang L, Wang H. Sulfur Vacancy-Rich Amorphous Rh Metallene Sulfide for Electrocatalytic Selective Synthesis of Aniline Coupled with Efficient Sulfion Degradation. ACS NANO 2023; 17:790-800. [PMID: 36574628 DOI: 10.1021/acsnano.2c11094] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The construction of efficient and stable electrocatalysts is of widespread research significance for electrocatalytic coupling reactions. Herein, an amorphous Rh metallene sulfide with sulfur-rich vacancies (a-RhS2-x metallene) is synthesized for the cathodic nitrobenzene (Ph-NO2) electroreduction reaction (ERR) to aniline (Ph-NH2) coupled with the anodic sulfur ion (S2-) oxidation reaction (SOR) in a coelectrolysis system. On the one hand, the amorphous Rh metallene structure can provide enough of a reactive site. On the other hand, the amorphization and the introduced S vacancies can generate rich defects and ligand unsaturated sites to improve the intrinsic activity of the active sites. Due to these advantages, the a-RhS2-x metallene exhibits superior electrocatalytic performance for Ph-NO2 ERR and SOR. Inspiringly, in the assembled electrocatalytic coupling system, the required overpotential is only 0.442 V at 10 mA cm-2 to drive the cathodic Ph-NO2 ERR and anodic SOR, which allows for promising energy-efficient electrolysis to generate high value-added chemicals.
Collapse
Affiliation(s)
- Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Xu Mu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, P. R. China
| |
Collapse
|
56
|
Recent advances in the catalytic N-methylation and N-trideuteromethylation reactions using methanol and deuterated methanol. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
57
|
Homogenous Iron-Catalysed hydrogenation of polar substrates with precise chemoselectivity. J Catal 2023. [DOI: 10.1016/j.jcat.2022.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
58
|
Li J, Liu H, An Z, Kong Y, Huang L, Duan D, Long R, Yang P, Jiang YY, Liu J, Zhang J, Wan T, Fu J, Pan R, Wang X, Vlachos DG. Nitrogen-doped carbon for selective pseudo-metal-free hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran: Importance of trace iron impurity. J Catal 2023. [DOI: 10.1016/j.jcat.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
59
|
Habib I, Lu TT, Sabbah A, Chen KH, Tsai FT, Liaw WF. One-Pot Photosynthesis of Cubic Fe@Fe 3O 4 Core-Shell Nanoparticle Well-Dispersed in N-Doping Carbonaceous Polymer Using a Molecular Dinitrosyl Iron Precursor. Inorg Chem 2022; 61:20719-20724. [PMID: 36516228 DOI: 10.1021/acs.inorgchem.2c03773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanoscale zerovalent iron (NZVI) features potential application to biomedicine, (electro-/photo)catalysis, and environmental remediation. However, multiple-synthetic steps and limited ZVI content prompt the development of a novel strategy for efficient preparation of NZVI composites. Herein, a dinitrosyl iron complex [(N3MDA)Fe(NO)2] (1-N3MDA) was explored as a molecular precursor for one-pot photosynthesis of a cubic Fe@Fe3O4 core-shell nanoparticle (ZVI% = 60%) well-dispersed in an N-doping carbonaceous polymer (NZVI@NC). Upon photolysis of 1-N3MDA, photosensitizer Eosin Y, and sacrificial reductant TEA, the α-diimine N3MDA and noninnocent NO ligands (1) enable the slow reduction of 1-N3MDA into an unstable [(N3MDA)Fe(NO)2]- species, (2) serve as a capping reagent for controlled nucleation of zerovalent Fe atom into Fe nanoparticle, and (3) promote the polymerization of degraded Eosin Y with N3MDA yielding an N-doping carbonaceous matrix in NZVI@NC. This discovery of a one-pot photosynthetic process for NZVI@NC inspires continued efforts on its application to photolytic water splitting and ferroptotic chemotherapy in the near future.
Collapse
Affiliation(s)
| | | | - Amr Sabbah
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Kuei-Hsien Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | | | | |
Collapse
|
60
|
Behera RR, Panda S, Ghosh R, Kumar AA, Bagh B. Manganese-Catalyzed Chemoselective Hydrosilylation of Nitroarenes: Sustainable Route to Aromatic Amines. Org Lett 2022; 24:9179-9183. [PMID: 36413437 DOI: 10.1021/acs.orglett.2c03576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herein we report efficient catalytic hydrosilylations of nitroarenes to form the corresponding aromatic amines using a well-defined manganese(II)-NNO pincer complex with a low catalyst loading (1 mol %) under solvent-free conditions. This base-metal-catalyzed hydrosilylation is an easy and sustainable alternative to classical hydrogenation. A large variety of nitroarenes bearing various functionalities were selectively transformed into the corresponding aromatic amines in good yields. The potential utility of the present catalytic protocol was demonstrated by the preparation of commercial drug molecules.
Collapse
Affiliation(s)
- Rakesh R Behera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Rahul Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - A Ashis Kumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
61
|
Ruan P, Chen B, Zhou Q, Zhang H, Wang Y, Liu K, Zhou W, Qin R, Liu Z, Fu G, Zheng N. Upgrading heterogeneous Ni catalysts with thiol modification. Innovation (N Y) 2022; 4:100362. [PMID: 36636490 PMCID: PMC9830375 DOI: 10.1016/j.xinn.2022.100362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Precious metal catalysts are the cornerstone of many industrial processes. Replacing precious metal catalysts with earth-abundant metals is one of key challenges for the green and sustainable development of chemical industry. We report in this work a surprisingly effective strategy toward the development of cost-effective, air-stable, and efficient Ni catalysts by simple surface modification with thiols. The as-prepared catalysts exhibit unprecedentedly high activity and selectivity in the reductive amination of aldehydes/ketones. The thiol modification can not only prevent the deep oxidation of Ni surface to endow the catalyst with long shelf life in air but can also allow the reductive amination to proceed via a non-contact mechanism to selectively produce primary amines. The catalytic performance is far superior to that of precious and non-precious metal catalysts reported in the literature. The wide application scope and high catalytic performance of the developed Ni catalysts make them highly promising for the low-cost, green production of high-value amines in chemical industry.
Collapse
Affiliation(s)
- Pengpeng Ruan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bili Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qin Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hansong Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yahao Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wenting Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Gang Fu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China,Corresponding author
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China,Corresponding author
| |
Collapse
|
62
|
Lin Y, Wang F, Ren E, Zhu F, Zhang Q, Lu GP. N, Si-codoped carbon-based iron catalyst for efficient, selective synthesis of pyrroles from nitroarenes: The role of Si doping. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
63
|
Wang GB, Xie KH, Xu HP, Wang YJ, Zhao F, Geng Y, Dong YB. Covalent organic frameworks and their composites as multifunctional photocatalysts for efficient visible-light induced organic transformations. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
64
|
A Review on Chemoselective Reduction of Nitroarenes for Wastewater Remediation Using Biochar Supported Metal Catalysts: Kinetic and Mechanistic Studies. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
65
|
Room-temperature hydrogenation of halogenated nitrobenzenes over metal—organic-framework-derived ultra-dispersed Ni stabilized by N-doped carbon nanoneedles. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
66
|
Li X, Tan Y, Liu Z, Su J, Xiao Y, Qiao B, Ding Y. NiOx-promoted Cu-based catalysts supported on AlSBA-15 for chemoselective hydrogenation of nitroarenes. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
67
|
Chang B, Wu S, Wang Y, Sun T, Cheng Z. Emerging single-atom iron catalysts for advanced catalytic systems. NANOSCALE HORIZONS 2022; 7:1340-1387. [PMID: 36097878 DOI: 10.1039/d2nh00362g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to the elusive structure-function relationship, traditional nanocatalysts always yield limited catalytic activity and selectivity, making them practically difficult to replace natural enzymes in wide industrial and biomedical applications. Accordingly, single-atom catalysts (SACs), defined as catalysts containing atomically dispersed active sites on a support material, strikingly show the highest atomic utilization and drastically boosted catalytic performances to functionally mimic or even outperform natural enzymes. The molecular characteristics of SACs (e.g., unique metal-support interactions and precisely located metal sites), especially single-atom iron catalysts (Fe-SACs) that have a similar catalytic structure to the catalytically active center of metalloprotease, enable the accurate identification of active centers in catalytic reactions, which afford ample opportunity for unraveling the structure-function relationship of Fe-SACs. In this review, we present an overview of the recent advances of support materials for anchoring an atomic dispersion of Fe. Subsequently, we highlight the structural designability of support materials as two sides of the same coin. Moreover, the applications described herein illustrate the utility of Fe-SACs in a broad scope of industrially and biologically important reactions. Finally, we present an outlook of the major challenges and opportunities remaining for the successful combination of single Fe atoms and catalysts.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Shaolong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Yang Wang
- Department of Medical Technology, Suzhou Chien-shiung Institute of Technology, Taicang 215411, P. R. China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.
| |
Collapse
|
68
|
Wagener T, Pierau M, Heusler A, Glorius F. Synthesis of Saturated N-Heterocycles via a Catalytic Hydrogenation Cascade. Adv Synth Catal 2022; 364:3366-3371. [PMID: 36589139 PMCID: PMC9796080 DOI: 10.1002/adsc.202200601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 01/04/2023]
Abstract
Saturated N-heterocycles are prominent motifs found in various natural products and pharmaceuticals. Despite the increasing interest in this class of compounds, the synthesis of saturated bicyclic azacycles requires tedious multi-step syntheses. Herein, we present a one-pot protocol for the synthesis of octahydroindoles, decahydroquinolines, and octahydroindolizines through a cascade reaction.
Collapse
Affiliation(s)
- Tobias Wagener
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| | - Marco Pierau
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| | - Arne Heusler
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| | - Frank Glorius
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| |
Collapse
|
69
|
Wang F, Zhu F, Ren E, Zhu G, Lu GP, Lin Y. Recent Advances in Carbon-Based Iron Catalysts for Organic Synthesis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193462. [PMID: 36234590 PMCID: PMC9565280 DOI: 10.3390/nano12193462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 05/13/2023]
Abstract
Carbon-based iron catalysts combining the advantages of iron and carbon material are efficient and sustainable catalysts for green organic synthesis. The present review summarizes the recent examples of carbon-based iron catalysts for organic reactions, including reduction, oxidation, tandem and other reactions. In addition, the introduction strategies of iron into carbon materials and the structure and activity relationship (SAR) between these catalysts and organic reactions are also highlighted. Moreover, the challenges and opportunities of organic synthesis over carbon-based iron catalysts have also been addressed. This review will stimulate more systematic and in-depth investigations on carbon-based iron catalysts for exploring sustainable organic chemistry.
Collapse
Affiliation(s)
- Fei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Fuying Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Enxiang Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Guofu Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Guo-Ping Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, China
- Correspondence: (G.-P.L.); (Y.L.)
| | - Yamei Lin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
- Correspondence: (G.-P.L.); (Y.L.)
| |
Collapse
|
70
|
Wan T, Wang G, Guo Y, Fan X, Zhao J, Zhang X, Qin J, Fang J, Ma J, Long Y. Special direct route for efficient transfer hydrogenation of nitroarenes at room temperature by monatomic Zr tuned α-Fe2O3. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
71
|
Propane dehydrogenation to propylene over Co@N-doped carbon: Structure-activity-selectivity relationships. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
72
|
López-Goerne TM, Padilla-Godínez FJ, Castellanos M, Perez-Davalos LA. Catalytic nanomedicine: a brief review of bionanocatalysts. Nanomedicine (Lond) 2022; 17:1131-1156. [DOI: 10.2217/nnm-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Catalytic nanomedicine is a research area and source of disruptive technology that studies the application of bionanocatalysts (organically functionalized mesoporous nanostructured materials with catalytic properties) in diverse areas such as disinfection, tissue regeneration in chronic wounds and oncology. This paper reviews the emergence of catalytic nanomedicine in 2006, its basic principles, main achievements and future perspectives, as well as giving a summary of the knowledge gaps that need to be addressed to exploit the full potential of this novel discipline. This review intends to foster knowledge dissemination regarding catalytic nanomedicine, and to encourage further research to elucidate the mechanisms and possible applications of these nanomaterials.
Collapse
Affiliation(s)
- Tessy M López-Goerne
- Laboratory of Nanotechnology & Nanomedicine, Department of Health Care, Autonomous Metropolitan University-Xochimilco, Mexico City, 04960, Mexico
- Department of Molecular Neuropathology, Institute of Cell Physiology, National Autonomous University of Mexico, Mexico City, 04510, Mexico
| | - Francisco J Padilla-Godínez
- Laboratory of Nanotechnology & Nanomedicine, Department of Health Care, Autonomous Metropolitan University-Xochimilco, Mexico City, 04960, Mexico
- Department of Molecular Neuropathology, Institute of Cell Physiology, National Autonomous University of Mexico, Mexico City, 04510, Mexico
| | - Mariana Castellanos
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, 04510, Mexico
| | - Luis A Perez-Davalos
- Laboratory of Nanotechnology & Nanomedicine, Department of Health Care, Autonomous Metropolitan University-Xochimilco, Mexico City, 04960, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, 04510, Mexico
| |
Collapse
|
73
|
Li L, Li Y, Jiao L, Liu X, Ma Z, Zeng YJ, Zheng X, Jiang HL. Light-Induced Selective Hydrogenation over PdAg Nanocages in Hollow MOF Microenvironment. J Am Chem Soc 2022; 144:17075-17085. [PMID: 36069726 DOI: 10.1021/jacs.2c06720] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Selective hydrogenation with high efficiency under ambient conditions remains a long-standing challenge. Here, a yolk-shell nanostructured catalyst, PdAg@ZIF-8, featuring plasmonic PdAg nanocages encompassed by a metal-organic framework (MOF, namely, ZIF-8) shell, has been rationally fabricated. PdAg@ZIF-8 achieves selective (97.5%) hydrogenation of nitrostyrene to vinylaniline with complete conversion at ambient temperature under visible light irradiation. The photothermal effect of Ag, together with the substrate enrichment effect of the catalyst, improves the Pd activity. The near-field enhancement effect from plasmonic Ag and optimized Pd electronic state by Ag alloying promote selective adsorption of the -NO2 group and therefore catalytic selectivity. Remarkably, the unique yolk-shell nanostructure not only facilitates access to PdAg cores and protects them from aggregation but also benefits substrate enrichment and preferential -NO2 adsorption under light irradiation, the latter two of which surpass the core-shell counterpart, giving rise to enhanced activity, selectivity, and recyclability.
Collapse
Affiliation(s)
- Luyan Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.,Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yanxiao Li
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Long Jiao
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaoshuo Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Zhentao Ma
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Yu-Jia Zeng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
74
|
Synthesis, Characterization of Magnetic Composites and Testing of Their Activity in Liquid-Phase Oxidation of Phenol with Oxygen. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6050068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development and improvement of methods for the synthesis of environmentally friendly catalysts based on base metals is currently an urgent and promising task of modern catalysis. Catalysts based on nanoscale magnetite and maghemite have fast adsorption–desorption kinetics and high chemical activity. The purpose of this work is to obtain magnetic composites, determine their physicochemical characteristics and verify their activity in the process of liquid-phase oxidation of phenol with oxygen. Magnetic nanocomposites were obtained by chemical co-deposition of salts of ferrous and trivalent iron. The synthesized magnetic composites were studied by X-ray diffractometry, energy dispersive X-ray fluorescence and Mössbauer spectroscopy, IR-Fourier spectroscopy and elemental analysis. To increase the catalytic activity in oxidative processes, the magnetite surfaces were modified using cobalt nitrate salt. Further, CoFe2O4 was stabilized by adding polyethylenimine (PEI) as a surfactant. Preliminary studies of the oxidation of phenol with oxygen, as the most typical environmental pollutant were carried out on the obtained Fe3O4, CoFe2O4, CoFe2O4/PEI catalysts. The spectrum of the reaction product shows the presence of CH in the aromatic ring and double C=C bonds, stretching vibrations of the C=O groups of carbonyl compounds; the band at 3059 cm−1 corresponds to the presence of double C=C bonds and the band at 3424 cm−1 to hydroquinone compounds. The band at 1678 cm−1 and the intense band at 1646 cm−1 refer to vibrations of the C=O bonds of the carbonyl group of benzoquinone. Peaks at 1366 cm−1 and 1310 cm−1 can be related to the vibrations of C–H and C–C bonds of the quinone ring. Thus, it was demonstrated that produced magnetic composites based on iron oxide are quite effective in the oxidation of phenol with oxygen.
Collapse
|
75
|
Zhu L, Zhang H, Zhu H, Fu H, Kroner A, Yang Z, Ye H, Chen BH, Luque R. Controlling nanostructures of PtNiCo/C trimetallic nanocatalysts and relationship of structure-catalytic performance for selective hydrogenation of nitroarenes. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
76
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
77
|
Klausfelder B, Blach P, de Jonge N, Kempe R. Synthesis of 3,4-Dihydro-2H-Pyrroles from Ketones, Aldehydes, and Nitro Alkanes via Hydrogenative Cyclization. Chemistry 2022; 28:e202201307. [PMID: 35638452 PMCID: PMC9545131 DOI: 10.1002/chem.202201307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 01/09/2023]
Abstract
Syntheses of N-heterocyclic compounds that permit a flexible introduction of various substitution patterns by using inexpensive and diversely available starting materials are highly desirable. Easy to handle and reusable catalysts based on earth-abundant metals are especially attractive for these syntheses. We report here on the synthesis of 3,4-dihydro-2H-pyrroles via the hydrogenation and cyclization of nitro ketones. The latter are easily accessible from three components: a ketone, an aldehyde and a nitroalkane. Our reaction has a broad scope and 23 of the 33 products synthesized are compounds which have not yet been reported. The key to the general hydrogenation/cyclization reaction is a highly active, selective and reusable nickel catalyst, which was identified from a library of 24 earth-abundant metal catalysts.
Collapse
Affiliation(s)
- Barbara Klausfelder
- Anorganische Chemie IICatalyst DesignSustainable Chemistry CentreUniversity of BayreuthUniversitätsstraße 3095440BayreuthGermany
| | - Patricia Blach
- INM - Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
- Department of PhysicsSaarland UniversityCampus D2 266123SaarbrückenGermany
| | - Niels de Jonge
- INM - Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
- Department of PhysicsSaarland UniversityCampus D2 266123SaarbrückenGermany
| | - Rhett Kempe
- Anorganische Chemie IICatalyst DesignSustainable Chemistry CentreUniversity of BayreuthUniversitätsstraße 3095440BayreuthGermany
| |
Collapse
|
78
|
Michalke J, Faust K, Bögl T, Bartling S, Rockstroh N, Topf C. Mild and Efficient Heterogeneous Hydrogenation of Nitroarenes Facilitated by a Pyrolytically Activated Dinuclear Ni(II)-Ce(III) Diimine Complex. Int J Mol Sci 2022; 23:ijms23158742. [PMID: 35955876 PMCID: PMC9369285 DOI: 10.3390/ijms23158742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
We communicate the assembly of a solid, Ce-promoted Ni-based composite that was applied as catalyst for the hydrogenation of nitroarenes to afford the corresponding organic amines. The catalytically active material described herein was obtained through pyrolysis of a SiO2-pellet-supported bimetallic Ni-Ce complex that was readily synthesized prior to use from a MeO-functionalized salen congener, Ni(OAc)2·4 H2O, and Ce(NO3)3·6 H2O. Rewardingly, the requisite ligand for the pertinent solution phase precursor was accessible upon straightforward and time-saving imine condensation of ortho-vanillin with 1,3-diamino-2,2′-dimethylpropane. The introduced catalytic protocol is operationally simple in that the whole reaction set-up is quickly put together on the bench without the need of cumbersome handling in a glovebox or related containment systems. Moreover, the advantageous geometry and compact-sized nature of the used pellets renders the catalyst separation and recycling exceptionally easy.
Collapse
Affiliation(s)
- Jessica Michalke
- Institute of Catalysis (INCA), Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
- Institute of Inorganic Chemistry, Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
| | - Kirill Faust
- Institute of Catalysis (INCA), Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
| | - Thomas Bögl
- Department of Analytical Chemistry, Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
| | - Stephan Bartling
- Leibniz Institute for Catalysis, University of Rostock (LIKAT Rostock), Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Nils Rockstroh
- Leibniz Institute for Catalysis, University of Rostock (LIKAT Rostock), Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Christoph Topf
- Institute of Catalysis (INCA), Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
- Correspondence:
| |
Collapse
|
79
|
Chen W, Bao Z, Zhou Z. Selective hydrogenation of phenylacetylene over non-precious bimetallic Ni–Zn/SiO2 and Ni–Co/SiO2 catalysts prepared by glucose pyrolysis. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
80
|
Boosting performance for hydrogenation-alkylation tandem reaction catalyzed by banana-like MgO-based solid solution confined Ni-Co alloy catalyst: Fabricated by a MTV-MOFs templated strategy. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
81
|
Lee M, Kim G, Jeong GH, Yoon A, Lee Z, Ryu GH. In-situ formation of co particles encapsulated by graphene layers. Appl Microsc 2022; 52:7. [PMID: 35831511 PMCID: PMC9279520 DOI: 10.1186/s42649-022-00076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
The process of encapsulating cobalt nanoparticles using a graphene layer is mainly direct pyrolysis. The encapsulation structure of hybrids prepared in this way improves the catalyst stability, which greatly reduces the leaching of non-metals and prevents metal nanoparticles from growing beyond a certain size. In this study, cobalt particles surrounded by graphene layers were formed by increasing the temperature in a transmission electron microscope, and they were analyzed using scanning transmission electron microscopy (STEM). Synthesized cobalt hydroxide nanosheets were used to obtain cobalt particles using an in-situ heating holder inside a TEM column. The cobalt nanoparticles are surrounded by layers of graphene, and the number of layers increases as the temperature increases. The interlayer spacing of the graphene layers was also investigated using atomic imaging. The success achieved in the encapsulation of metallic nanoparticles in graphene layers paves the way for the design of highly active and reusable heterogeneous catalysts for more challenging molecules.
Collapse
Affiliation(s)
- Minjeong Lee
- School of Materials Science and Engineering, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gyutae Kim
- School of Materials Science and Engineering, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gyu Hyun Jeong
- School of Materials Science and Engineering, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Aram Yoon
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.,Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Zonghoon Lee
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.,Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Gyeong Hee Ryu
- School of Materials Science and Engineering, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
82
|
Iordanidou D, Kallitsakis MG, Tzani MA, Ioannou DI, Zarganes-Tzitzikas T, Neochoritis CG, Dömling A, Terzidis MA, Lykakis IN. Supported Gold Nanoparticle-Catalyzed Selective Reduction of Multifunctional, Aromatic Nitro Precursors into Amines and Synthesis of 3,4-Dihydroquinoxalin-2-Ones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144395. [PMID: 35889270 PMCID: PMC9323044 DOI: 10.3390/molecules27144395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
The synthesis of 3,4-dihydroquinoxalin-2-ones via the selective reduction of aromatic, multifunctional nitro precursors catalyzed by supported gold nanoparticles is reported. The reaction proceeds through the in situ formation of the corresponding amines under heterogeneous transfer hydrogenation of the initial nitro compounds catalyzed by the commercially available Au/TiO2-Et3SiH catalytic system, followed by an intramolecular C-N transamidation upon treatment with silica acting as a mild acid. Under the present conditions, the Au/TiO2-TMDS system was also found to catalyze efficiently the present selective reduction process. Both transfer hydrogenation processes showed very good functional-group tolerance and were successfully applied to access more structurally demanding products bearing other reducible moieties such as chloro, aldehyde or methyl ketone. An easily scalable (up to 1 mmol), low catalyst loading (0.6 mol%) synthetic protocol was realized, providing access to this important scaffold. Under these mild catalytic conditions, the desired products were isolated in good to high yields and with a TON of 130. A library analysis was also performed to demonstrate the usefulness of our synthetic strategy and the physicochemical profile of the derivatives.
Collapse
Affiliation(s)
- Domna Iordanidou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (D.I.); (M.G.K.); (M.A.T.); (D.I.I.)
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
| | - Michael G. Kallitsakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (D.I.); (M.G.K.); (M.A.T.); (D.I.I.)
| | - Marina A. Tzani
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (D.I.); (M.G.K.); (M.A.T.); (D.I.I.)
| | - Dimitris I. Ioannou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (D.I.); (M.G.K.); (M.A.T.); (D.I.I.)
| | | | | | - Alexander Dömling
- Department of Pharmacy, University of Groningen, A. Deusinglaan 1, 9700 AV Groningen, The Netherlands;
| | - Michael A. Terzidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
- Correspondence: (M.A.T.); (I.N.L.)
| | - Ioannis N. Lykakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (D.I.); (M.G.K.); (M.A.T.); (D.I.I.)
- Correspondence: (M.A.T.); (I.N.L.)
| |
Collapse
|
83
|
Chandrashekhar VG, Baumann W, Beller M, Jagadeesh RV. Nickel-catalyzed hydrogenative coupling of nitriles and amines for general amine synthesis. Science 2022; 376:1433-1441. [PMID: 35737797 DOI: 10.1126/science.abn7565] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Efficient and general methods for the synthesis of amines remain in high demand in the chemical industry. Among the many known processes, catalytic hydrogenation is a cost-effective and industrially proven reaction and currently used to produce a wide array of such compounds. We report a homogeneous nickel catalyst for hydrogenative cross coupling of a range of aromatic, heteroaromatic, and aliphatic nitriles with primary and secondary amines or ammonia. This general hydrogenation protocol is showcased by straightforward and highly selective synthesis of >230 functionalized and structurally diverse amines including pharmaceutically relevant and chiral products, as well as 15N-isotope labeling applications.
Collapse
Affiliation(s)
| | | | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, D-18059 Rostock, Germany
| | | |
Collapse
|
84
|
Peng X, Zhu FC, Jiang YH, Sun JJ, Xiao LP, Zhou S, Bustillo KC, Lin LH, Cheng J, Li JF, Liao HG, Sun SG, Zheng H. Identification of a quasi-liquid phase at solid-liquid interface. Nat Commun 2022; 13:3601. [PMID: 35739085 PMCID: PMC9226024 DOI: 10.1038/s41467-022-31075-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
An understanding of solid–liquid interfaces is of great importance for fundamental research as well as industrial applications. However, it has been very challenging to directly image solid–liquid interfaces with high resolution, thus their structure and properties are often unknown. Here, we report a quasi-liquid phase between metal (In, Sn) nanoparticle surfaces and an aqueous solution observed using liquid cell transmission electron microscopy. Our real-time high-resolution imaging reveals a thin layer of liquid-like materials at the interfaces with the frequent appearance of small In nanoclusters. Such a quasi-liquid phase serves as an intermediate for the mass transport from the metal nanoparticle to the liquid. Density functional theory-molecular dynamics simulations demonstrate that the positive charges of In ions greatly contribute to the stabilization of the quasi-liquid phase on the metal surface. Solid–liquid interfaces are ubiquitous in natural and technological processes, but their imaging at the atomic scale has been challenging. The authors, using liquid-phase transmission electron microscopy, identify a quasi-liquid phase and the mass transport between the surface of In and Sn nanocrystals and an aqueous solution.
Collapse
Affiliation(s)
- Xinxing Peng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Fu-Chun Zhu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - You-Hong Jiang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Juan-Juan Sun
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Liang-Ping Xiao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shiyuan Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Karen C Bustillo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Long-Hui Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jun Cheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jian-Feng Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hong-Gang Liao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Shi-Gang Sun
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Haimei Zheng
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Department of Material Science and Engineering, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
85
|
Zhu L, Sun Y, Zhu H, Chai G, Yang Z, Shang C, Ye H, Chen BH, Kroner A, Guo Z. Effective Ensemble of Pt Single Atoms and Clusters over the (Ni,Co)(OH) 2 Substrate Catalyzes Highly Selective, Efficient, and Stable Hydrogenation Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lihua Zhu
- HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Hong Kong Island, Hong Kong SAR, China
- College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China
| | - Yilun Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, 350002, Fujian, P. R. China
| | - Huaze Zhu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Guoliang Chai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, 350002, Fujian, P. R. China
| | - Zhiqing Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Congxiao Shang
- HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Hong Kong Island, Hong Kong SAR, China
| | - Hengqiang Ye
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bing Hui Chen
- Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Anna Kroner
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Chilton, Oxfordshire OX11 0DE, U.K
| | - Zhengxiao Guo
- HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Hong Kong Island, Hong Kong SAR, China
| |
Collapse
|
86
|
Sarki N, Kumar R, Singh B, Ray A, Naik G, Natte K, Narani A. Lignin Residue-Derived Carbon-Supported Nanoscale Iron Catalyst for the Selective Hydrogenation of Nitroarenes and Aromatic Aldehydes. ACS OMEGA 2022; 7:19804-19815. [PMID: 35721941 PMCID: PMC9202032 DOI: 10.1021/acsomega.2c01566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 05/05/2023]
Abstract
Heterogeneous iron-based catalysts governing selectivity for the reduction of nitroarenes and aldehydes have received tremendous attention in the arena of catalysis, but relatively less success has been achieved. Herein, we report a green strategy for the facile synthesis of a lignin residue-derived carbon-supported magnetic iron (γ-Fe2O3/LRC-700) nanocatalyst. This active nanocatalyst exhibits excellent activity and selectivity for the hydrogenation of nitroarenes to anilines, including pharmaceuticals (e.g., flutamide and nimesulide). Challenging and reducible functionalities such as halogens (e.g., chloro, iodo, and fluoro) and ketone, ester, and amide groups were tolerated. Moreover, biomass-derived aldehyde (e.g., furfural) and other aromatic aldehydes were also effective for the hydrogenation process, often useful in biomedical sciences and other important areas. Before and after the reaction, the γ-Fe2O3/LRC-700 nanocatalyst was thoroughly characterized by X-ray diffraction (XRD), N2 adsorption-desorption, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), Raman spectroscopy, and thermogravimetric analysis (TGA). Additionally, the γ-Fe2O3/LRC-700 nanocatalyst is stable and easily separated using an external magnet and recycled up to five cycles with no substantial drop in the activity. Eventually, sustainable and green credentials for the hydrogenation reactions of 4-nitrobenzamide to 4-aminobenzamide and benzaldehyde to benzyl alcohol were assessed with the help of the CHEM21 green metrics toolkit.
Collapse
Affiliation(s)
- Naina Sarki
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Raju Kumar
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Baint Singh
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Anjan Ray
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Ganesh Naik
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Kishore Natte
- Department
of Chemistry, Indian Institute of Technology
(IIT) Hyderabad, Kandi 502285, Sangareddy District, Telangana, India
- ,
| | - Anand Narani
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- ,
| |
Collapse
|
87
|
Shahzad Shirazi M, Foroumadi A, Saberikia I, Moridi Farimani M. Very rapid synthesis of highly efficient and biocompatible Ag 2Se QD phytocatalysts using ultrasonic irradiation for aqueous/sustainable reduction of toxic nitroarenes to anilines with excellent yield/selectivity at room temperature. ULTRASONICS SONOCHEMISTRY 2022; 87:106037. [PMID: 35709576 PMCID: PMC9201021 DOI: 10.1016/j.ultsonch.2022.106037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
There are many problems associated with the synthesis of nanocatalysts and catalytic reduction of nitroarenes - e.g., high temperatures, costs, long reaction/synthesis process times, the toxicity of chemicals/solvents, undesirable byproducts, the toxic/harmful wastes, low efficiency/selectivity, etc. This study represents an attempt to overcome these challenges. To this purpose, biocompatible and highly efficient Ag2Se quantum dots (QDs) catalysts with antibacterial activity were synthesized in a very rapid (30 sec, rt), simple, inexpensive, sustainable/green, and one-pot strategy in water using ultrasonic irradiation. Characterization of the QDs was performed using different techniques. UV-Vis absorption and fluorescence spectroscopic studies showed an absorption peak at 480-550 nm and a maximum emission peak around 675 nm, which confirmed the successful synthesis of Ag2Se QDs via the applied biosynthetic method. Subsequently, catalytic reduction of nitroarenes by them was carried out under safe conditions (H2O, rt, air atmosphere) in ∼ 60 min with excellent yield and selectivity (>99%). Their catalytic activity in the reduction of various toxic nitroarenes to aminoarenes under green conditions was investigated. Thus, a rapid and safe ultrasound-based method was employed to prepare stable and green Ag2Se QDs phyto-catalysts with unique properties, including exquisite monodispersity in shape (orthorhombic) and size (∼7 nm), air-stability, and good purity and crystallinity. Importantly, instead of various toxic chemicals, the plant extract obtained by rapid ultrasonic method (10 min, rt) was used as natural reducing, capping, and stabilizing agents. Moreover, antibacterial assays results showed that Ag2Se-QDs catalysts at low concentrations (ppm) have high activity against all tested bacteria, especially E. coli (MIC:31.25 ppm, MBC:125 ppm) which were significantly different from those of Fig extract (MIC = MBC:500 ppm). The data reflect the role of these bio-synthesized Ag2Se-QDs catalysts in the development of versatile and very safe catalysts with biomedical properties.
Collapse
Affiliation(s)
- Maryam Shahzad Shirazi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Saberikia
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Moridi Farimani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran.
| |
Collapse
|
88
|
Boronat M, Climent MJ, Concepción P, Díaz U, García H, Iborra S, Leyva-Pérez A, Liu L, Martínez A, Martínez C, Moliner M, Pérez-Pariente J, Rey F, Sastre E, Serna P, Valencia S. A Career in Catalysis: Avelino Corma. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mercedes Boronat
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Maria J. Climent
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Urbano Díaz
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Hermenegildo García
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Sara Iborra
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Lichen Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Agustin Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Cristina Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Manuel Moliner
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Joaquín Pérez-Pariente
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Fernando Rey
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Enrique Sastre
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Pedro Serna
- ExxonMobil Technology and Engineering Company, Catalysis Fundamentals, Annandale, New Jersey 08801, United States
| | - Susana Valencia
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
89
|
Du J, Huang Y, Huang Z, Wu G, Wu B, Han X, Chen C, Zheng X, Cui P, Wu Y, Jiang J, Hong X. Reversing the Catalytic Selectivity of Single-Atom Ru via Support Amorphization. JACS AU 2022; 2:1078-1083. [PMID: 35647593 PMCID: PMC9131367 DOI: 10.1021/jacsau.2c00192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Supported single-atom catalysts (SACs), with the extremely homogenized active sites could achieve high hydrogenation selectivity toward one of the functional groups coexisting in the reactant molecule. However, as to the target group, the control of selective recognition and activation by SACs still remains a challenge. Herein, the phase engineering of the support is adopted to control the chemo-recognition behavior of SACs in selective hydrogenation. Single-atom Ru on amorphous porous ultrathin TiO2 nanosheets (Ru1/a-TiO2) is constructed, in which Ru is more positively charged than that in the crystalline counterpart (Ru1/c-TiO2). Moreover, in the nitro/vinyl selective hydrogenation process, Ru1/a-TiO2 shows superior nitro selectivity, opposite to the vinyl selectivity of Ru1/c-TiO2. Density functional theory calculations for single-atom Ru of different charge states show that the reactant adsorption configuration could be inverted in the amorphous TiO2, accounting for the chemo-recognition behavior controlled by the phase of support.
Collapse
Affiliation(s)
- Junyi Du
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Division
of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Yan Huang
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zixiang Huang
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- National
Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei 230029, P. R. China
| | - Geng Wu
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Bei Wu
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiao Han
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Cai Chen
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xusheng Zheng
- National
Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei 230029, P. R. China
| | - Peixin Cui
- Key
Laboratory of Soil Environment and Pollution Remediation, Institute
of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Yuen Wu
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jun Jiang
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xun Hong
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
90
|
Negrete‐Vergara C, Álvarez‐Alcalde D, Moya SA, Paredes‐García V, Fuentes S, Venegas‐Yazigi D. Selective Hydrogenation of Aromatic Nitro Compounds Using Unsupported Nickel Catalysts. ChemistrySelect 2022. [DOI: 10.1002/slct.202200220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Camila Negrete‐Vergara
- Departamento de Química de los Materiales Universidad de Santiago de Chile Libertador Bernardo O'Higgins, 3363 Estación Central, CP 9170022 Chile
- Centro para el Desarrollo de la Nanociencia y Nanotecnología CEDENNA Universidad de Santiago de Chile Libertador Bernardo O'Higgins, 3363 Estación Central, CP 9170022 Chile
| | - Damián Álvarez‐Alcalde
- Departamento de Química de los Materiales Universidad de Santiago de Chile Libertador Bernardo O'Higgins, 3363 Estación Central, CP 9170022 Chile
| | - Sergio A. Moya
- Departamento de Química de los Materiales Universidad de Santiago de Chile Libertador Bernardo O'Higgins, 3363 Estación Central, CP 9170022 Chile
| | - Verónica Paredes‐García
- Centro para el Desarrollo de la Nanociencia y Nanotecnología CEDENNA Universidad de Santiago de Chile Libertador Bernardo O'Higgins, 3363 Estación Central, CP 9170022 Chile
- Departamento de Ciencias Químicas Universidad Andrés Bello República 276 Santiago, CP 8370134 Chile
| | - Sandra Fuentes
- Centro para el Desarrollo de la Nanociencia y Nanotecnología CEDENNA Universidad de Santiago de Chile Libertador Bernardo O'Higgins, 3363 Estación Central, CP 9170022 Chile
- Departamento de Ciencias Farmacéuticas Universidad Católica del Norte Angamos 0610 Antofagasta, CP 1270709 Chile
| | - Diego Venegas‐Yazigi
- Departamento de Química de los Materiales Universidad de Santiago de Chile Libertador Bernardo O'Higgins, 3363 Estación Central, CP 9170022 Chile
- Centro para el Desarrollo de la Nanociencia y Nanotecnología CEDENNA Universidad de Santiago de Chile Libertador Bernardo O'Higgins, 3363 Estación Central, CP 9170022 Chile
| |
Collapse
|
91
|
Bayzidi M, Zeynizadeh B. A uniformly anchored zirconocene complex on magnetic reduced graphene oxide (rGO@Fe 3O 4/ZrCp 2Cl x (x = 0, 1, 2)) as a novel and reusable nanocatalyst for synthesis of N-arylacetamides and reductive-acetylation of nitroarenes. RSC Adv 2022; 12:15020-15037. [PMID: 35702429 PMCID: PMC9112892 DOI: 10.1039/d2ra02293a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, a crafted zirconocene complex on rGO@Fe3O4 as a novel magnetic nanocatalyst was synthesized and then characterized using FT-IR, SEM, EDX, VSM, ICP-OES, TGA, BET and MS analyses. Next, catalytic activity of the prepared nanocomposite rGO@Fe3O4/ZrCp2Cl x (x = 0, 1, 2) towards successful reduction of aromatic nitro compounds to arylamines using N2H4·H2O (80%) was investigated. The examined nanocatalyst also showed perfect catalytic activity for reductive-acetylation of aromatic nitro compounds to the corresponding N-arylacetamides without isolation of the prepared in situ amines using the N2H4·H2O/Ac2O system. Furthermore, acetylation of the commercially available arylamines to the corresponding N-arylacetamides was carried out by acetic anhydride in the presence of the rGO@Fe3O4/ZrCp2Cl x (x = 0, 1, 2) nanocomposite. All reactions were carried out in refluxing EtOH as a green solvent to afford the products in high yields. The obtained results exhibited that the nanocomposite of rGO@Fe3O4/ZrCp2Cl x (x = 0, 1, 2) showed a great catalytic activity in comparison to rGO and rGO@Fe3O4 as the parent constituents. Recovery and reusability of rGO@Fe3O4/ZrCp2Cl x (x = 0, 1, 2) were also examined for 8 consecutive cycles without significant loss of the catalytic activity. This establishes the sustainable anchoring of the zirconocene complex on the surface and mesopores of the rGO@Fe3O4 nanohybrid system.
Collapse
Affiliation(s)
- Massood Bayzidi
- Department of Chemistry, Urmia University Urmia 5756151818 Iran
| | | |
Collapse
|
92
|
Ma Y, He D, Borjigin B, Yang X, Wang X, Bai F. Precisely tailoring selectivity via target group’s steered adsorption on Cu2O/tantalate catalysts for hydrogenation of 3‐nitrostyrene. ChemCatChem 2022. [DOI: 10.1002/cctc.202200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuxuan Ma
- Inner Mongolia University School of Chemistry and Chemical Engineering CHINA
| | - Dan He
- Inner Mongolia University School of Chemistry and Chemical Engineering CHINA
| | | | - Xiaoxue Yang
- Inner Mongolia University School of Chemistry and Chemical Engineering CHINA
| | - Xiaojing Wang
- Inner Mongolia University College of Chemistry and Chemical Engineering Daxue West Rd. 235 010021 Hohhot CHINA
| | - Fenghua Bai
- Inner Mongolia University School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
93
|
Chemo-, site-selective reduction of nitroarenes under blue-light, catalyst-free conditions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
94
|
Cheruvathoor Poulose A, Zoppellaro G, Konidakis I, Serpetzoglou E, Stratakis E, Tomanec O, Beller M, Bakandritsos A, Zbořil R. Fast and selective reduction of nitroarenes under visible light with an earth-abundant plasmonic photocatalyst. NATURE NANOTECHNOLOGY 2022; 17:485-492. [PMID: 35347273 PMCID: PMC9117130 DOI: 10.1038/s41565-022-01087-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Reduction of nitroaromatics to the corresponding amines is a key process in the fine and bulk chemicals industry to produce polymers, pharmaceuticals, agrochemicals and dyes. However, their effective and selective reduction requires high temperatures and pressurized hydrogen and involves noble metal-based catalysts. Here we report on an earth-abundant, plasmonic nano-photocatalyst, with an excellent reaction rate towards the selective hydrogenation of nitroaromatics. With solar light as the only energy input, the chalcopyrite catalyst operates through the combined action of hot holes and photothermal effects. Ultrafast laser transient absorption and light-induced electron paramagnetic resonance spectroscopies have unveiled the energy matching of the hot holes in the valence band of the catalyst with the frontier orbitals of the hydrogen and electron donor, via a transient coordination intermediate. Consequently, the reusable and sustainable copper-iron-sulfide (CuFeS2) catalyst delivers previously unattainable turnover frequencies, even in large-scale reactions, while the cost-normalized production rate stands an order of magnitude above the state of the art.
Collapse
Affiliation(s)
- Aby Cheruvathoor Poulose
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic.
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic
| | - Ioannis Konidakis
- Institute of Electronic Structure and Laser Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Efthymis Serpetzoglou
- Institute of Electronic Structure and Laser Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Ondřej Tomanec
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic
| | | | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic.
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic.
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic.
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic.
| |
Collapse
|
95
|
Zhao J, Yang W, Yuan H, Li X, Bing W, Han L, Wu K. ZIF-8@ZIF-67 Derived Co/NPHC Catalysts for Efficient and Selective Hydrogenation of Nitroarenes. Catal Letters 2022. [DOI: 10.1007/s10562-022-04016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
96
|
Partial Hydrogenation of Soybean and Waste Cooking Oil Biodiesel over Recyclable-Polymer-Supported Pd and Ni Nanoparticles. Catalysts 2022. [DOI: 10.3390/catal12050506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biodiesel obtained through the transesterification in methanol of vegetable oils, such as soybean oil (SO) and waste cooking oil (WCO), cannot be used as a biofuel for automotive applications due to the presence of polyunsaturated fatty esters, which have a detrimental effect on oxidation stability (OS). A method of upgrading this material is the catalytic partial hydrogenation of the fatty acid methyl ester (FAME) mixture. The target molecule of the partial hydrogenation reaction is monounsaturated methyl oleate (C18:1), which represents a good compromise between OS and the cold filter plugging point (CFPP) value, which becomes too high if the biodiesel consists of unsaturated fatty esters only. In the present work, polymer-supported palladium (Pd-pol) and nickel (Ni-pol) nanoparticles were separately tested as catalysts for upgrading SO and WCO biodiesels under mild conditions (room temperature for Pd-pol and T = 100 °C for Ni-pol) using dihydrogen (p = 10 bar) as the reductant. Both catalysts were obtained through co-polymerization of the metal containing monomer M(AAEMA)2 (M = Pd, Ni; AEEMA− = deprotonated form of 2-(acetoacetoxy)ethyl methacrylate)) with co-monomers (ethyl methacrylate for Pd and N,N-dimethylacrilamide for Ni) and cross-linkers (ethylene glycol dimethacrylate for Pd and N,N’-methylene bis-acrylamide for Ni), followed by reduction. The Pd-pol system became very active in the hydrogenation of C=C double bonds, but poorly selective towards the desirable C18:1 product. The Ni-pol catalyst was less active than Pd-pol, but very selective towards the mono-unsaturated product. Recyclability tests demonstrated that the Ni-based system retained its activity and selectivity with both the SO and WCO substrates for at least five subsequent runs, thus representing an opportunity for waste biomass valorization.
Collapse
|
97
|
Zhang G, Tang F, Wang X, Wang L, Liu YN. Atomically Dispersed Co–S–N Active Sites Anchored on Hierarchically Porous Carbon for Efficient Catalytic Hydrogenation of Nitro Compounds. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guangji Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Feiying Tang
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Foshan 528010, Guangdong, P. R. China
| | - Xin Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
98
|
Ma Z, Liu S, Tang N, Song T, Motokura K, Shen Z, Yang Y. Coexistence of Fe Nanoclusters Boosting Fe Single Atoms to Generate Singlet Oxygen for Efficient Aerobic Oxidation of Primary Amines to Imines. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhiming Ma
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiqiang Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanfang Tang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Song
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Ken Motokura
- Department of Chemistry and Life Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Yang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
99
|
Wang L, Wu Y, Yu C. An aniline vapor sensor with efficient aniline/BTEX selectivity based on hydroxyl functionalized zirconium metal-organic framework. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
100
|
Gou G, Che C, Wen H, Qin J, Cao X, Han W, Zhang F, Long Y, Ma J. θ-Al2O3/FeO1.25 possessing a special ring complex of FeII---HO===FeIII for the efficient catalytic semi-hydrogenation of acetylene under front–end conditions. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|