51
|
He B, Ma Y, Tian F, Zhao GR, Wu Y, Yuan YJ. YLC-assembly: large DNA assembly via yeast life cycle. Nucleic Acids Res 2023; 51:8283-8292. [PMID: 37486765 PMCID: PMC10450165 DOI: 10.1093/nar/gkad599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023] Open
Abstract
As an enabling technique of synthetic biology, the scale of DNA assembly largely determines the scale of genetic manipulation. However, large DNA assembly technologies are generally cumbersome and inefficient. Here, we developed a YLC (yeast life cycle)-assembly method that enables in vivo iterative assembly of large DNA by nesting cell-cell transfer of assembled DNA in the cycle of yeast mating and sporulation. Using this method, we successfully assembled a hundred-kilobase (kb)-sized endogenous yeast DNA and a megabase (Mb)-sized exogenous DNA. For each round, over 104 positive colonies per 107 cells could be obtained, with an accuracy ranging from 67% to 100%. Compared with other Mb-sized DNA assembly methods, this method exhibits a higher success rate with an easy-to-operate workflow that avoid in vitro operations of large DNA. YLC-assembly lowers the technical difficulty of Mb-sized DNA assembly and could be a valuable tool for large-scale genome engineering and synthetic genomics.
Collapse
Affiliation(s)
- Bo He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Yuan Ma
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Fangfang Tian
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Guang-Rong Zhao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
52
|
Zhang XE, Liu C, Dai J, Yuan Y, Gao C, Feng Y, Wu B, Wei P, You C, Wang X, Si T. Enabling technology and core theory of synthetic biology. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1742-1785. [PMID: 36753021 PMCID: PMC9907219 DOI: 10.1007/s11427-022-2214-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 02/09/2023]
Abstract
Synthetic biology provides a new paradigm for life science research ("build to learn") and opens the future journey of biotechnology ("build to use"). Here, we discuss advances of various principles and technologies in the mainstream of the enabling technology of synthetic biology, including synthesis and assembly of a genome, DNA storage, gene editing, molecular evolution and de novo design of function proteins, cell and gene circuit engineering, cell-free synthetic biology, artificial intelligence (AI)-aided synthetic biology, as well as biofoundries. We also introduce the concept of quantitative synthetic biology, which is guiding synthetic biology towards increased accuracy and predictability or the real rational design. We conclude that synthetic biology will establish its disciplinary system with the iterative development of enabling technologies and the maturity of the core theory.
Collapse
Affiliation(s)
- Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chenli Liu
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Junbiao Dai
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bian Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Wei
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Xiaowo Wang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Tong Si
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
53
|
Lahiri P, Martin MS, Lino BR, Scheck RA, Van Deventer JA. Dual Noncanonical Amino Acid Incorporation Enabling Chemoselective Protein Modification at Two Distinct Sites in Yeast. Biochemistry 2023; 62:2098-2114. [PMID: 37377426 PMCID: PMC11146674 DOI: 10.1021/acs.biochem.2c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Incorporation of more than one noncanonical amino acid (ncAA) within a single protein endows the resulting construct with multiple useful features such as augmented molecular recognition or covalent cross-linking capabilities. Herein, for the first time, we demonstrate the incorporation of two chemically distinct ncAAs into proteins biosynthesized in Saccharomyces cerevisiae. To complement ncAA incorporation in response to the amber (TAG) stop codon in yeast, we evaluated opal (TGA) stop codon suppression using three distinct orthogonal translation systems. We observed selective TGA readthrough without detectable cross-reactivity from host translation components. Readthrough efficiency at TGA was modulated by factors including the local nucleotide environment, gene deletions related to the translation process, and the identity of the suppressor tRNA. These observations facilitated systematic investigation of dual ncAA incorporation in both intracellular and yeast-displayed protein constructs, where we observed efficiencies up to 6% of wild-type protein controls. The successful display of doubly substituted proteins enabled the exploration of two critical applications on the yeast surface─(A) antigen binding functionality and (B) chemoselective modification with two distinct chemical probes through sequential application of two bioorthogonal click chemistry reactions. Lastly, by utilizing a soluble form of a doubly substituted construct, we validated the dual incorporation system using mass spectrometry and demonstrated the feasibility of conducting selective labeling of the two ncAAs sequentially using a "single-pot" approach. Overall, our work facilitates the addition of a 22nd amino acid to the genetic code of yeast and expands the scope of applications of ncAAs for basic biological research and drug discovery.
Collapse
Affiliation(s)
- Priyanka Lahiri
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, USA
| | - Meghan S. Martin
- Chemistry Department, Tufts University, Medford, Massachusetts 02155, USA
| | - Briana R. Lino
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, USA
| | - Rebecca A. Scheck
- Chemistry Department, Tufts University, Medford, Massachusetts 02155, USA
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, USA
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
54
|
Gambogi CW, Mer E, Brown DM, Yankson G, Gavade JN, Logsdon GA, Heun P, Glass JI, Black BE. Efficient Formation of Single-copy Human Artificial Chromosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547284. [PMID: 37546784 PMCID: PMC10402137 DOI: 10.1101/2023.06.30.547284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Large DNA assembly methodologies underlie milestone achievements in synthetic prokaryotic and budding yeast chromosomes. While budding yeast control chromosome inheritance through ~125 bp DNA sequence-defined centromeres, mammals and many other eukaryotes use large, epigenetic centromeres. Harnessing centromere epigenetics permits human artificial chromosome (HAC) formation but is not sufficient to avoid rampant multimerization of the initial DNA molecule upon introduction to cells. Here, we describe an approach that efficiently forms single-copy HACs. It employs a ~750 kb construct that is sufficiently large to house the distinct chromatin types present at the inner and outer centromere, obviating the need to multimerize. Delivery to mammalian cells is streamlined by employing yeast spheroplast fusion. These developments permit faithful chromosome engineering in the context of metazoan cells.
Collapse
Affiliation(s)
- Craig W. Gambogi
- Department of Biochemistry and Biophysics
- Graduate Program in Biochemistry and Molecular Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Elie Mer
- Department of Biochemistry and Biophysics
- Graduate Program in Biochemistry and Molecular Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | | | - George Yankson
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Janardan N. Gavade
- Department of Biochemistry and Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Glennis A. Logsdon
- Department of Biochemistry and Biophysics
- Graduate Program in Biochemistry and Molecular Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Patrick Heun
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | | - Ben E. Black
- Department of Biochemistry and Biophysics
- Graduate Program in Biochemistry and Molecular Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| |
Collapse
|
55
|
Zhao Y, Coelho C, Lauer S, Majewski M, Laurent JM, Brosh R, Boeke JD. CREEPY: CRISPR-mediated editing of synthetic episomes in yeast. Nucleic Acids Res 2023:gkad491. [PMID: 37326023 PMCID: PMC10359617 DOI: 10.1093/nar/gkad491] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/06/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023] Open
Abstract
Use of synthetic genomics to design and build 'big' DNA has revolutionized our ability to answer fundamental biological questions by employing a bottom-up approach. Saccharomyces cerevisiae, or budding yeast, has become the major platform to assemble large synthetic constructs thanks to its powerful homologous recombination machinery and the availability of well-established molecular biology techniques. However, introducing designer variations to episomal assemblies with high efficiency and fidelity remains challenging. Here we describe CRISPR Engineering of EPisomes in Yeast, or CREEPY, a method for rapid engineering of large synthetic episomal DNA constructs. We demonstrate that CRISPR editing of circular episomes presents unique challenges compared to modifying native yeast chromosomes. We optimize CREEPY for efficient and precise multiplex editing of >100 kb yeast episomes, providing an expanded toolkit for synthetic genomics.
Collapse
Affiliation(s)
- Yu Zhao
- Institute for Systems Genetics, NYU Langone Health, New York, NY10016, USA
| | - Camila Coelho
- Institute for Systems Genetics, NYU Langone Health, New York, NY10016, USA
| | - Stephanie Lauer
- Institute for Systems Genetics, NYU Langone Health, New York, NY10016, USA
| | - Miłosz Majewski
- Institute for Systems Genetics, NYU Langone Health, New York, NY10016, USA
- Maastricht Science Programme, Maastricht University, Maastricht6200MD, The Netherlands
| | - Jon M Laurent
- Institute for Systems Genetics, NYU Langone Health, New York, NY10016, USA
| | - Ran Brosh
- Institute for Systems Genetics, NYU Langone Health, New York, NY10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY10016, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY11201, USA
| |
Collapse
|
56
|
Abdullah M, Greco BM, Laurent JM, Garge RK, Boutz DR, Vandeloo M, Marcotte EM, Kachroo AH. Rapid, scalable, combinatorial genome engineering by marker-less enrichment and recombination of genetically engineered loci in yeast. CELL REPORTS METHODS 2023; 3:100464. [PMID: 37323580 PMCID: PMC10261898 DOI: 10.1016/j.crmeth.2023.100464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/30/2023] [Accepted: 04/12/2023] [Indexed: 06/17/2023]
Abstract
A major challenge to rationally building multi-gene processes in yeast arises due to the combinatorics of combining all of the individual edits into the same strain. Here, we present a precise and multi-site genome editing approach that combines all edits without selection markers using CRISPR-Cas9. We demonstrate a highly efficient gene drive that selectively eliminates specific loci by integrating CRISPR-Cas9-mediated double-strand break (DSB) generation and homology-directed recombination with yeast sexual assortment. The method enables marker-less enrichment and recombination of genetically engineered loci (MERGE). We show that MERGE converts single heterologous loci to homozygous loci at ∼100% efficiency, independent of chromosomal location. Furthermore, MERGE is equally efficient at converting and combining multiple loci, thus identifying compatible genotypes. Finally, we establish MERGE proficiency by engineering a fungal carotenoid biosynthesis pathway and most of the human α-proteasome core into yeast. Therefore, MERGE lays the foundation for scalable, combinatorial genome editing in yeast.
Collapse
Affiliation(s)
- Mudabir Abdullah
- Centre for Applied Synthetic Biology, Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC, Canada
| | - Brittany M. Greco
- Centre for Applied Synthetic Biology, Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC, Canada
| | - Jon M. Laurent
- Institute of Systems Genetics, NYU Langone Health, New York, NY, USA
| | - Riddhiman K. Garge
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Daniel R. Boutz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Michelle Vandeloo
- Centre for Applied Synthetic Biology, Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC, Canada
| | - Edward M. Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Aashiq H. Kachroo
- Centre for Applied Synthetic Biology, Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC, Canada
| |
Collapse
|
57
|
Coradini AL, Ne Ville C, Krieger ZA, Roemer J, Hull C, Yang S, Lusk DT, Ehrenreich IM. Building synthetic chromosomes from natural DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540074. [PMID: 37215047 PMCID: PMC10197684 DOI: 10.1101/2023.05.09.540074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
De novo chromosome synthesis is costly and time-consuming, limiting its use in research and biotechnology. Building synthetic chromosomes from natural components is an unexplored alternative with many potential applications. In this paper, we report CReATiNG (Cloning, Reprogramming, and Assembling Tiled Natural Genomic DNA), a method for constructing synthetic chromosomes from natural components in yeast. CReATiNG entails cloning segments of natural chromosomes and then programmably assembling them into synthetic chromosomes that can replace the native chromosomes in cells. We used CReATiNG to synthetically recombine chromosomes between strains and species, to modify chromosome structure, and to delete many linked, non-adjacent regions totaling 39% of a chromosome. The multiplex deletion experiment revealed that CReATiNG also enables recovery from flaws in synthetic chromosome design via recombination between a synthetic chromosome and its native counterpart. CReATiNG facilitates the application of chromosome synthesis to diverse biological problems.
Collapse
Affiliation(s)
- Alessandro L.V. Coradini
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Christopher Ne Ville
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Zachary A. Krieger
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Joshua Roemer
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Cara Hull
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Shawn Yang
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel T. Lusk
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ian M. Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
58
|
Zhou S, Wu Y, Zhao Y, Zhang Z, Jiang L, Liu L, Zhang Y, Tang J, Yuan YJ. Dynamics of synthetic yeast chromosome evolution shaped by hierarchical chromatin organization. Natl Sci Rev 2023; 10:nwad073. [PMID: 37223244 PMCID: PMC10202648 DOI: 10.1093/nsr/nwad073] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/07/2022] [Accepted: 02/02/2023] [Indexed: 11/12/2023] Open
Abstract
Synthetic genome evolution provides a dynamic approach for systematically and straightforwardly exploring evolutionary processes. Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution (SCRaMbLE) is an evolutionary system intrinsic to the synthetic yeast genome that can rapidly drive structural variations. Here, we detect over 260 000 rearrangement events after the SCRaMbLEing of a yeast strain harboring 5.5 synthetic yeast chromosomes (synII, synIII, synV, circular synVI, synIXR and synX). Remarkably, we find that the rearrangement events exhibit a specific landscape of frequency. We further reveal that the landscape is shaped by the combined effects of chromatin accessibility and spatial contact probability. The rearrangements tend to occur in 3D spatially proximal and chromatin-accessible regions. The enormous numbers of rearrangements mediated by SCRaMbLE provide a driving force to potentiate directed genome evolution, and the investigation of the rearrangement landscape offers mechanistic insights into the dynamics of genome evolution.
Collapse
Affiliation(s)
- Sijie Zhou
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yu Zhao
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Zhen Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Limin Jiang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Lin Liu
- Epigenetic Group, FrasergenBioinformatics Co., Ltd., Wuhan 430000, China
| | - Yan Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jijun Tang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
- Department of Computer Science, University of South Carolina, Columbia, SC 29208, USA
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
59
|
Xu X, Meier F, Blount BA, Pretorius IS, Ellis T, Paulsen IT, Williams TC. Trimming the genomic fat: minimising and re-functionalising genomes using synthetic biology. Nat Commun 2023; 14:1984. [PMID: 37031253 PMCID: PMC10082837 DOI: 10.1038/s41467-023-37748-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/30/2023] [Indexed: 04/10/2023] Open
Abstract
Naturally evolved organisms typically have large genomes that enable their survival and growth under various conditions. However, the complexity of genomes often precludes our complete understanding of them, and limits the success of biotechnological designs. In contrast, minimal genomes have reduced complexity and therefore improved engineerability, increased biosynthetic capacity through the removal of unnecessary genetic elements, and less recalcitrance to complete characterisation. Here, we review the past and current genome minimisation and re-functionalisation efforts, with an emphasis on the latest advances facilitated by synthetic genomics, and provide a critical appraisal of their potential for industrial applications.
Collapse
Affiliation(s)
- Xin Xu
- ARC Centre of Excellence in Synthetic Biology and School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Felix Meier
- ARC Centre of Excellence in Synthetic Biology and School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Benjamin A Blount
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Isak S Pretorius
- ARC Centre of Excellence in Synthetic Biology and School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Wellcome Trust Sanger Institute, Cambridgeshire, CB10 1SA, UK
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology and School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Thomas C Williams
- ARC Centre of Excellence in Synthetic Biology and School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
60
|
Xiong Y, Zhang H, Zhou S, Ma L, Xiao W, Wu Y, Yuan YJ. Structural Variations and Adaptations of Synthetic Chromosome Ends Driven by SCRaMbLE in Haploid and Diploid Yeasts. ACS Synth Biol 2023; 12:689-699. [PMID: 36821394 DOI: 10.1021/acssynbio.2c00424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Variations and adaptations of chromosome ends play an important role in eukaryotic karyotype evolution. Traditional experimental studies of the adaptations of chromosome ends mainly rely on the strategy of introducing defects; thus, the adaptation methods of survivors may vary depending on the initial defects. Here, using the SCRaMbLE strategy, we obtained a library of haploid and diploid synthetic strains with variations in chromosome ends. Analysis of the SCRaMbLEd survivors revealed four routes of adaptation: homologous recombination between nonhomologous chromosome arms (haploids) or homologous chromosome arms (diploids), site-specific recombination between intra- or interchromosomal ends, circularization of chromosomes, and loss of whole chromosomes (diploids). We also found that circularization of synthetic chromosomes can be generated by SCRaMbLE. Our study of various adaptation routes of chromosome ends provides insight into eukaryotic karyotype evolution from the viewpoint of synthetic genomics.
Collapse
Affiliation(s)
- Yao Xiong
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hui Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Sijie Zhou
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lu Ma
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
61
|
Zheng Y, Song K, Xie ZX, Han MZ, Guo F, Yuan YJ. Machine learning-aided scoring of synthesis difficulties for designer chromosomes. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-023-2306-x. [PMID: 36881317 DOI: 10.1007/s11427-023-2306-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Designer chromosomes are artificially synthesized chromosomes. Nowadays, these chromosomes have numerous applications ranging from medical research to the development of biofuels. However, some chromosome fragments can interfere with the chemical synthesis of designer chromosomes and eventually limit the widespread use of this technology. To address this issue, this study aimed to develop an interpretable machine learning framework to predict and quantify the synthesis difficulties of designer chromosomes in advance. Through the use of this framework, six key sequence features leading to synthesis difficulties were identified, and an eXtreme Gradient Boosting model was established to integrate these features. The predictive model achieved high-quality performance with an AUC of 0.895 in cross-validation and an AUC of 0.885 on an independent test set. Based on these results, the synthesis difficulty index (S-index) was proposed as a means of scoring and interpreting synthesis difficulties of chromosomes from prokaryotes to eukaryotes. The findings of this study emphasize the significant variability in synthesis difficulties between chromosomes and demonstrate the potential of the proposed model to predict and mitigate these difficulties through the optimization of the synthesis process and genome rewriting.
Collapse
Affiliation(s)
- Yan Zheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China.,School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Kai Song
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China.,School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ze-Xiong Xie
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China.,School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ming-Zhe Han
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China.,School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Fei Guo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China. .,School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China. .,School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
62
|
Zhang H, Xiong Y, Xiao W, Wu Y. Investigation of Genome Biology by Synthetic Genome Engineering. Bioengineering (Basel) 2023; 10:271. [PMID: 36829765 PMCID: PMC9952402 DOI: 10.3390/bioengineering10020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Synthetic genomes were designed based on an understanding of natural genomic information, offering an opportunity to engineer and investigate biological systems on a genome-wide scale. Currently, the designer version of the M. mycoides genome and the E. coli genome, as well as most of the S. cerevisiae genome, have been synthesized, and through the cycles of design-build-test and the following engineering of synthetic genomes, many fundamental questions of genome biology have been investigated. In this review, we summarize the use of synthetic genome engineering to explore the structure and function of genomes, and highlight the unique values of synthetic genomics.
Collapse
Affiliation(s)
- Hui Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yao Xiong
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
63
|
Juhas M. Synthetic Biology in Microbiology. BRIEF LESSONS IN MICROBIOLOGY 2023:79-91. [DOI: 10.1007/978-3-031-29544-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
64
|
Wang Q, Luo H, Zhuang J, Li X, Huang D, Hu Z, Zhang G. Chemical synthesis of left arm of Chlamydomonas reinhardtii mitochondrial genome and in vivo functional analysis. Front Microbiol 2022; 13:1064497. [PMID: 36620060 PMCID: PMC9813849 DOI: 10.3389/fmicb.2022.1064497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Chlamydomonas reinhardtii is a photosynthetic eukaryote showing great industrial potential. The synthesis and in vivo function of the artificial C. reinhardtii genome not only promotes the development of synthetic biology technology but also supports industries that utilize this algae. Mitochondrial genome (MtG) is the smallest and simplest genome of C. reinhardtii that suits synthetic exploration. In this article, we designed and assembled a synthetic mitochondria left arm (syn-LA) genome sharing >92% similarity to the original mitochondria genome (OMtG) left arm, transferred it into the respiratory defect strain cc-2654, screened syn-LA containing transformants from recovered dark-growth defects using PCR amplification, verified internal function of syn-LA via western blot, detected heteroplasmic ratio of syn-LA, tried promoting syn-LA into homoplasmic status with paromomycin stress, and discussed the main limitations and potential solutions for this area of research. This research supports the functionalization of a synthetic mitochondrial genome in living cells. Although further research is needed, this article nevertheless provides valuable guidance for the synthesis of eukaryotic organelle genomes and opens possible directions for future research.
Collapse
Affiliation(s)
- Quan Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Haolin Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jieyi Zhuang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xinyi Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Danqiong Huang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China,Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen, China,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Guiying Zhang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China,*Correspondence: Guiying Zhang,
| |
Collapse
|
65
|
Zhang T, Xu B, Feng J, Ge P, Li G, Zhang J, Zhou J, Jiang J. Synthesis and assembly of full-length cyanophage A-4L genome. Synth Syst Biotechnol 2022; 8:121-128. [PMID: 36605707 PMCID: PMC9803696 DOI: 10.1016/j.synbio.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Artificial cyanophages are considered to be an effective biological method to control harmful cyanobacterial bloom. However, no synthetic cyanophage genome has been constructed and where its obstacles are unclear. Here, we survey a stretch of 16 kb length sequence of cyanophage A-4L that is unclonable in Escherichia coli. We test 12 predicted promoters of cyanophage A-4L which were verified all active in E. coli. Next, we screen for eight ORFs that hindered the assembly of intermediate DNA fragments in E. coli and describe that seven ORFs in the 16 kb sequence could not be separately cloned in E. coli. All of unclonable ORFs in high-copy-number plasmid were successfully cloned using low-copy-number vector, suggesting that these ORFs were copy-number-dependent. We propose a clone strategy abandoned the promotor and the start codon that could be applied for unclonable ORFs. Last, we de novo synthesized and assembled the full-length genome of cyanophage A-4L. This work deepens the understanding of synthetic cyanophages studies.
Collapse
Affiliation(s)
- Ting Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Bonan Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Jia Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Pingbo Ge
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Guorui Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Jiabao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Jianting Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China,Corresponding author. School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Jianlan Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China,Corresponding author. School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
66
|
Al-Khairy D, Fu W, Alzahmi AS, Twizere JC, Amin SA, Salehi-Ashtiani K, Mystikou A. Closing the Gap between Bio-Based and Petroleum-Based Plastic through Bioengineering. Microorganisms 2022; 10:microorganisms10122320. [PMID: 36557574 PMCID: PMC9787566 DOI: 10.3390/microorganisms10122320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Bioplastics, which are plastic materials produced from renewable bio-based feedstocks, have been investigated for their potential as an attractive alternative to petroleum-based plastics. Despite the harmful effects of plastic accumulation in the environment, bioplastic production is still underdeveloped. Recent advances in strain development, genome sequencing, and editing technologies have accelerated research efforts toward bioplastic production and helped to advance its goal of replacing conventional plastics. In this review, we highlight bioengineering approaches, new advancements, and related challenges in the bioproduction and biodegradation of plastics. We cover different types of polymers, including polylactic acid (PLA) and polyhydroxyalkanoates (PHAs and PHBs) produced by bacterial, microalgal, and plant species naturally as well as through genetic engineering. Moreover, we provide detailed information on pathways that produce PHAs and PHBs in bacteria. Lastly, we present the prospect of using large-scale genome engineering to enhance strains and develop microalgae as a sustainable production platform.
Collapse
Affiliation(s)
- Dina Al-Khairy
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Weiqi Fu
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Department of Marine Science, Ocean College, Zhejiang University & Donghai Laboratory, Zhoushan 316021, China
| | - Amnah Salem Alzahmi
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Jean-Claude Twizere
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Laboratory of Viral Interactomes Networks, Unit of Molecular Biology of Diseases, Interdisciplinary Cluster for Applied Genoproteomics (GIGA Institute), University of Liège, 4000 Liège, Belgium
| | - Shady A. Amin
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Kourosh Salehi-Ashtiani
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Correspondence: (K.S.-A.); (A.M.)
| | - Alexandra Mystikou
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Correspondence: (K.S.-A.); (A.M.)
| |
Collapse
|
67
|
Bird J, Marles-Wright J, Giachino A. A User's Guide to Golden Gate Cloning Methods and Standards. ACS Synth Biol 2022; 11:3551-3563. [PMID: 36322003 PMCID: PMC9680027 DOI: 10.1021/acssynbio.2c00355] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/06/2022]
Abstract
The continual demand for specialized molecular cloning techniques that suit a broad range of applications has driven the development of many different cloning strategies. One method that has gained significant traction is Golden Gate assembly, which achieves hierarchical assembly of DNA parts by utilizing Type IIS restriction enzymes to produce user-specified sticky ends on cut DNA fragments. This technique has been modularized and standardized, and includes different subfamilies of methods, the most widely adopted of which are the MoClo and Golden Braid standards. Moreover, specialized toolboxes tailored to specific applications or organisms are also available. Still, the quantity and range of assembly methods can constitute a barrier to adoption for new users, and even experienced scientists might find it difficult to discern which tools are best suited toward their goals. In this review, we provide a beginner-friendly guide to Golden Gate assembly, compare the different available standards, and detail the specific features and quirks of commonly used toolboxes. We also provide an update on the state-of-the-art in Golden Gate technology, discussing recent advances and challenges to inform existing users and promote standard practices.
Collapse
Affiliation(s)
- Jasmine
E. Bird
- School
of Computing, Faculty of Science Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Jon Marles-Wright
- Biosciences
Institute, Faculty of Medical Sciences, Newcastle University, Newcastle
upon Tyne, NE2 4HH, United
Kingdom
| | - Andrea Giachino
- Biosciences
Institute, Faculty of Medical Sciences, Newcastle University, Newcastle
upon Tyne, NE2 4HH, United
Kingdom
- School
of Science, Engineering & Environment, University of Salford, Salford, M5 4NT, United Kingdom
| |
Collapse
|
68
|
Zhou J, Liu Y, Guo X, Birchler JA, Han F, Su H. Centromeres: From chromosome biology to biotechnology applications and synthetic genomes in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2051-2063. [PMID: 35722725 PMCID: PMC9616519 DOI: 10.1111/pbi.13875] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 05/11/2023]
Abstract
Centromeres are the genomic regions that organize and regulate chromosome behaviours during cell cycle, and their variations are associated with genome instability, karyotype evolution and speciation in eukaryotes. The highly repetitive and epigenetic nature of centromeres were documented during the past half century. With the aid of rapid expansion in genomic biotechnology tools, the complete sequence and structural organization of several plant and human centromeres were revealed recently. Here, we systematically summarize the current knowledge of centromere biology with regard to the DNA compositions and the histone H3 variant (CENH3)-dependent centromere establishment and identity. We discuss the roles of centromere to ensure cell division and to maintain the three-dimensional (3D) genomic architecture in different species. We further highlight the potential applications of manipulating centromeres to generate haploids or to induce polyploids offspring in plant for breeding programs, and of targeting centromeres with CRISPR/Cas for chromosome engineering and speciation. Finally, we also assess the challenges and strategies for de novo design and synthesis of centromeres in plant artificial chromosomes. The biotechnology applications of plant centromeres will be of great potential for the genetic improvement of crops and precise synthetic breeding in the future.
Collapse
Affiliation(s)
- Jingwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryShenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityWuhanChina
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Xianrui Guo
- Laboratory of Plant Chromosome Biology and Genomic Breeding, School of Life SciencesLinyi UniversityLinyiChina
| | - James A. Birchler
- Division of Biological SciencesUniversity of MissouriColumbiaMissouriUSA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryShenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
69
|
Takamori S, Cicuta P, Takeuchi S, Di Michele L. DNA-assisted selective electrofusion (DASE) of Escherichia coli and giant lipid vesicles. NANOSCALE 2022; 14:14255-14267. [PMID: 36129323 PMCID: PMC9536516 DOI: 10.1039/d2nr03105a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/24/2022] [Indexed: 05/27/2023]
Abstract
Synthetic biology and cellular engineering require chemical and physical alterations, which are typically achieved by fusing target cells with each other or with payload-carrying vectors. On one hand, electrofusion can efficiently induce the merging of biological cells and/or synthetic analogues via the application of intense DC pulses, but it lacks selectivity and often leads to uncontrolled fusion. On the other hand, synthetic DNA-based constructs, inspired by natural fusogenic proteins, have been shown to induce a selective fusion between membranes, albeit with low efficiency. Here we introduce DNA-assisted selective electrofusion (DASE) which relies on membrane-anchored DNA constructs to bring together the objects one seeks to merge, and applying an electric impulse to trigger their fusion. The DASE process combines the efficiency of standard electrofusion and the selectivity of fusogenic nanostructures, as we demonstrate by inducing and characterizing the fusion of spheroplasts derived from Escherichia coli bacteria with cargo-carrying giant lipid vesicles.
Collapse
Affiliation(s)
- Sho Takamori
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan.
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Pietro Cicuta
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
| | - Shoji Takeuchi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan.
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan
- International Research Center for Neurointelligence (IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan
| | - Lorenzo Di Michele
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
- Department of Chemistry, Imperial College London, London W12 0BZ, UK.
- fabriCELL, Imperial College London, London W12 0BZ, UK
| |
Collapse
|
70
|
Zhang H, Fu X, Gong X, Wang Y, Zhang H, Zhao Y, Shen Y. Systematic dissection of key factors governing recombination outcomes by GCE-SCRaMbLE. Nat Commun 2022; 13:5836. [PMID: 36192484 PMCID: PMC9530153 DOI: 10.1038/s41467-022-33606-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022] Open
Abstract
With the completion of Sc2.0 chromosomes, synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE) becomes more critical for in-depth investigation of fundamental biological questions and screening of industrially valuable characteristics. Further applications, however, are hindered due to the lack of facile and tight regulation of the SCRaMbLE process, and limited understanding of key factors that may affect the rearrangement outcomes. Here we propose an approach to precisely regulate SCRaMbLE recombination in a dose-dependent manner using genetic code expansion (GCE) technology with low basal activity. By systematically analyzing 1380 derived strains and six yeast pools subjected to GCE-SCRaMbLE, we find that Cre enzyme abundance, genome ploidy and chromosome conformation play key roles in recombination frequencies and determine the SCRaMbLE outcomes. With these insights, the GCE-SCRaMbLE system will serve as a powerful tool in the future exploitation and optimization of the Sc2.0-related technologies.
Collapse
Affiliation(s)
- Huiming Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research-Shenzhen, BGI, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, 518120, China
| | - Xian Fu
- BGI Research-Shenzhen, BGI, Shenzhen, 518083, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, 518120, China.
- BGI Research-Changzhou, BGI, Changzhou, 213000, China.
| | - Xuemei Gong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research-Shenzhen, BGI, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, 518120, China
| | - Yun Wang
- BGI Research-Shenzhen, BGI, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, 518120, China
- BGI Research-Changzhou, BGI, Changzhou, 213000, China
| | - Haolin Zhang
- BGI Research-Shenzhen, BGI, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, 518120, China
| | - Yu Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, 10016, USA
| | - Yue Shen
- BGI Research-Shenzhen, BGI, Shenzhen, 518083, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, 518120, China.
- BGI Research-Changzhou, BGI, Changzhou, 213000, China.
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
71
|
Gomide MDS, Leitão MDC, Coelho CM. Biocircuits in plants and eukaryotic algae. FRONTIERS IN PLANT SCIENCE 2022; 13:982959. [PMID: 36212277 PMCID: PMC9545776 DOI: 10.3389/fpls.2022.982959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
As one of synthetic biology's foundations, biocircuits are a strategy of genetic parts assembling to recognize a signal and to produce a desirable output to interfere with a biological function. In this review, we revisited the progress in the biocircuits technology basis and its mandatory elements, such as the characterization and assembly of functional parts. Furthermore, for a successful implementation, the transcriptional control systems are a relevant point, and the computational tools help to predict the best combinations among the biological parts planned to be used to achieve the desirable phenotype. However, many challenges are involved in delivering and stabilizing the synthetic structures. Some research experiences, such as the golden crops, biosensors, and artificial photosynthetic structures, can indicate the positive and limiting aspects of the practice. Finally, we envision that the modulatory structural feature and the possibility of finer gene regulation through biocircuits can contribute to the complex design of synthetic chromosomes aiming to develop plants and algae with new or improved functions.
Collapse
Affiliation(s)
- Mayna da Silveira Gomide
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
- School of Medicine, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Matheus de Castro Leitão
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| | - Cíntia Marques Coelho
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| |
Collapse
|
72
|
Kang J, Li J, Guo Z, Zhou S, Su S, Xiao W, Wu Y, Yuan Y. Enhancement and mapping of tolerance to salt stress and 5-fluorocytosine in synthetic yeast strains via SCRaMbLE. Synth Syst Biotechnol 2022; 7:869-877. [PMID: 35601823 PMCID: PMC9096473 DOI: 10.1016/j.synbio.2022.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Varied environmental stress can affect cell growth and activity of the cellular catalyst. Traditional path of adaptive evolution generally takes a long time to achieve a tolerance phenotype, meanwhile, it is a challenge to dissect the underlying genetic mechanism. Here, using SCRaMbLE, a genome scale tool to generate random structural variations, a total of 222 evolved yeast strains with enhanced environmental tolerances were obtained in haploid or diploid yeasts containing six synthetic chromosomes. Whole genome sequencing of the evolved strains revealed that these strains generated different structural variants. Notably, by phenotypic-genotypic analysis of the SCRaMbLEd strains, we find that a deletion of gene YFR009W (GCN20) can improve salt tolerance of Saccharomyces cerevisiae, and a deletion of gene YER056C can improve 5-flucytosine tolerance of Saccharomyces cerevisiae. This study shows applications of SCRaMbLE to accelerate phenotypic evolution for varied environmental stress and to explore relationships between structural variations and evolved phenotypes.
Collapse
Affiliation(s)
- Jianping Kang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jieyi Li
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhou Guo
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Sijie Zhou
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Shuxin Su
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yi Wu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
73
|
Liu S, Feng J, Sun T, Xu B, Zhang J, Li G, Zhou J, Jiang J. The Synthesis and Assembly of a Truncated Cyanophage Genome and Its Expression in a Heterogenous Host. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081234. [PMID: 36013413 PMCID: PMC9410186 DOI: 10.3390/life12081234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
Cyanophages play an important role in regulating the dynamics of cyanobacteria communities in the hydrosphere, representing a promising biological control strategy for cyanobacterial blooms. Nevertheless, most cyanophages are host-specific, making it difficult to control blooming cyanobacteria via single or multiple cyanophages. In order to address the issue, we explore the interaction between cyanophages and their heterologous hosts, with the aim of revealing the principles of designing and constructing an artificial cyanophage genome towards multiple cyanobacterial hosts. In the present study, we use synthetic biological approaches to assess the impact of introducing a fragment of cyanophage genome into a heterologous cyanobacterium under a variety of environmental conditions. Based on a natural cyanophage A-4L genome (41,750 bp), a truncated cyanophage genome Syn-A-4-8 is synthesized and assembled in Saccharomyces cerevisiae. We found that a 351-15,930 bp area of the A-4L genome has a fragment that is lethal to Escherichia coli during the process of attempting to assemble the full-length A-4L genome. Syn-A-4-8 was successfully introduced into E. coli and then transferred into the model cyanobacterium Synechococcus elongatus PCC 7942 (Syn7942) via conjugation. Although no significant phenotypes of Syn7942 carrying Syn-A-4-8 (LS-02) could be observed under normal conditions, its growth exhibited a prolonged lag phase compared to that of the control strain under 290-millimolar NaCl stress. Finally, the mechanisms of altered salt tolerance in LS-02 were revealed through comparative transcriptomics, and ORF25 and ORF26 on Syn-A-4-8 turned out to be the key genes causing the phenotype. Our research represents an important attempt in designing artificial cyanophages towards multiple hosts, and offers new future insights into the control of cyanobacterial blooms.
Collapse
Affiliation(s)
- Shujing Liu
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jia Feng
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Tao Sun
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| | - Bonan Xu
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jiabao Zhang
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Guorui Li
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jianting Zhou
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Correspondence: (J.Z.); (J.J.)
| | - Jianlan Jiang
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Correspondence: (J.Z.); (J.J.)
| |
Collapse
|
74
|
Multiplex base editing to convert TAG into TAA codons in the human genome. Nat Commun 2022; 13:4482. [PMID: 35918324 PMCID: PMC9345975 DOI: 10.1038/s41467-022-31927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Whole-genome recoding has been shown to enable nonstandard amino acids, biocontainment and viral resistance in bacteria. Here we take the first steps to extend this to human cells demonstrating exceptional base editing to convert TAG to TAA for 33 essential genes via a single transfection, and examine base-editing genome-wide (observing ~40 C-to-T off-target events in essential gene exons). We also introduce GRIT, a computational tool for recoding. This demonstrates the feasibility of recoding, and highly multiplex editing in mammalian cells. Whole-genome recoding has been shown to enable nonstandard amino acids, biocontainment and viral resistance in bacteria. Here the authors extend this to human cells using base editing to convert TAG to TAA for 33 essential genes via a single transfection followed by examining base-editing genome-wide.
Collapse
|
75
|
Venter JC, Glass JI, Hutchison CA, Vashee S. Synthetic chromosomes, genomes, viruses, and cells. Cell 2022; 185:2708-2724. [PMID: 35868275 PMCID: PMC9347161 DOI: 10.1016/j.cell.2022.06.046] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
Synthetic genomics is the construction of viruses, bacteria, and eukaryotic cells with synthetic genomes. It involves two basic processes: synthesis of complete genomes or chromosomes and booting up of those synthetic nucleic acids to make viruses or living cells. The first synthetic genomics efforts resulted in the construction of viruses. This led to a revolution in viral reverse genetics and improvements in vaccine design and manufacture. The first bacterium with a synthetic genome led to construction of a minimal bacterial cell and recoded Escherichia coli strains able to incorporate multiple non-standard amino acids in proteins and resistant to phage infection. Further advances led to a yeast strain with a synthetic genome and new approaches for animal and plant artificial chromosomes. On the horizon there are dramatic advances in DNA synthesis that will enable extraordinary new opportunities in medicine, industry, agriculture, and research.
Collapse
Affiliation(s)
- J Craig Venter
- The J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA.
| | - John I Glass
- The J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
| | | | - Sanjay Vashee
- The J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
| |
Collapse
|
76
|
Kutyna DR, Onetto CA, Williams TC, Goold HD, Paulsen IT, Pretorius IS, Johnson DL, Borneman AR. Construction of a synthetic Saccharomyces cerevisiae pan-genome neo-chromosome. Nat Commun 2022; 13:3628. [PMID: 35750675 PMCID: PMC9232646 DOI: 10.1038/s41467-022-31305-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
The Synthetic Yeast Genome Project (Sc2.0) represents the first foray into eukaryotic genome engineering and a framework for designing and building the next generation of industrial microbes. However, the laboratory strain S288c used lacks many of the genes that provide phenotypic diversity to industrial and environmental isolates. To address this shortcoming, we have designed and constructed a neo-chromosome that contains many of these diverse pan-genomic elements and which is compatible with the Sc2.0 design and test framework. The presence of this neo-chromosome provides phenotypic plasticity to the Sc2.0 parent strain, including expanding the range of utilizable carbon sources. We also demonstrate that the induction of programmable structural variation (SCRaMbLE) provides genetic diversity on which further adaptive gains could be selected. The presence of this neo-chromosome within the Sc2.0 backbone may therefore provide the means to adapt synthetic strains to a wider variety of environments, a process which will be vital to transitioning Sc2.0 from the laboratory into industrial applications. The Sc2.0 consortia is reengineering the yeast genome. To expand the Sc2.0 genetic repertoire, the authors build a neo-chromosome comprising variable loci from diverse yeast isolates, providing phenotypic plasticity for use in synthetic backgrounds.
Collapse
Affiliation(s)
- Dariusz R Kutyna
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA, 5064, Australia
| | - Cristobal A Onetto
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA, 5064, Australia
| | - Thomas C Williams
- ARC Centre of Excellence in Synthetic Biology and Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2019, Australia
| | - Hugh D Goold
- ARC Centre of Excellence in Synthetic Biology and Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2019, Australia.,New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW, 2568, Australia
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology and Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2019, Australia
| | - Isak S Pretorius
- ARC Centre of Excellence in Synthetic Biology and Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2019, Australia.,The Chancellery, Macquarie University, Sydney, NSW, 2109, Australia
| | - Daniel L Johnson
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA, 5064, Australia.,The Chancellery, Macquarie University, Sydney, NSW, 2109, Australia
| | - Anthony R Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA, 5064, Australia. .,School of Wine, Food and Agriculture, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
77
|
Zhang W, Brosh R, McCulloch LH, Zhu Y, Ashe H, Ellis G, Camellato BR, Kim SY, Maurano MT, Boeke JD. A conditional counterselectable Piga knockout in mouse embryonic stem cells for advanced genome writing applications. iScience 2022; 25:104438. [PMID: 35692632 PMCID: PMC9184564 DOI: 10.1016/j.isci.2022.104438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 03/18/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Overwriting counterselectable markers is an efficient strategy for removing wild-type DNA or replacing it with payload DNA of interest. Currently, one bottleneck of efficient genome engineering in mammals is the shortage of counterselectable (negative selection) markers that work robustly without affecting organismal developmental potential. Here, we report a conditional Piga knockout strategy that enables efficient proaerolysin-based counterselection in mouse embryonic stem cells. The conditional Piga knockout cells show similar proaerolysin resistance as full (non-conditional) Piga deletion cells, which enables the use of a PIGA transgene as a counterselectable marker for genome engineering purposes. Native Piga function is readily restored in conditional Piga knockout cells to facilitate subsequent mouse development. We also demonstrate the generality of our strategy by engineering a conditional knockout of endogenous Hprt. Taken together, our work provides a new tool for advanced mouse genome writing and mouse model establishment.
Collapse
Affiliation(s)
- Weimin Zhang
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Ran Brosh
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Laura H McCulloch
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Yinan Zhu
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Hannah Ashe
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Gwen Ellis
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | | | - Sang Yong Kim
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Matthew T Maurano
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA.,Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| |
Collapse
|
78
|
Sun T, Song J, Wang M, Zhao C, Zhang W. Challenges and recent progress in the governance of biosecurity risks in the era of synthetic biology. JOURNAL OF BIOSAFETY AND BIOSECURITY 2022. [DOI: 10.1016/j.jobb.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
79
|
Mori H, Yachie N. A framework to efficiently describe and share reproducible DNA materials and construction protocols. Nat Commun 2022; 13:2894. [PMID: 35610233 PMCID: PMC9130275 DOI: 10.1038/s41467-022-30588-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/10/2022] [Indexed: 12/02/2022] Open
Abstract
DNA constructs and their annotated sequence maps have been rapidly accumulating with the advancement of DNA cloning, synthesis, and assembly methods. Such resources have also been utilized in designing and building new DNA materials. However, as commonly seen in the life sciences, no framework exists to describe reproducible DNA construction processes. Furthermore, the use of previously developed DNA materials and building protocols is usually not appropriately credited. Here, we report a framework QUEEN (framework to generate quinable and efficiently editable nucleotide sequence resources) to resolve these issues and accelerate the building of DNA. QUEEN enables the flexible design of new DNA by using existing DNA material resource files and recording its construction process in an output file (GenBank file format). A GenBank file generated by QUEEN can regenerate the process code such that it perfectly clones itself and bequeaths the same process code to its successive GenBank files, recycling its partial DNA resources. QUEEN-generated GenBank files are compatible with existing DNA repository services and software. We propose QUEEN as a solution to start significantly advancing the material and protocol sharing of DNA resources.
Collapse
Affiliation(s)
- Hideto Mori
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0035, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882, Japan
| | - Nozomu Yachie
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan.
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
80
|
Ye Y, Zhong M, Zhang Z, Chen T, Shen Y, Lin Z, Wang Y. Genomic Iterative Replacements of Large Synthetic DNA Fragments in Corynebacterium glutamicum. ACS Synth Biol 2022; 11:1588-1599. [PMID: 35290032 DOI: 10.1021/acssynbio.1c00644] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetic genomics will advance our understanding of life and allow us to rebuild the genomes of industrial microorganisms for enhancing performances. Corynebacterium glutamicum, a Gram-positive bacterium, is an important industrial workhorse. However, its genome synthesis is impeded by the low efficiencies in DNA delivery and in genomic recombination/replacement. In the present study, we describe a genomic iterative replacement system based on RecET recombination for C. glutamicum, involving the successive integration of up to 10 kb DNA fragments obtained in vitro, and the transformants are selected by the alternative use of kanR and speR selectable markers. As a proof of concept, we systematically redesigned and replaced a 54.3 kb wild-type sequence of C. glutamicumATCC13032 with its 55.1 kb synthetic counterpart with several novel features, including decoupled genes, the standard PCRTags, and 20 loxPsym sites, which was for the first time incorporated into a bacterial genome. The resulting strain semi-synCG-A1 had a phenotype and fitness similar to the wild-type strain under various stress conditions. The stability of the synthetic genome region faithfully maintained over 100 generations of nonselective growth. Genomic deletions, inversions, and translocations occurred in the synthetic genome region upon induction of synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE), revealing potential genetic flexibility for C. glutamicum. This strategy can be used for the synthesis of a larger region of the genome and facilitate the endeavors for metabolic engineering and synthetic biology of C. glutamicum.
Collapse
Affiliation(s)
- Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou 510006, China
| | - Minmin Zhong
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou 510006, China
| | - Zhanhua Zhang
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou 510006, China
| | - Tai Chen
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Yue Shen
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou 510006, China
| | - Yun Wang
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| |
Collapse
|
81
|
Ping Z, Chen S, Zhou G, Huang X, Zhu SJ, Zhang H, Lee HH, Lan Z, Cui J, Chen T, Zhang W, Yang H, Xu X, Church GM, Shen Y. Towards practical and robust DNA-based data archiving using the yin-yang codec system. NATURE COMPUTATIONAL SCIENCE 2022; 2:234-242. [PMID: 38177542 PMCID: PMC10766522 DOI: 10.1038/s43588-022-00231-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/18/2022] [Indexed: 01/06/2024]
Abstract
DNA is a promising data storage medium due to its remarkable durability and space-efficient storage. Early bit-to-base transcoding schemes have primarily pursued information density, at the expense of introducing biocompatibility challenges or decoding failure. Here we propose a robust transcoding algorithm named the yin-yang codec, using two rules to encode two binary bits into one nucleotide, to generate DNA sequences that are highly compatible with synthesis and sequencing technologies. We encoded two representative file formats and stored them in vitro as 200 nt oligo pools and in vivo as a ~54 kbps DNA fragment in yeast cells. Sequencing results show that the yin-yang codec exhibits high robustness and reliability for a wide variety of data types, with an average recovery rate of 99.9% above 104 molecule copies and an achieved recovery rate of 87.53% at ≤102 copies. Additionally, the in vivo storage demonstration achieved an experimentally measured physical density close to the theoretical maximum.
Collapse
Affiliation(s)
- Zhi Ping
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
- George Church Institute of Regenesis, BGI-Shenzhen, Shenzhen, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shihong Chen
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
- George Church Institute of Regenesis, BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Guangyu Zhou
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | | | - Sha Joe Zhu
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Haoling Zhang
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
- George Church Institute of Regenesis, BGI-Shenzhen, Shenzhen, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Henry H Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Zhaojun Lan
- School of Mathematical Science, Capital Normal University, Beijing, China
| | - Jie Cui
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
- George Church Institute of Regenesis, BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Tai Chen
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
- George Church Institute of Regenesis, BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Wenwei Zhang
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
- George Church Institute of Regenesis, BGI-Shenzhen, Shenzhen, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China.
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- China National GeneBank, BGI-Shenzhen, Shenzhen, China.
| | - George M Church
- George Church Institute of Regenesis, BGI-Shenzhen, Shenzhen, China.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| | - Yue Shen
- BGI-Shenzhen, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China.
- George Church Institute of Regenesis, BGI-Shenzhen, Shenzhen, China.
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
82
|
Aydin O, Passaro AP, Raman R, Spellicy SE, Weinberg RP, Kamm RD, Sample M, Truskey GA, Zartman J, Dar RD, Palacios S, Wang J, Tordoff J, Montserrat N, Bashir R, Saif MTA, Weiss R. Principles for the design of multicellular engineered living systems. APL Bioeng 2022; 6:010903. [PMID: 35274072 PMCID: PMC8893975 DOI: 10.1063/5.0076635] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Remarkable progress in bioengineering over the past two decades has enabled the formulation of fundamental design principles for a variety of medical and non-medical applications. These advancements have laid the foundation for building multicellular engineered living systems (M-CELS) from biological parts, forming functional modules integrated into living machines. These cognizant design principles for living systems encompass novel genetic circuit manipulation, self-assembly, cell-cell/matrix communication, and artificial tissues/organs enabled through systems biology, bioinformatics, computational biology, genetic engineering, and microfluidics. Here, we introduce design principles and a blueprint for forward production of robust and standardized M-CELS, which may undergo variable reiterations through the classic design-build-test-debug cycle. This Review provides practical and theoretical frameworks to forward-design, control, and optimize novel M-CELS. Potential applications include biopharmaceuticals, bioreactor factories, biofuels, environmental bioremediation, cellular computing, biohybrid digital technology, and experimental investigations into mechanisms of multicellular organisms normally hidden inside the "black box" of living cells.
Collapse
Affiliation(s)
| | - Austin P. Passaro
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia 30602, USA
| | - Ritu Raman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - Robert P. Weinberg
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts 02115, USA
| | | | - Matthew Sample
- Center for Ethics and Law in the Life Sciences, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Jeremiah Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Roy D. Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sebastian Palacios
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Jason Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jesse Tordoff
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Nuria Montserrat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | | | - M. Taher A. Saif
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ron Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
83
|
Zhang Z, Liao D, Ma Y, Jia B, Yuan Y. Orthogonality of Redesigned
tRNA
Molecules with Three Stop Codons. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhao‐Yang Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300072 China
| | - Dan‐Ni Liao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300072 China
| | - Yu‐Xin Ma
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300072 China
| | - Bin Jia
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300072 China
| | - Ying‐Jin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300072 China
| |
Collapse
|
84
|
Artificial nondirectional site-specific recombination systems. iScience 2022; 25:103716. [PMID: 35072008 PMCID: PMC8762395 DOI: 10.1016/j.isci.2021.103716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/23/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022] Open
Abstract
Site-specific recombination systems (SRSs) are widely used in studies on synthetic biology and related disciplines. Nondirectional SRSs can randomly trigger excision, integration, reversal, and translocation, which are effective tools to achieve large-scale genome recombination. In this study, we designed 6 new nondirectional SRSs named Vika/voxsym1-4 and Dre/roxsym1-2. All 6 artificial nondirectional SRSs were able to generate random deletion and inversion in Saccharomyces cerevisiae. Moreover, all six SRSs were orthogonal to Cre/loxPsym. The pairwise orthogonal nondirected SRSs can simultaneously initiate large-scale and independent gene recombination in two different regions of the genome, which could not be accomplished using previous orthogonal systems. These SRSs were found to be robust while working in the cells at different growth stages, as well as in the different spatial structure of the chromosome. These artificial pairwise orthogonal nondirected SRSs offer newfound potential for site-specific recombination in synthetic biology.
Designed six new artificial nondirectional site-specific recombination systems Pairwise orthogonal nondirected recombination systems in yeast The deletion efficiency of systems is far greater than the inversion efficiency These nondirectional recombination systems were found to be robust
Collapse
|
85
|
Zhao H, Wei W, Zhao C, Xie Z. Genomic markers on synthetic genomes. Eng Life Sci 2021; 21:825-831. [PMID: 34899119 PMCID: PMC8638323 DOI: 10.1002/elsc.202100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/13/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Genome synthesis endows scientists the ability of de novo creating genomes absent in nature, by thorough redesigning DNA sequences and introducing numerous custom features. However, the genome synthesis is a labor- and time-consuming work, and thus it is a challenge to verify and quantify the synthetic genome rapidly and precisely. Thus, specific DNA sequences different from native genomic sequences are designed into synthetic genomes during synthesis, namely genomic markers. Genomic markers can be easily detected by PCR reaction, whole-genome sequencing (WGS) and a variety of methods to identify the synthetic genome from native one. Here, we review types and applications of genomic markers utilized in synthetic genomes, with the hope of providing a guidance for future works.
Collapse
Affiliation(s)
- Hao‐Qian Zhao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)School of Chemical Engineering and TechnologyTianjin UniversityTianjinP. R. China
| | - Wen‐Qing Wei
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)School of Chemical Engineering and TechnologyTianjin UniversityTianjinP. R. China
| | - Chao Zhao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)School of Chemical Engineering and TechnologyTianjin UniversityTianjinP. R. China
| | - Ze‐Xiong Xie
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)School of Chemical Engineering and TechnologyTianjin UniversityTianjinP. R. China
| |
Collapse
|
86
|
Stieglitz JT, Potts KA, Van Deventer JA. Broadening the Toolkit for Quantitatively Evaluating Noncanonical Amino Acid Incorporation in Yeast. ACS Synth Biol 2021; 10:3094-3104. [PMID: 34730946 DOI: 10.1021/acssynbio.1c00370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genetic code expansion is a powerful approach for advancing critical fields such as biological therapeutic discovery. However, the machinery for genetically encoding noncanonical amino acids (ncAAs) is only available in limited plasmid formats, constraining potential applications. In extreme cases, the introduction of two separate plasmids, one containing an orthogonal translation system (OTS) to facilitate ncAA incorporation and a second for expressing a ncAA-containing protein of interest, is not possible due to a lack of the available selection markers. One strategy to circumvent this challenge is to express the OTS and protein of interest from a single vector. For what we believe is the first time in yeast, we describe here several sets of single plasmid systems (SPSs) for performing genetic code manipulation and compare the ncAA incorporation capabilities of these plasmids against the capabilities of previously described dual plasmid systems (DPSs). For both dual fluorescent protein reporters and yeast display reporters tested with multiple OTSs and ncAAs, measured ncAA incorporation efficiencies with SPSs were determined to be equal to efficiencies determined with DPSs. Click chemistry on yeast cells displaying ncAA-containing proteins was also shown to be feasible in both formats, although differences in reactivity between formats suggest the need for caution when using such approaches. Additionally, we investigated whether these reporters would support the separation of yeast strains known to exhibit distinct ncAA incorporation efficiencies. Model sorts conducted with mixtures of two strains transformed with the same SPS or DPS both led to the enrichment of a strain known to support a higher efficiency ncAA incorporation, suggesting that these reporters will be suitable for conducting screens for strains exhibiting enhanced ncAA incorporation efficiencies. Overall, our results confirm that SPSs are well behaved in yeast and provide a convenient alternative to DPSs. SPSs are expected to be invaluable for conducting high-throughput investigations of the effects of genetic or genomic changes on ncAA incorporation efficiency and, more fundamentally, the eukaryotic translation apparatus.
Collapse
Affiliation(s)
- Jessica T. Stieglitz
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Kelly A. Potts
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
87
|
Zhou S, Wu Y, Xie ZX, Jia B, Yuan YJ. Directed genome evolution driven by structural rearrangement techniques. Chem Soc Rev 2021; 50:12788-12807. [PMID: 34651628 DOI: 10.1039/d1cs00722j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Directed genome evolution simulates the process of natural evolution at the genomic level in the laboratory to generate desired phenotypes. Here we review the applications of recent technological advances in genome writing and editing to directed genome evolution, with a focus on structural rearrangement techniques. We highlight how these techniques can be used to generate diverse genotypes, and to accelerate the evolution of phenotypic traits. We also discuss the perspectives of directed genome evolution.
Collapse
Affiliation(s)
- Sijie Zhou
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China. .,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yi Wu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China. .,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ze-Xiong Xie
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China. .,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Bin Jia
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China. .,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ying-Jin Yuan
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China. .,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
88
|
Asin-Garcia E, Martin-Pascual M, Garcia-Morales L, van Kranenburg R, Martins dos Santos VAP. ReScribe: An Unrestrained Tool Combining Multiplex Recombineering and Minimal-PAM ScCas9 for Genome Recoding Pseudomonas putida. ACS Synth Biol 2021; 10:2672-2688. [PMID: 34547891 PMCID: PMC8524654 DOI: 10.1021/acssynbio.1c00297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Genome recoding enables incorporating new functions into the DNA of microorganisms. By reassigning codons to noncanonical amino acids, the generation of new-to-nature proteins offers countless opportunities for bioproduction and biocontainment in industrial chassis. A key bottleneck in genome recoding efforts, however, is the low efficiency of recombineering, which hinders large-scale applications at acceptable speed and cost. To relieve this bottleneck, we developed ReScribe, a highly optimized recombineering tool enhanced by CRISPR-Cas9-mediated counterselection built upon the minimal PAM 5'-NNG-3' of the Streptococcus canis Cas9 (ScCas9). As a proof of concept, we used ReScribe to generate a minimally recoded strain of the industrial chassis Pseudomonas putida by replacing TAG stop codons (functioning as PAMs) of essential metabolic genes with the synonymous TAA. We showed that ReScribe enables nearly 100% engineering efficiency of multiple loci in P. putida, opening promising avenues for genome editing and applications thereof in this bacterium and beyond.
Collapse
Affiliation(s)
- Enrique Asin-Garcia
- Laboratory
of Systems and Synthetic Biology, Wageningen
University & Research, Wageningen 6708 WE, The Netherlands
| | - Maria Martin-Pascual
- Laboratory
of Systems and Synthetic Biology, Wageningen
University & Research, Wageningen 6708 WE, The Netherlands
| | - Luis Garcia-Morales
- Laboratory
of Systems and Synthetic Biology, Wageningen
University & Research, Wageningen 6708 WE, The Netherlands
| | - Richard van Kranenburg
- Corbion, Gorinchem 4206 AC, The Netherlands
- Laboratory
of Microbiology, Wageningen University &
Research, Wageningen 6708 WE, The Netherlands
| | - Vitor A. P. Martins dos Santos
- Laboratory
of Systems and Synthetic Biology, Wageningen
University & Research, Wageningen 6708 WE, The Netherlands
- LifeGlimmer
GmbH, Berlin 12163, Germany
- Bioprocess
Engineering Group, Wageningen University
& Research, Wageningen 6700 AA, The Netherlands
| |
Collapse
|
89
|
Gao X, Mo W, Shi J, Song N, Liang P, Chen J, Shi Y, Guo W, Li X, Yang X, Xin B, Zhao H, Song W, Lai J. HITAC-seq enables high-throughput cost-effective sequencing of plasmids and DNA fragments with identity. J Genet Genomics 2021; 48:671-680. [PMID: 34417123 DOI: 10.1016/j.jgg.2021.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 01/13/2023]
Abstract
DNA sequencing is vital for many aspects of biological research and diagnostics. Despite the development of second and third generation sequencing technologies, Sanger sequencing has long been the only choice when required to precisely track each sequenced plasmids or DNA fragments. Here, we report a complete set of novel barcoding and assembling system, Highly-parallel Indexed Tagmentation-reads Assembled Consensus sequencing (HITAC-seq), that could massively sequence and track the identities of each individual sequencing sample. With the cost of much less than that of single read of Sanger sequencing, HITAC-seq can generate high-quality contiguous sequences of up to 10 kilobases or longer. The capability of HITAC-seq was confirmed through large-scale sequencing of thousands of plasmid clones and hundreds of amplicon fragments using approximately 100 pg of input DNAs. Due to its long synthetic length, HITAC-seq was effective in detecting relatively large structural variations, as demonstrated by the identification of a ∼1.3 kb Copia retrotransposon insertion in the upstream of a likely maize domestication gene. Besides being a practical alternative to traditional Sanger sequencing, HITAC-seq is suitable for many high-throughput sequencing and genotyping applications.
Collapse
Affiliation(s)
- Xiang Gao
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, PR China
| | - Weipeng Mo
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, PR China
| | - Junpeng Shi
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, PR China
| | - Ning Song
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, PR China
| | - Pei Liang
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Jian Chen
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, PR China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Weilong Guo
- Key Laboratory of Crop Heterosis and Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Xinchen Li
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, PR China
| | - Xiaohong Yang
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, PR China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, PR China
| | - Beibei Xin
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, PR China
| | - Haiming Zhao
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, PR China
| | - Weibin Song
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, PR China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, PR China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
90
|
Babahosseini H, Wangsa D, Pabba M, Ried T, Misteli T, DeVoe DL. Deterministic assembly of chromosome ensembles in a programmable membrane trap array. Biofabrication 2021; 13:10.1088/1758-5090/ac1258. [PMID: 34233304 PMCID: PMC9974010 DOI: 10.1088/1758-5090/ac1258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/07/2021] [Indexed: 11/12/2022]
Abstract
Selective spatial isolation and manipulation of single chromosomes and the controlled formation of defined chromosome ensembles in a droplet-based microfluidic system is presented. The multifunctional microfluidic technology employs elastomer valves and membrane displacement traps to support deterministic manipulation of individual droplets. Picoliter droplets are formed in the 2D array of microscale traps by self-discretization of a nanoliter sample plug, with membranes positioned over each trap allowing controllable metering or full release of selected droplets. By combining discretization, optical interrogation, and selective droplet release for sequential delivery to a downstream merging zone, the system enables efficient manipulation of multiple chromosomes into a defined ensemble with single macromolecule resolution. Key design and operational parameters are explored, and co-compartmentalization of three chromosome pairs is demonstrated as a first step toward formation of precisely defined chromosome ensembles for applications in genetic engineering and synthetic biology.
Collapse
Affiliation(s)
- Hesam Babahosseini
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America,Department of Mechanical Engineering, University of Maryland, College Park, MD, United States of America
| | - Darawalee Wangsa
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Mani Pabba
- Department of Mechanical Engineering, University of Maryland, College Park, MD, United States of America
| | - Thomas Ried
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Don L DeVoe
- Department of Mechanical Engineering, University of Maryland, College Park, MD, United States of America
| |
Collapse
|
91
|
Chen S, Xie ZX, Yuan YJ. Discovering and genotyping genomic structural variations by yeast genome synthesis and inducible evolution. FEMS Yeast Res 2021; 20:5809967. [PMID: 32188997 DOI: 10.1093/femsyr/foaa012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Genomic structural variations (SVs) promote the evolution of Saccharomyces cerevisiae, and play an important role in phenotypic diversities. Yeast genomic structures can be remodeled by design and bottom-up synthesis. The synthesis of yeast genome creates novel copy number variations (CNVs) and SVs and develops new strategies to discover gene functions. Further, an inducible evolution system SCRaMbLE, consisted of 3,932 loxPsym sites, was incorporated on synthetic yeast genome. SCRaMbLE enables genomic rearrangements at will and rapidly generates chromosomal number variations, and massive SVs under customized conditions. The impacts of genetic variations on phenotypes can be revealed by genome analysis and chromosome restructuring. Yeast genome synthesis and SCRaMbLE provide a new research paradigm to explore the genotypic mechanisms of phenotype diversities, and can be used to improve biological traits and optimize industrial chassis.
Collapse
Affiliation(s)
- Si Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, People's Republic of China
| | - Ze-Xiong Xie
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, People's Republic of China
| | - Ying-Jin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, People's Republic of China
| |
Collapse
|
92
|
Hafeez AN, Arora S, Ghosh S, Gilbert D, Bowden RL, Wulff BBH. Creation and judicious application of a wheat resistance gene atlas. MOLECULAR PLANT 2021; 14:1053-1070. [PMID: 33991673 DOI: 10.1016/j.molp.2021.05.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 05/18/2023]
Abstract
Disease-resistance (R) gene cloning in wheat (Triticum aestivum) has been accelerated by the recent surge of genomic resources, facilitated by advances in sequencing technologies and bioinformatics. However, with the challenges of population growth and climate change, it is vital not only to clone and functionally characterize a few handfuls of R genes, but also to do so at a scale that would facilitate the breeding and deployment of crops that can recognize the wide range of pathogen effectors that threaten agroecosystems. Pathogen populations are continually changing, and breeders must have tools and resources available to rapidly respond to those changes if we are to safeguard our daily bread. To meet this challenge, we propose the creation of a wheat R-gene atlas by an international community of researchers and breeders. The atlas would consist of an online directory from which sources of resistance could be identified and deployed to achieve more durable resistance to the major wheat pathogens, such as wheat rusts, blotch diseases, powdery mildew, and wheat blast. We present a costed proposal detailing how the interacting molecular components governing disease resistance could be captured from both the host and the pathogen through biparental mapping, mutational genomics, and whole-genome association genetics. We explore options for the configuration and genotyping of diversity panels of hexaploid and tetraploid wheat, as well as their wild relatives and major pathogens, and discuss how the atlas could inform a dynamic, durable approach to R-gene deployment. Set against the current magnitude of wheat yield losses worldwide, recently estimated at 21%, this endeavor presents one route for bringing R genes from the lab to the field at a considerable speed and quantity.
Collapse
Affiliation(s)
| | - Sanu Arora
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Sreya Ghosh
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - David Gilbert
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Robert L Bowden
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506, USA
| | | |
Collapse
|
93
|
Biodegradation of aromatic pollutants meets synthetic biology. Synth Syst Biotechnol 2021; 6:153-162. [PMID: 34278013 PMCID: PMC8260767 DOI: 10.1016/j.synbio.2021.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 02/02/2023] Open
Abstract
Ubiquitously distributed microorganisms are natural decomposers of environmental pollutants. However, because of continuous generation of novel recalcitrant pollutants due to human activities, it is difficult, if not impossible, for microbes to acquire novel degradation mechanisms through natural evolution. Synthetic biology provides tools to engineer, transform or even re-synthesize an organism purposefully, accelerating transition from unable to able, inefficient to efficient degradation of given pollutants, and therefore, providing new solutions for environmental bioremediation. In this review, we described the pipeline to build chassis cells for the treatment of aromatic pollutants, and presented a proposal to design microbes with emphasis on the strategies applied to modify the target organism at different level. Finally, we discussed challenges and opportunities for future research in this field.
Collapse
|
94
|
Song LF, Deng ZH, Gong ZY, Li LL, Li BZ. Large-Scale de novo Oligonucleotide Synthesis for Whole-Genome Synthesis and Data Storage: Challenges and Opportunities. Front Bioeng Biotechnol 2021; 9:689797. [PMID: 34239862 PMCID: PMC8258115 DOI: 10.3389/fbioe.2021.689797] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Over the past decades, remarkable progress on phosphoramidite chemistry-based large-scale de novo oligonucleotide synthesis has been achieved, enabling numerous novel and exciting applications. Among them, de novo genome synthesis and DNA data storage are striking. However, to make these two applications more practical, the synthesis length, speed, cost, and throughput require vast improvements, which is a challenge to be met by the phosphoramidite chemistry. Harnessing the power of enzymes, the recently emerged enzymatic methods provide a competitive route to overcome this challenge. In this review, we first summarize the status of large-scale oligonucleotide synthesis technologies including the basic methodology and large-scale synthesis approaches, with special focus on the emerging enzymatic methods. Afterward, we discuss the opportunities and challenges of large-scale oligonucleotide synthesis on de novo genome synthesis and DNA data storage respectively.
Collapse
Affiliation(s)
- Li-Fu Song
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zheng-Hua Deng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zi-Yi Gong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Lu-Lu Li
- LC-BIO Technologies Co., Ltd., Hangzhou, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
95
|
Abstract
DNA synthesis technology has progressed to the point that it is now practical to synthesize entire genomes. Quite a variety of methods have been developed, first to synthesize single genes but ultimately to massively edit or write from scratch entire genomes. Synthetic genomes can essentially be clones of native sequences, but this approach does not teach us much new biology. The ability to endow genomes with novel properties offers special promise for addressing questions not easily approachable with conventional gene-at-a-time methods. These include questions about evolution and about how genomes are fundamentally wired informationally, metabolically, and genetically. The techniques and technologies relating to how to design, build, and deliver big DNA at the genome scale are reviewed here. A fuller understanding of these principles may someday lead to the ability to truly design genomes from scratch.
Collapse
Affiliation(s)
- Weimin Zhang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY 10016, USA; , ,
| | - Leslie A Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY 10016, USA; , ,
| | - Joel S Bader
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY 10016, USA; , , .,Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY 11201, USA
| |
Collapse
|
96
|
Wang Q, Gong Y, He Y, Xin Y, Lv N, Du X, Li Y, Jeong BR, Xu J. Genome engineering of Nannochloropsis with hundred-kilobase fragment deletions by Cas9 cleavages. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1148-1162. [PMID: 33719095 DOI: 10.1111/tpj.15227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Industrial microalgae are promising photosynthetic cell factories, yet tools for large-scale targeted genome engineering are limited. Here for the model industrial oleaginous microalga Nannochloropsis oceanica, we established a method to precisely and serially delete large genome fragments of ~100 kb from its 30.01 Mb nuclear genome. We started by identifying the 'non-essential' chromosomal regions (i.e. low expression region or LER) based on minimal gene expression under N-replete and N-depleted conditions. The largest such LER (LER1) is ~98 kb in size, located near the telomere of the 502.09-kb-long Chromosome 30 (Chr 30). We deleted 81 kb and further distal and proximal deletions of up to 110 kb (21.9% of Chr 30) in LER1 by dual targeting the boundaries with the episome-based CRISPR/Cas9 system. The telomere-deletion mutants showed normal telomeres consisting of CCCTAA repeats, revealing telomere regeneration capability after losing the distal part of Chr 30. Interestingly, the deletions caused no significant alteration in growth, lipid production or photosynthesis (transcript-abundance change for < 3% genes under N depletion). We also achieved double-deletion of both LER1 and LER2 (from Chr 9) that total ~214 kb at maximum, which can result in slightly higher growth rate and biomass productivity than the wild-type. Therefore, loss of the large, yet 'non-essential' regions does not necessarily sacrifice important traits. Such serial targeted deletions of large genomic regions had not been previously reported in microalgae, and will accelerate crafting minimal genomes as chassis for photosynthetic production.
Collapse
Affiliation(s)
- Qintao Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuehui He
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Xin
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nana Lv
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefeng Du
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Li
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Byeong-Ryool Jeong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
97
|
Abstract
Germline editing, the process by which the genome of an individual is edited in such a way that the change is heritable, has been applied to a wide variety of animals [D. A. Sorrell, A. F. Kolb, Biotechnol. Adv. 23, 431-469 (2005); D. Baltimore et al., Science 348, 36-38 (2015)]. Because of its relevancy in agricultural and biomedical research, the pig genome has been extensively modified using a multitude of technologies [K. Lee, K. Farrell, K. Uh, Reprod. Fertil. Dev. 32, 40-49 (2019); C. Proudfoot, S. Lillico, C. Tait-Burkard, Anim. Front. 9, 6-12 (2019)]. In this perspective, we will focus on using pigs as the model system to review the current methodologies, applications, and challenges of mammalian germline genome editing. We will also discuss the broad implications of animal germline editing and its clinical potential.
Collapse
|
98
|
Pretorius IS. Tasting the terroir of wine yeast innovation. FEMS Yeast Res 2021; 20:5674549. [PMID: 31830254 PMCID: PMC6964221 DOI: 10.1093/femsyr/foz084] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Wine is an archetypal traditional fermented beverage with strong territorial and socio-cultural connotations. Its 7000 year history is patterned by a tradition of innovation. Every value-adding innovation − whether in the vineyard, winery, supply chain or marketplace − that led to the invention of a new tradition spurred progress and created a brighter future from past developments. In a way, wine traditions can be defined as remembered innovations from the distant past − inherited knowledge and wisdom that withstood the test of time. Therefore, it should not be assumed a priori that tradition and innovation are polar opposites. The relations between the forces driven by the anchors of tradition and the wings of innovation do not necessarily involve displacement, conflict or exclusiveness. Innovation can strengthen wine tradition, and the reinvention of a tradition-bound practice, approach or concept can foster innovation. In cases where a paradigm-shifting innovation disrupts a tradition, the process of such an innovation transitioning into a radically new tradition can become protracted while proponents of divergent opinions duke it out. Sometimes these conflicting opinions are based on fact, and sometimes not. The imperfections of such a debate between the ‘ancients’ and the ‘moderns’ can, from time to time, obscure the line between myth and reality. Therefore, finding the right balance between traditions worth keeping and innovations worth implementing can be complex. The intent here is to harness the creative tension between science fiction and science fact when innovation's first-principles challenge the status quo by re-examining the foundational principles about a core traditional concept, such as terroir. Poignant questions are raised about the importance of the terroir (biogeography) of yeasts and the value of the microbiome of grapes to wine quality. This article imagines a metaphorical terroir free from cognitive biases where diverse perspectives can converge to uncork the effervescent power of territorial yeast populations as well as ‘nomadic’ yeast starter cultures. At the same time, this paper also engages in mental time-travel. A future scenario is imagined, explored, tested and debated where terroir-less yeast avatars are equipped with designer genomes to safely and consistently produce, individually or in combination with region-specific wild yeasts and or other starter cultures, high-quality wine according to the preferences of consumers in a range of markets. The purpose of this review is to look beyond the horizon and to synthesize a link between what we know now and what could be. This article informs readers where to look without suggesting what they must see as a way forward. In the context of one of the world's oldest fermentation industries − steeped in a rich history of tradition and innovation − the mantra here is: respect the past, lead the present and secure the future of wine.
Collapse
Affiliation(s)
- I S Pretorius
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, 19 Eastern Road, North Ryde, Sydney, NSW 2109, Australia
| |
Collapse
|
99
|
Mitchell LA, McCulloch LH, Pinglay S, Berger H, Bosco N, Brosh R, Bulajić M, Huang E, Hogan MS, Martin JA, Mazzoni EO, Davoli T, Maurano MT, Boeke JD. De novo assembly and delivery to mouse cells of a 101 kb functional human gene. Genetics 2021; 218:6179110. [PMID: 33742653 DOI: 10.1093/genetics/iyab038] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/10/2021] [Indexed: 11/14/2022] Open
Abstract
Design and large-scale synthesis of DNA has been applied to the functional study of viral and microbial genomes. New and expanded technology development is required to unlock the transformative potential of such bottom-up approaches to the study of larger mammalian genomes. Two major challenges include assembling and delivering long DNA sequences. Here, we describe a workflow for de novo DNA assembly and delivery that enables functional evaluation of mammalian genes on the length scale of 100 kilobase pairs (kb). The DNA assembly step is supported by an integrated robotic workcell. We demonstrate assembly of the 101 kb human HPRT1 gene in yeast from 3 kb building blocks, precision delivery of the resulting construct to mouse embryonic stem cells, and subsequent expression of the human protein from its full-length human gene in mouse cells. This workflow provides a framework for mammalian genome writing. We envision utility in producing designer variants of human genes linked to disease and their delivery and functional analysis in cell culture or animal models.
Collapse
Affiliation(s)
- Leslie A Mitchell
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Laura H McCulloch
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Sudarshan Pinglay
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Henri Berger
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Nazario Bosco
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Ran Brosh
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Milica Bulajić
- Department of Biology, New York University, New York, NY 10003, USA
| | - Emily Huang
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Megan S Hogan
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - James A Martin
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | | | - Teresa Davoli
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Matthew T Maurano
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA.,Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201,USA
| |
Collapse
|
100
|
Grazioli S, Petris G. Synthetic genomics for curing genetic diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:477-520. [PMID: 34175051 DOI: 10.1016/bs.pmbts.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
From the beginning of the genome sequencing era, it has become increasingly evident that genetics plays a role in all diseases, of which only a minority are single-gene disorders, the most common target of current gene therapies. However, the majority of people have some kind of health problems resulting from congenital genetic mutations (over 6000 diseases have been associated to genes, https://www.omim.org/statistics/geneMap) and most genetic disorders are rare and only incompletely understood. The vision and techniques applied to the synthesis of genomes may help to address unmet medical needs from a chromosome and genome-scale perspective. In this chapter, we address the potential therapy of genetic diseases from a different outlook, in which we no longer focus on small gene corrections but on higher-order tools for genome manipulation. These will play a crucial role in the next years, as they prelude to a much deeper understanding of the architecture of the human genome and a more accurate modeling of human diseases, offering new therapeutic opportunities.
Collapse
Affiliation(s)
| | - Gianluca Petris
- Medical Research Council Laboratory of Molecular Biology (MRC LMB), Cambridge, United Kingdom.
| |
Collapse
|