51
|
Oren N, Raanan H, Kedem I, Turjeman A, Bronstein M, Kaplan A, Murik O. Desert cyanobacteria prepare in advance for dehydration and rewetting: The role of light and temperature sensing. Mol Ecol 2019; 28:2305-2320. [DOI: 10.1111/mec.15074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Nadav Oren
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Hagai Raanan
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
- Environmental Biophysics and Molecular Ecology Program, Institute of Earth, Ocean and Atmospheric Sciences Rutgers University New Brunswick New Jersey
| | - Isaac Kedem
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Adi Turjeman
- The Center for Genomic Technologies The Hebrew University of Jerusalem Jerusalem Israel
| | - Michal Bronstein
- The Center for Genomic Technologies The Hebrew University of Jerusalem Jerusalem Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Omer Murik
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
52
|
Osoegawa S, Miyoshi R, Watanabe K, Hirose Y, Fujisawa T, Ikeuchi M, Unno M. Identification of the Deprotonated Pyrrole Nitrogen of the Bilin-Based Photoreceptor by Raman Spectroscopy with an Advanced Computational Analysis. J Phys Chem B 2019; 123:3242-3247. [PMID: 30913882 DOI: 10.1021/acs.jpcb.9b00965] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phytochrome and cyanobacteriochrome utilize a linear methine-bridged tetrapyrrole (bilin) to control numerous biological processes. They show a reversible photoconversion between two spectrally distinct states. This photocycle is initiated by a C═C double-bond photoisomerization of the bilin followed by its thermal relaxations with transient and/or stationary changes in the protonation state of the pyrrole moiety. However, it has never been identified which of the four pyrrole nitrogen atoms is deprotonated. Here, we report a resonance Raman spectroscopic study on cyanobacteriochrome RcaE, which has been proposed to contain a deprotonated bilin for its green-absorbing 15 Z state. The observed Raman spectra were well reproduced by a simulated structure whose bilin B ring is deprotonated, with the aid of molecular dynamics and quantum mechanics/molecular mechanics calculations. The results revealed that the deprotonation of B and C rings has the distinct effect on the overall bilin structure, which will be relevant to the color tuning and photoconversion mechanisms of the phytochrome superfamily. Furthermore, this study documents the ability of vibrational spectroscopy combined with the advanced spectral analysis to visualize a proton of a cofactor molecule embedded in a protein moiety.
Collapse
Affiliation(s)
- Shinsuke Osoegawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering , Saga University , Saga 840-8502 , Japan
| | - Risako Miyoshi
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering , Saga University , Saga 840-8502 , Japan
| | - Kouhei Watanabe
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering , Saga University , Saga 840-8502 , Japan
| | - Yuu Hirose
- Department of Environmental and Life Sciences , Toyohashi University of Technology , Toyohashi , Aichi 441-8580 , Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering , Saga University , Saga 840-8502 , Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology) , The University of Tokyo , Meguro, Tokyo 153-8902 , Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering , Saga University , Saga 840-8502 , Japan
| |
Collapse
|
53
|
Allen CJ, Lacey RF, Binder Bickford AB, Beshears CP, Gilmartin CJ, Binder BM. Cyanobacteria Respond to Low Levels of Ethylene. FRONTIERS IN PLANT SCIENCE 2019; 10:950. [PMID: 31417582 PMCID: PMC6682694 DOI: 10.3389/fpls.2019.00950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/08/2019] [Indexed: 05/07/2023]
Abstract
Ethylene is a gas that has long been known to act as a plant hormone. We recently showed that a cyanobacterium, Synechocystis sp. PCC 6803 (Synechocystis) contains an ethylene receptor (SynEtr1) that regulates cell surface and extracellular components leading to altered phototaxis and biofilm formation. To determine whether other cyanobacteria respond to ethylene, we examined the effects of exogenous ethylene on phototaxis of the filamentous cyanobacterium, Geitlerinema sp. PCC 7105 (Geitlerinema). A search of the Geitlerinema genome suggests that two genes encode proteins that contain an ethylene binding domain and Geitlerinema cells have previously been shown to bind ethylene. We call these genes GeiEtr1 and GeiEtr2 and show that in air both are expressed. Treatment with ethylene decreases the abundance of GeiEtr1 transcripts. Treatment of Geitlerinema with 1000 nL L-1 ethylene affected the phototaxis response to white light as well as monochromatic red light, but not blue or green light. This is in contrast to Synechocystis where we previously found ethylene affected phototaxis to all three colors. We also demonstrate that application of ethylene down to 8 nL L-1 stimulates phototaxis of both cyanobacteria as well as biofilm formation of Synechocystis. We formerly demonstrated that the transcript levels of slr1214 and CsiR1 in Synechocystis are reduced by treatment with 1000 nL L-1 ethylene. Here we show that application of ethylene down to 1 nL L-1 causes a reduction in CsiR1 abundance. This is below the threshold for most ethylene responses documented in plants. By contrast, slr1214 is unaffected by this low level of ethylene and only shows a reduction in transcript abundance at the highest ethylene level used. Thus, cyanobacteria are very sensitive to ethylene. However, the dose-binding characteristics of ethylene binding to Geitlerinema and Synechocystis cells as well as to the ethylene binding domain of SynEtr1 heterologously expressed in yeast, are similar to what has been reported for plants and exogenously expressed ethylene receptors from plants. These data are consistent with a model where signal amplification is occurring at the level of the receptors.
Collapse
Affiliation(s)
- Cidney J. Allen
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Randy F. Lacey
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - C. Payton Beshears
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Brad M. Binder
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
- *Correspondence: Brad M. Binder,
| |
Collapse
|
54
|
Kreslavski VD, Los DA, Schmitt FJ, Zharmukhamedov SK, Kuznetsov VV, Allakhverdiev SI. The impact of the phytochromes on photosynthetic processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:400-408. [DOI: 10.1016/j.bbabio.2018.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/04/2018] [Accepted: 03/09/2018] [Indexed: 10/17/2022]
|
55
|
Lacey RF, Allen CJ, Bakshi A, Binder BM. Ethylene causes transcriptomic changes in Synechocystis during phototaxis. PLANT DIRECT 2018; 2:e00048. [PMID: 31245714 PMCID: PMC6508509 DOI: 10.1002/pld3.48] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 05/02/2023]
Abstract
Ethylene is well known as a plant hormone, but its role in bacteria is poorly studied. We recently showed that Synechocystis sp. Strain PCC 6803 has a functional receptor for ethylene, ethylene response 1 (Etr1), that is involved in various processes such as phototaxis in response to directional light and biofilm formation. Here, we use RNA sequencing to examine the changes in gene transcripts caused by ethylene under phototaxis conditions. Over 500 gene transcripts across many functional categories, of approximately 3700 protein-encoding genes, were altered by application of ethylene. In general, ethylene caused both up- and downregulation of genes within a functional category. However, the transcript levels of amino acid metabolism genes were mainly upregulated and cell envelope genes were mostly downregulated by ethylene. The changes in cell envelope genes correlate with our prior observation that ethylene affects cell surface properties to alter cell motility. Ethylene caused a twofold or more change in 62 transcripts with the largest category of upregulated genes annotated as transporters and the largest category of downregulated genes annotated as glycosyltransferases which sometimes are involved in changing the composition of sugars on the cell surface. Consistent with changes in cell envelope, glycosyltransferase, and transporter gene transcripts, application of ethylene altered the levels of specific sugar moieties on the surface of cells. Light signaling from Etr1 involves two proteins (Slr1213 and Slr1214) and a small, noncoding RNA, carbon stress-induced RNA1 (csiR1). Application of ethylene caused a rapid, but transient, decrease in the transcript levels of etr1, slr1213, and slr1214 and a rapid and prolonged decrease in csiR1 transcript. Deletion of Slr1214 caused a large increase in csiR1 transcript levels and ethylene lowered csiR1 transcript. These data combined with prior reports indicate that ethylene functions as a signal to affect a variety of processes altering the physiology of Synechocystis cells.
Collapse
Affiliation(s)
- Randy F. Lacey
- Department of Biochemistry & Cellular and Molecular BiologyUniversity of TennesseeKnoxvilleTNUSA
| | - Cidney J. Allen
- Department of Biochemistry & Cellular and Molecular BiologyUniversity of TennesseeKnoxvilleTNUSA
| | - Arkadipta Bakshi
- Genome Science and Technology ProgramUniversity of TennesseeKnoxvilleTNUSA
- Present address:
Department of BotanyUniversity of WisconsinMadisonWIUSA
| | - Brad M. Binder
- Department of Biochemistry & Cellular and Molecular BiologyUniversity of TennesseeKnoxvilleTNUSA
- Genome Science and Technology ProgramUniversity of TennesseeKnoxvilleTNUSA
| |
Collapse
|
56
|
Scarbath-Evers LK, Jähnigen S, Elgabarty H, Song C, Narikawa R, Matysik J, Sebastiani D. Structural heterogeneity in a parent ground-state structure of AnPixJg2 revealed by theory and spectroscopy. Phys Chem Chem Phys 2018; 19:13882-13894. [PMID: 28513754 DOI: 10.1039/c7cp01218g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We investigated the red absorbing, dark stable state (Pr state) of the second GAF domain of the cyanobacteriochrome AnPixJ (AnPixJg2) by a molecular dynamics simulation of 1 μs duration. Our results reveal two distinct conformational isoforms of the chromophore, from which only one was known from crystallographic experiments. The interconversion between both isoforms is accompanied by alterations in the hydrogen bond pattern between the chromophore and the protein and the solvation structure of the chromophore binding pocket. The existence of sub-states in the Pr form of AnPixJg2 is supported by the results from experimental 13C MAS NMR spectroscopy. Our finding is consistent with the observation of structural heterogeneity in other cyanobacteriochromes and phytochromes.
Collapse
Affiliation(s)
- Laura Katharina Scarbath-Evers
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | | | | | | | | | | | | |
Collapse
|
57
|
Rohnke BA, Singh SP, Pattanaik B, Montgomery BL. RcaE-Dependent Regulation of Carboxysome Structural Proteins Has a Central Role in Environmental Determination of Carboxysome Morphology and Abundance in Fremyella diplosiphon. mSphere 2018; 3:e00617-17. [PMID: 29404416 PMCID: PMC5784247 DOI: 10.1128/msphere.00617-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 11/20/2022] Open
Abstract
Carboxysomes are central to the carbon dioxide-concentrating mechanism (CCM) and carbon fixation in cyanobacteria. Although the structure is well understood, roles of environmental cues in the synthesis, positioning, and functional tuning of carboxysomes have not been systematically studied. Fremyella diplosiphon is a model cyanobacterium for assessing impacts of environmental light cues on photosynthetic pigmentation and tuning of photosynthetic efficiency during complementary chromatic acclimation (CCA), which is controlled by the photoreceptor RcaE. Given the central role of carboxysomes in photosynthesis, we investigated roles of light-dependent RcaE signaling in carboxysome structure and function. A ΔrcaE mutant exhibits altered carboxysome size and number, ccm gene expression, and carboxysome protein accumulation relative to the wild-type (WT) strain. Several Ccm proteins, including carboxysome shell proteins and core-nucleating factors, overaccumulate in ΔrcaE cells relative to WT cells. Additionally, levels of carboxysome cargo RuBisCO in the ΔrcaE mutant are lower than or unchanged from those in the WT strain. This shift in the ratios of carboxysome shell and nucleating components to the carboxysome cargo appears to drive carboxysome morphology and abundance dynamics. Carboxysomes are also occasionally mislocalized spatially to the periphery of spherical mutants within thylakoid membranes, suggesting that carboxysome positioning is impacted by cell shape. The RcaE photoreceptor links perception of external light cues to regulating carboxysome structure and function and, thus, to the cellular capacity for carbon fixation. IMPORTANCE Carboxysomes are proteinaceous subcellular compartments, or bacterial organelles, found in cyanobacteria that consist of a protein shell surrounding a core primarily composed of the enzyme ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO) that is central to the carbon dioxide-concentrating mechanism (CCM) and carbon fixation. Whereas significant insights have been gained regarding the structure and synthesis of carboxysomes, limited attention has been given to how their size, abundance, and protein composition are regulated to ensure optimal carbon fixation in dynamic environments. Given the centrality of carboxysomes in photosynthesis, we provide an analysis of the role of a photoreceptor, RcaE, which functions in matching photosynthetic pigmentation to the external environment during complementary chromatic acclimation and thereby optimizing photosynthetic efficiency, in regulating carboxysome dynamics. Our data highlight a role for RcaE in perceiving external light cues and regulating carboxysome structure and function and, thus, in the cellular capacity for carbon fixation and organismal fitness.
Collapse
Affiliation(s)
- Brandon A. Rohnke
- Department of Energy—Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Shailendra P. Singh
- Department of Energy—Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, East Lansing, Michigan, USA
| | - Bagmi Pattanaik
- Department of Energy—Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, East Lansing, Michigan, USA
| | - Beronda L. Montgomery
- Department of Energy—Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
58
|
Lenngren N, Edlund P, Takala H, Stucki-Buchli B, Rumfeldt J, Peshev I, Häkkänen H, Westenhoff S, Ihalainen JA. Coordination of the biliverdin D-ring in bacteriophytochromes. Phys Chem Chem Phys 2018; 20:18216-18225. [DOI: 10.1039/c8cp01696h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vibrational spectroscopy and crystallography experiments provide a basis for understanding the isomerization reaction in phytochrome proteins.
Collapse
Affiliation(s)
- Nils Lenngren
- Department of Biological and Environmental Sciences
- Nanoscience Center
- University of Jyväskylä
- Finland
| | - Petra Edlund
- Department of Chemistry and Molecular Biology
- Biochemistry and Biophysics
- University of Gothenburg
- SE-40530 Gothenburg
- Sweden
| | - Heikki Takala
- Department of Biological and Environmental Sciences
- Nanoscience Center
- University of Jyväskylä
- Finland
- University of Helsinki
| | - Brigitte Stucki-Buchli
- Department of Biological and Environmental Sciences
- Nanoscience Center
- University of Jyväskylä
- Finland
| | - Jessica Rumfeldt
- Department of Biological and Environmental Sciences
- Nanoscience Center
- University of Jyväskylä
- Finland
| | - Ivan Peshev
- Department of Biological and Environmental Sciences
- Nanoscience Center
- University of Jyväskylä
- Finland
| | - Heikki Häkkänen
- Department of Biological and Environmental Sciences
- Nanoscience Center
- University of Jyväskylä
- Finland
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology
- Biochemistry and Biophysics
- University of Gothenburg
- SE-40530 Gothenburg
- Sweden
| | - Janne A. Ihalainen
- Department of Biological and Environmental Sciences
- Nanoscience Center
- University of Jyväskylä
- Finland
| |
Collapse
|
59
|
Hirose Y, Misawa N, Yonekawa C, Nagao N, Watanabe M, Ikeuchi M, Eki T. Characterization of the genuine type 2 chromatic acclimation in the two Geminocystis cyanobacteria. DNA Res 2017; 24:387-396. [PMID: 28338901 PMCID: PMC5737509 DOI: 10.1093/dnares/dsx011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/22/2017] [Indexed: 01/30/2023] Open
Abstract
Certain cyanobacteria can adjust the wavelengths of light they absorb by remodeling their photosynthetic antenna complex phycobilisome via a process called chromatic acclimation (CA). Although several types of CA have been reported, the diversity of the molecular mechanisms of CA among the cyanobacteria phylum is not fully understood. Here, we characterized the molecular process of CA of Geminocystis sp. strains National Institute of Environmental Studies (NIES)-3708 and NIES-3709. Absorption and fluorescence spectroscopy revealed that both strains dramatically alter their phycoerythrin content in response to green and red light. Whole-genome comparison revealed that the two strains share the typical phycobilisome structure consisting of a central core and peripheral rods, but they differ in the number of rod linkers of phycoerythrin and thus have differing capacity for phycoerythrin accumulation. RNA sequencing analysis suggested that the length of phycoerythrin rods in each phycobilisome is strictly regulated by the green light and red light-sensing CcaS/R system, whereas the total number of phycobilisomes is governed by the excitation-balancing system between phycobilisomes and photosystems. We reclassify the conventional CA types based on the genome information and designate CA of the two strains as genuine type 2, where components of phycoerythrin, but not rod-membrane linker of phycocyanin, are regulated by the CcaS/R system.
Collapse
Affiliation(s)
- Yuu Hirose
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Naomi Misawa
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Chinatsu Yonekawa
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Nobuyoshi Nagao
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Mai Watanabe
- Department of Life Sciences (Biology), The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Toshihiko Eki
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
60
|
Montgomery BL. Seeing new light: recent insights into the occurrence and regulation of chromatic acclimation in cyanobacteria. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:18-23. [PMID: 28391048 DOI: 10.1016/j.pbi.2017.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
Cyanobacteria exhibit a form of photomorphogenesis termed chromatic acclimation (CA), which involves tuning metabolism and physiology to external light cues, with the most readily recognized acclimation being the alteration of pigmentation. Historically, CA has been represented by three types that occur in organisms which synthesize green-light-absorbing phycoerythrin (PE) and red-light-absorbing phycocyanin (PC). The distinct CA types depend upon whether organisms adjust levels of PE (type II), both PE and PC (type III, also complementary chromatic acclimation), or neither (type I) in response to red or green wavelengths. Recently new forms of CA have been described which include responses to blue and green light (type IV) or far-red light (FaRLiP). Here, the molecular bases of distinct forms of CA are discussed.
Collapse
Affiliation(s)
- Beronda L Montgomery
- Michigan State University, Department of Energy-Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Department of Microbiology and Molecular Genetics, East Lansing, MI 48824, United States.
| |
Collapse
|
61
|
Lamparter T, Krauß N, Scheerer P. Phytochromes from Agrobacterium fabrum. Photochem Photobiol 2017; 93:642-655. [DOI: 10.1111/php.12761] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/22/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Tilman Lamparter
- Karlsruhe Institute of Technology (KIT); Botanical Institute; Karlsruhe Germany
| | - Norbert Krauß
- Karlsruhe Institute of Technology (KIT); Botanical Institute; Karlsruhe Germany
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin; Institute of Medical Physics and Biophysics (CC2); Group Protein X-ray Crystallography and Signal Transduction; Berlin Germany
| |
Collapse
|
62
|
Rockwell NC, Martin SS, Lagarias JC. There and Back Again: Loss and Reacquisition of Two‐Cys Photocycles in Cyanobacteriochromes. Photochem Photobiol 2017; 93:741-754. [DOI: 10.1111/php.12708] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/01/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular and Cellular Biology University of California Davis CA
| | - Shelley S. Martin
- Department of Molecular and Cellular Biology University of California Davis CA
| | - John Clark Lagarias
- Department of Molecular and Cellular Biology University of California Davis CA
| |
Collapse
|
63
|
Stepanenko OV, Stepanenko OV, Kuznetsova IM, Shcherbakova DM, Verkhusha VV, Turoverov KK. Interaction of Biliverdin Chromophore with Near-Infrared Fluorescent Protein BphP1-FP Engineered from Bacterial Phytochrome. Int J Mol Sci 2017; 18:E1009. [PMID: 28481303 PMCID: PMC5454922 DOI: 10.3390/ijms18051009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 11/17/2022] Open
Abstract
Near-infrared (NIR) fluorescent proteins (FPs) designed from PAS (Per-ARNT-Sim repeats) and GAF (cGMP phosphodiesterase/adenylate cyclase/FhlA transcriptional activator) domains of bacterial phytochromes covalently bind biliverdin (BV) chromophore via one or two Cys residues. We studied BV interaction with a series of NIR FP variants derived from the recently reported BphP1-FP protein. The latter was engineered from a bacterial phytochrome RpBphP1, and has two reactive Cys residues (Cys15 in the PAS domain and Cys256 in the GAF domain), whereas its mutants contain single Cys residues either in the PAS domain or in the GAF domain, or no Cys residues. We characterized BphP1-FP and its mutants biochemically and spectroscopically in the absence and in the presence of denaturant. We found that all BphP1-FP variants are monomers. We revealed that spectral properties of the BphP1-FP variants containing either Cys15 or Cys256, or both, are determined by the covalently bound BV chromophore only. Consequently, this suggests an involvement of the inter-monomeric allosteric effects in the BV interaction with monomers in dimeric NIR FPs, such as iRFPs. Likely, insertion of the Cys15 residue, in addition to the Cys256 residue, in dimeric NIR FPs influences BV binding by promoting the BV chromophore covalent cross-linking to both PAS and GAF domains.
Collapse
Affiliation(s)
- Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russian.
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russian.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russian.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya st., St. Petersburg 195251, Russian.
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park ave., Bronx, NY 10461, USA.
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park ave., Bronx, NY 10461, USA.
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 8 Haartmaninkatu st., Helsinki 00290, Finland.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russian.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya st., St. Petersburg 195251, Russian.
| |
Collapse
|
64
|
Hydrophobic Residues near the Bilin Chromophore-Binding Pocket Modulate Spectral Tuning of Insert-Cys Subfamily Cyanobacteriochromes. Sci Rep 2017; 7:40576. [PMID: 28094296 PMCID: PMC5240096 DOI: 10.1038/srep40576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) are a subfamily of phytochrome photoreceptors found exclusively in photosynthetic cyanobacteria. Four CBCRs containing a second Cys in the insert region (insert-Cys) have been identified from the nonheterocystous cyanobacterium Microcoleus B353 (Mbr3854g4 and Mbl3738g2) and the nitrogen fixing, heterocystous cyanobacterium Nostoc punctiforme (NpF2164g3 and NpR1597g2). These insert-Cys CBCRs can sense light in the near-UV to orange range, but key residues responsible for tuning their colour sensitivity have not been reported. In the present study, near-UV/Green (UG) photosensors Mbr3854g4 (UG1) and Mbl3738g2 (UG2) were chosen for further spectroscopic analysis of their spectral sensitivity and tuning. Consistent with most dual-Cys CBCRs, both UGs formed a second thioether linkage to the phycocyanobilin (PCB) chromophore via the insert-Cys. This bond is subject to breakage and relinkage during forward and reverse photoconversions. Variations in residues equivalent to Phe that are in close contact with the PCB chromophore D-ring in canonical red/green CBCRs are responsible for tuning the light absorption peaks of both dark and photoproducts. This is the first time these key residues that govern light absorption in insert-Cys family CBCRs have been identified and characterised.
Collapse
|
65
|
Kooß S, Lamparter T. Cyanobacterial origin of plant phytochromes. PROTOPLASMA 2017; 254:603-607. [PMID: 26869366 DOI: 10.1007/s00709-016-0951-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
Phytochromes are widely distributed photoreceptors with similar domain arrangements. The evolutionary origin of plant and green algal phytochromes is currently under debate. We used different algorithms to generate multiple phylogenetic trees for the N-terminal chromophore module and the C-terminal histidine kinase domains. The evolution of the chromophore module and the histidine kinase (like) regions follows different patterns, indicating several rearrangements between both parts of the protein. Out of 22 trees, 19 revealed a close relationship between cyanobacteria and Archaeplastida, the group encompassing plants and green algae. Opposed to other studies, a cyanobacterial origin of plant phytochromes is strongly supported by our results.
Collapse
Affiliation(s)
- Sandra Kooß
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, 76131, Karlsruhe, Germany
| | - Tilman Lamparter
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, 76131, Karlsruhe, Germany.
| |
Collapse
|
66
|
Hérivaux A, So YS, Gastebois A, Latgé JP, Bouchara JP, Bahn YS, Papon N. Major Sensing Proteins in Pathogenic Fungi: The Hybrid Histidine Kinase Family. PLoS Pathog 2016; 12:e1005683. [PMID: 27467512 PMCID: PMC4965123 DOI: 10.1371/journal.ppat.1005683] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Anaïs Hérivaux
- Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, Angers, France
| | - Yee-Seul So
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Amandine Gastebois
- Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, Angers, France
| | | | - Jean-Philippe Bouchara
- Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, Angers, France
- Laboratoire de Parasitologie—Mycologie, Centre Hospitalier Universitaire d’Angers, Angers, France
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- * E-mail: (YSB); (NP)
| | - Nicolas Papon
- Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, Angers, France
- * E-mail: (YSB); (NP)
| |
Collapse
|
67
|
Rockwell NC, Martin SS, Lagarias JC. Identification of Cyanobacteriochromes Detecting Far-Red Light. Biochemistry 2016; 55:3907-19. [DOI: 10.1021/acs.biochem.6b00299] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular and
Cellular Biology, University of California, Davis, California 95616, United States
| | - Shelley S. Martin
- Department of Molecular and
Cellular Biology, University of California, Davis, California 95616, United States
| | - J. Clark Lagarias
- Department of Molecular and
Cellular Biology, University of California, Davis, California 95616, United States
| |
Collapse
|
68
|
Montgomery BL. Mechanisms and fitness implications of photomorphogenesis during chromatic acclimation in cyanobacteria. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4079-4090. [PMID: 27217547 DOI: 10.1093/jxb/erw206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photosynthetic organisms absorb photons and convert light energy to chemical energy through the process of photosynthesis. Photosynthetic efficiency is tuned in response to the availability of light, carbon dioxide and nutrients to promote maximal levels of carbon fixation, while simultaneously limiting the potential for light-associated damage or phototoxicity. Given the central dependence on light for energy production, photosynthetic organisms possess abilities to tune their growth, development and metabolism to external light cues in the process of photomorphogenesis. Photosynthetic organisms perceive light intensity and distinct wavelengths or colors of light to promote organismal acclimation. Cyanobacteria are oxygenic photosynthetic prokaryotes that exhibit abilities to alter specific aspects of growth, including photosynthetic pigment composition and morphology, in responses to changes in available wavelengths and intensity of light. This form of photomorphogenesis is known as chromatic acclimation and has been widely studied. Recent insights into the photosensory photoreceptors found in cyanobacteria and developments in our understanding of the molecular mechanisms initiated by light sensing to affect the changes characteristic of chromatic acclimation are discussed. I consider cyanobacterial responses to light, the broad diversity of photoreceptors encoded by these organisms, specific mechanisms of photomorphogenesis, and associated fitness implications in chromatically acclimating cyanobacteria.
Collapse
Affiliation(s)
- Beronda L Montgomery
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
69
|
Abstract
Certain cyanobacteria look green if grown in red light and vice versa. This dramatic color change, called complementary chromatic adaptation (CCA), is caused by alterations of the major colored light-harvesting proteins. A major controller of CCA is the cyanobacteriochrome (CBCR) RcaE, a red-green reversible photoreceptor that triggers a complex signal transduction pathway. Now, a new study demonstrates that CCA is also modulated by DpxA, a CBCR that senses yellow and teal (greenish blue) light. DpxA acts to expand the range of wavelengths that can impact CCA, by fine-tuning the process. This dual control of CCA might positively impact the fitness of cells growing in the shade of competing algae or in a water column where light levels and spectral quality change gradually with depth. This discovery adds to the growing number of light-responsive phenomena controlled by multiple CBCRs. Furthermore, the diverse CBCRs which are exclusively found in cyanobacteria have significant biotechnological potential.
Collapse
|
70
|
Montgomery BL, Lechno-Yossef S, Kerfeld CA. Interrelated modules in cyanobacterial photosynthesis: the carbon-concentrating mechanism, photorespiration, and light perception. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2931-2940. [PMID: 27117337 DOI: 10.1093/jxb/erw162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Here we consider the cyanobacterial carbon-concentrating mechanism (CCM) and photorespiration in the context of the regulation of light harvesting, using a conceptual framework borrowed from engineering: modularity. Broadly speaking, biological 'modules' are semi-autonomous functional units such as protein domains, operons, metabolic pathways, and (sub)cellular compartments. They are increasingly recognized as units of both evolution and engineering. Modules may be connected by metabolites, such as NADPH, ATP, and 2PG. While the Calvin-Benson-Bassham Cycle and photorespiratory salvage pathways can be considered as metabolic modules, the carboxysome, the core of the cyanobacterial CCM, is both a structural and a metabolic module. In photosynthetic organisms, which use light cues to adapt to the external environment and which tune the photosystems to provide the ATP and reducing power for carbon fixation, light-regulated modules are critical. The primary enzyme of carbon fixation, RuBisCO, uses CO2 as a substrate, which is accumulated via the CCM. However RuBisCO also has a secondary reaction in which it utilizes O2, a by-product of the photochemical modules, which leads to photorespiration. A complete understanding of the interplay among CCM and photorespiration is predicated on uncovering their connections to the light reactions and the regulatory factors and pathways that tune these modules to external cues. We probe this connection by investigating light inputs into the CCM and photorespiratory pathways in the chromatically acclimating cyanobacterium Fremyella diplosiphon.
Collapse
Affiliation(s)
- Beronda L Montgomery
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Sigal Lechno-Yossef
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
71
|
Fushimi K, Nakajima T, Aono Y, Yamamoto T, Ni-Ni-Win, Ikeuchi M, Sato M, Narikawa R. Photoconversion and Fluorescence Properties of a Red/Green-Type Cyanobacteriochrome AM1_C0023g2 That Binds Not Only Phycocyanobilin But Also Biliverdin. Front Microbiol 2016; 7:588. [PMID: 27242674 PMCID: PMC4876366 DOI: 10.3389/fmicb.2016.00588] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/11/2016] [Indexed: 01/09/2023] Open
Abstract
Cyanobacteriochromes (CBCRs) are distantly related to the red/far-red responsive phytochromes. Red/green-type CBCRs are widely distributed among various cyanobacteria. The red/green-type CBCRs covalently bind phycocyanobilin (PCB) and show red/green reversible photoconversion. Recent studies revealed that some red/green-type CBCRs from chlorophyll d-bearing cyanobacterium Acaryochloris marina covalently bind not only PCB but also biliverdin (BV). The BV-binding CBCRs show far-red/orange reversible photoconversion. Here, we identified another CBCR (AM1_C0023g2) from A. marina that also covalently binds not only PCB but also BV with high binding efficiencies, although BV chromophore is unstable in the presence of urea. Replacement of Ser334 with Gly resulted in significant improvement in the yield of the BV-binding holoprotein, thereby ensuring that the mutant protein is a fine platform for future development of optogenetic switches. We also succeeded in detecting near-infrared fluorescence from mammalian cells harboring PCB-binding AM1_C0023g2 whose fluorescence quantum yield is 3.0%. Here the PCB-binding holoprotein is shown as a platform for future development of fluorescent probes.
Collapse
Affiliation(s)
- Keiji Fushimi
- Department of Biological Science, Faculty of Science, Shizuoka University Shizuoka, Japan
| | - Takahiro Nakajima
- Graduate School of Arts and Sciences, University of Tokyo Tokyo, Japan
| | - Yuki Aono
- Graduate School of Arts and Sciences, University of Tokyo Tokyo, Japan
| | - Tatsuro Yamamoto
- Department of Biological Science, Faculty of Science, Shizuoka University Shizuoka, Japan
| | - Ni-Ni-Win
- Graduate School of Arts and Sciences, University of Tokyo Tokyo, Japan
| | - Masahiko Ikeuchi
- Graduate School of Arts and Sciences, University of TokyoTokyo, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology AgencySaitama, Japan
| | - Moritoshi Sato
- Graduate School of Arts and Sciences, University of Tokyo Tokyo, Japan
| | - Rei Narikawa
- Department of Biological Science, Faculty of Science, Shizuoka University Shizuoka, Japan
| |
Collapse
|
72
|
Wiltbank LB, Kehoe DM. Two Cyanobacterial Photoreceptors Regulate Photosynthetic Light Harvesting by Sensing Teal, Green, Yellow, and Red Light. mBio 2016; 7:e02130-15. [PMID: 26861023 PMCID: PMC4752607 DOI: 10.1128/mbio.02130-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/04/2016] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED The genomes of many photosynthetic and nonphotosynthetic bacteria encode numerous phytochrome superfamily photoreceptors whose functions and interactions are largely unknown. Cyanobacterial genomes encode particularly large numbers of phytochrome superfamily members called cyanobacteriochromes. These have diverse light color-sensing abilities, and their functions and interactions are just beginning to be understood. One of the best characterized of these functions is the regulation of photosynthetic light-harvesting antenna composition in the cyanobacterium Fremyella diplosiphon by the cyanobacteriochrome RcaE in response to red and green light, a process known as chromatic acclimation. We have identified a new cyanobacteriochrome named DpxA that maximally senses teal (absorption maximum, 494 nm) and yellow (absorption maximum, 568 nm) light and represses the accumulation of a key light-harvesting protein called phycoerythrin, which is also regulated by RcaE during chromatic acclimation. Like RcaE, DpxA is a two-component system kinase, although these two photoreceptors can influence phycoerythrin expression through different signaling pathways. The peak responsiveness of DpxA to teal and yellow light provides highly refined color discrimination in the green spectral region, which provides important wavelengths for photosynthetic light harvesting in cyanobacteria. These results redefine chromatic acclimation in cyanobacteria and demonstrate that cyanobacteriochromes can coordinately impart sophisticated light color sensing across the visible spectrum to regulate important photosynthetic acclimation processes. IMPORTANCE The large number of cyanobacteriochrome photoreceptors encoded by cyanobacterial genomes suggests that these organisms are capable of extremely complex light color sensing and responsiveness, yet little is known about their functions and interactions. Our work uncovers previously undescribed cooperation between two photoreceptors with very different light color-sensing capabilities that coregulate an important photosynthetic light-harvesting protein in response to teal, green, yellow, and red light. Other cyanobacteriochromes that have been shown to interact functionally sense wavelengths of light that are close to each other, which makes it difficult to clearly identify their physiological roles in the cell. Our finding of two photoreceptors with broad light color-sensing capabilities and clearly defined physiological roles provides new insights into complex light color sensing and its regulation.
Collapse
Affiliation(s)
- Lisa B Wiltbank
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, Indiana, USA Indiana Molecular Biology Institute, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
73
|
Tracking the secondary photodynamics of the green/red cyanobacteriochrome RcaE from Fremyella diplosiphon. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2015.11.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
74
|
Busch AWU, Montgomery BL. The Tryptophan-Rich Sensory Protein (TSPO) is Involved in Stress-Related and Light-Dependent Processes in the Cyanobacterium Fremyella diplosiphon. Front Microbiol 2015; 6:1393. [PMID: 26696996 PMCID: PMC4677103 DOI: 10.3389/fmicb.2015.01393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/23/2015] [Indexed: 11/20/2022] Open
Abstract
The tryptophan-rich sensory protein (TSPO) is a membrane protein, which is a member of the 18 kDa translocator protein/peripheral-type benzodiazepine receptor (MBR) family of proteins that is present in most organisms and is also referred to as Translocator protein 18 kDa. Although TSPO is associated with stress- and disease-related processes in organisms from bacteria to mammals, full elucidation of the functional role of the TSPO protein is lacking for most organisms in which it is found. In this study, we describe the regulation and function of a TSPO homolog in the cyanobacterium Fremyella diplosiphon, designated FdTSPO. Accumulation of the FdTSPO transcript is upregulated by green light and in response to nutrient deficiency and stress. A F. diplosiphon TSPO deletion mutant (i.e., ΔFdTSPO) showed altered responses compared to the wild type (WT) strain under stress conditions, including salt treatment, osmotic stress, and induced oxidative stress. Under salt stress, the FdTSPO transcript is upregulated and a ΔFdTSPO mutant accumulates lower levels of reactive oxygen species (ROS) and displays increased growth compared to WT. In response to osmotic stress, FdTSPO transcript levels are upregulated and ΔFdTSPO mutant cells exhibit impaired growth compared to the WT. By comparison, methyl viologen-induced oxidative stress results in higher ROS levels in the ΔFdTSPO mutant compared to the WT strain. Taken together, our results provide support for the involvement of membrane-localized FdTSPO in mediating cellular responses to stress in F. diplosiphon and represent detailed functional analysis of a cyanobacterial TSPO. This study advances our understanding of the functional roles of TSPO homologs in vivo.
Collapse
Affiliation(s)
- Andrea W. U. Busch
- Department of Energy – Plant Research Laboratory, Michigan State University, East LansingMI, USA
| | - Beronda L. Montgomery
- Department of Energy – Plant Research Laboratory, Michigan State University, East LansingMI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East LansingMI, USA
| |
Collapse
|
75
|
Singh SP, Montgomery BL. Regulation of BolA abundance mediates morphogenesis in Fremyella diplosiphon. Front Microbiol 2015; 6:1215. [PMID: 26594203 PMCID: PMC4633512 DOI: 10.3389/fmicb.2015.01215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/19/2015] [Indexed: 11/24/2022] Open
Abstract
Filamentous cyanobacterium Fremyella diplosiphon is known to alter its pigmentation and morphology during complementary chromatic acclimation (CCA) to efficiently harvest available radiant energy for photosynthesis. F. diplosiphon cells are rectangular and filaments are longer under green light (GL), whereas smaller, spherical cells and short filaments are prevalent under red light (RL). Light regulation of bolA morphogene expression is correlated with photoregulation of cellular morphology in F. diplosiphon. Here, we investigate a role for quantitative regulation of cellular BolA protein levels in morphology determination. Overexpression of bolA in WT was associated with induction of RL-characteristic spherical morphology even when cultures were grown under GL. Overexpression of bolA in a ΔrcaE background, which lacks cyanobacteriochrome photosensor RcaE and accumulates lower levels of BolA than WT, partially reverted the cellular morphology of the strain to a WT-like state. Overexpression of BolA in WT and ΔrcaE backgrounds was associated with decreased cellular reactive oxygen species (ROS) levels and an increase in filament length under both GL and RL. Morphological defects and high ROS levels commonly observed in ΔrcaE could, thus, be in part due to low accumulation of BolA. Together, these findings support an emerging model for RcaE-dependent photoregulation of BolA in controlling the cellular morphology of F. diplosiphon during CCA.
Collapse
Affiliation(s)
- Shailendra P. Singh
- MSU-DOE Plant Research Laboratory, Michigan State University, East LansingMI, USA
| | - Beronda L. Montgomery
- MSU-DOE Plant Research Laboratory, Michigan State University, East LansingMI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East LansingMI, USA
| |
Collapse
|
76
|
Cho SM, Jeoung SC, Song JY, Kupriyanova EV, Pronina NA, Lee BW, Jo SW, Park BS, Choi SB, Song JJ, Park YI. Genomic Survey and Biochemical Analysis of Recombinant Candidate Cyanobacteriochromes Reveals Enrichment for Near UV/Violet Sensors in the Halotolerant and Alkaliphilic Cyanobacterium Microcoleus IPPAS B353. J Biol Chem 2015; 290:28502-28514. [PMID: 26405033 DOI: 10.1074/jbc.m115.669150] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 11/06/2022] Open
Abstract
Cyanobacteriochromes (CBCRs), which are exclusive to and widespread among cyanobacteria, are photoproteins that sense the entire range of near-UV and visible light. CBCRs are related to the red/far-red phytochromes that utilize linear tetrapyrrole (bilin) chromophores. Best characterized from the unicellular cyanobacterium Synechocystis sp. PCC 6803 and the multicellular heterocyst forming filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Anabaena sp. PCC 7120, CBCRs have been poorly investigated in mat-forming, nonheterocystous cyanobacteria. In this study, we sequenced the genome of one of such species, Microcoleus IPPAS B353 (Microcoleus B353), and identified two phytochromes and seven CBCRs with one or more bilin-binding cGMP-specific phosphodiesterase, adenylyl cyclase and FhlA (GAF) domains. Biochemical and spectroscopic measurements of 23 purified GAF proteins from phycocyanobilin (PCB) producing recombinant Escherichia coli indicated that 13 of these proteins formed near-UV and visible light-absorbing covalent adducts: 10 GAFs contained PCB chromophores, whereas three contained the PCB isomer, phycoviolobilin (PVB). Furthermore, the complement of Microcoleus B353 CBCRs is enriched in near-UV and violet sensors, but lacks red/green and green/red CBCRs that are widely distributed in other cyanobacteria. We hypothesize that enrichment in short wavelength-absorbing CBCRs is critical for acclimation to high-light environments where this organism is found.
Collapse
Affiliation(s)
- Sung Mi Cho
- Department of Biological Sciences, Chungnam National University, Daejeon, 305-764, Korea
| | - Sae Chae Jeoung
- Center for Advanced Measurement and Instrumentation, Korea Research Institute of Standards and Science, Daejeon 305-340, Korea
| | - Ji-Young Song
- Department of Biological Sciences, Chungnam National University, Daejeon, 305-764, Korea
| | - Elena V Kupriyanova
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Natalia A Pronina
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | | | | | - Beom-Seok Park
- The Agricultural Genome Center, National Academy of Agricultural Science, Rural Development Administration, Wanju 565-851, Korea.
| | - Sang-Bong Choi
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449-728, Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, 305-764, Korea
| |
Collapse
|
77
|
Björling A, Berntsson O, Takala H, Gallagher KD, Patel H, Gustavsson E, St Peter R, Duong P, Nugent A, Zhang F, Berntsen P, Appio R, Rajkovic I, Lehtivuori H, Panman MR, Hoernke M, Niebling S, Harimoorthy R, Lamparter T, Stojković EA, Ihalainen JA, Westenhoff S. Ubiquitous Structural Signaling in Bacterial Phytochromes. J Phys Chem Lett 2015; 6:3379-83. [PMID: 26275765 DOI: 10.1021/acs.jpclett.5b01629] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The phytochrome family of light-switchable proteins has long been studied by biochemical, spectroscopic and crystallographic means, while a direct probe for global conformational signal propagation has been lacking. Using solution X-ray scattering, we find that the photosensory cores of several bacterial phytochromes undergo similar large-scale structural changes upon red-light excitation. The data establish that phytochromes with ordinary and inverted photocycles share a structural signaling mechanism and that a particular conserved histidine, previously proposed to be involved in signal propagation, in fact tunes photoresponse.
Collapse
Affiliation(s)
- Alexander Björling
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, 40530 Gothenburg, Sweden
| | - Oskar Berntsson
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, 40530 Gothenburg, Sweden
| | - Heikki Takala
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, 40530 Gothenburg, Sweden
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä , 40014 Jyväskylä, Finland
| | - Kevin D Gallagher
- Department of Biology, Northeastern Illinois University , 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Hardik Patel
- Department of Biology, Northeastern Illinois University , 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Emil Gustavsson
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, 40530 Gothenburg, Sweden
| | - Rachael St Peter
- Department of Biology, Northeastern Illinois University , 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Phu Duong
- Department of Biology, Northeastern Illinois University , 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Angela Nugent
- Department of Biology, Northeastern Illinois University , 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Fan Zhang
- Botanical Institute, Karlsruhe Institute of Technology KIT , Kaiserstr. 2, 76131 Karlsruhe, Germany
| | - Peter Berntsen
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, 40530 Gothenburg, Sweden
- Centre for Advanced Molecular Imaging, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| | - Roberto Appio
- MAX IV Laboratory, Lund University , P.O. Box 118, Lund SE-221 00, Sweden
| | - Ivan Rajkovic
- Paul Scherrer Institut , 5232 Villigen PSI, Switzerland
| | - Heli Lehtivuori
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä , 40014 Jyväskylä, Finland
| | - Matthijs R Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, 40530 Gothenburg, Sweden
| | - Maria Hoernke
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, 40530 Gothenburg, Sweden
| | - Stephan Niebling
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, 40530 Gothenburg, Sweden
| | - Rajiv Harimoorthy
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, 40530 Gothenburg, Sweden
| | - Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology KIT , Kaiserstr. 2, 76131 Karlsruhe, Germany
| | - Emina A Stojković
- Department of Biology, Northeastern Illinois University , 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Janne A Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä , 40014 Jyväskylä, Finland
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, 40530 Gothenburg, Sweden
| |
Collapse
|
78
|
Song C, Lang C, Kopycki J, Hughes J, Matysik J. NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1. Front Mol Biosci 2015; 2:42. [PMID: 26284254 PMCID: PMC4516977 DOI: 10.3389/fmolb.2015.00042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/06/2015] [Indexed: 11/25/2022] Open
Abstract
Phytochromes are dimeric biliprotein photoreceptors exhibiting characteristic red/far-red photocycles. Full-length cyanobacterial phytochrome Cph1 from Synechocystis 6803 is soluble initially but tends to aggregate in a concentration-dependent manner, hampering attempts to solve the structure using NMR and crystallization methods. Otherwise, the Cph1 sensory module (Cph1Δ2), photochemically indistinguishable from the native protein and used extensively in structural and other studies, can be purified to homogeneity in >10 mg amounts at mM concentrations quite easily. Bulk precipitation of full-length Cph1 by ammonium sulfate (AmS) was expected to allow us to produce samples for solid-state magic-angle spinning (MAS) NMR from dilute solutions before significant aggregation began. It was not clear, however, what effects the process of partial dehydration might have on the molecular structure. Here we test this by running solid-state MAS NMR experiments on AmS-precipitated Cph1Δ2 in its red-absorbing Pr state carrying uniformly 13C/15N-labeled phycocyanobilin (PCB) chromophore. 2D 13C–13C correlation experiments allowed a complete assignment of 13C responses of the chromophore. Upon precipitation, 13C chemical shifts for most of PCB carbons move upfield, in which we found major changes for C4 and C6 atoms associated with the A-ring positioning. Further, the broad spectral lines seen in the AmS 13C spectrum reflect primarily the extensive inhomogeneous broadening presumably due to an increase in the distribution of conformational states in the protein, in which less free water is available to partake in the hydration shells. Our data suggest that the effect of dehydration process indeed leads to changes of electronic structure of the bilin chromophore and a decrease in its mobility within the binding pocket, but not restricted to the protein surface. The extent of the changes induced differs from the freezing process of the solution samples routinely used in previous MAS NMR and crystallographic studies. AmS precipitation might nevertheless provide useful protein structure/functional information for full-length Cph1 in cases where neither X-ray crystallography nor conventional NMR methods are available.
Collapse
Affiliation(s)
- Chen Song
- Leids Instituut voor Chemisch Onderzoek, Universiteit Leiden Leiden, Netherlands ; Institut für Analytische Chemie, Fakultät für Chemie and Mineralogie, Universität Leipzig Leipzig, Germany
| | - Christina Lang
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität Gießen Gießen, Germany
| | - Jakub Kopycki
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität Gießen Gießen, Germany
| | - Jon Hughes
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität Gießen Gießen, Germany
| | - Jörg Matysik
- Leids Instituut voor Chemisch Onderzoek, Universiteit Leiden Leiden, Netherlands ; Institut für Analytische Chemie, Fakultät für Chemie and Mineralogie, Universität Leipzig Leipzig, Germany
| |
Collapse
|
79
|
Ueno Y, Aikawa S, Kondo A, Akimoto S. Light adaptation of the unicellular red alga, Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy. PHOTOSYNTHESIS RESEARCH 2015; 125:211-218. [PMID: 25577254 DOI: 10.1007/s11120-015-0078-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/25/2014] [Indexed: 06/04/2023]
Abstract
Photosynthetic organisms change the quantity and/or quality of their pigment-protein complexes and the interactions among these complexes in response to light conditions. In the present study, we analyzed light adaptation of the unicellular red alga Cyanidioschyzon merolae, whose pigment composition is similar to that of cyanobacteria because its phycobilisomes (PBS) lack phycoerythrin. C. merolae were grown under different light qualities, and their responses were measured by steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopies. Cells were cultivated under four monochromatic light-emitting diodes (blue, green, yellow, and red), and changes in pigment composition and energy transfer were observed. Cells grown under blue and green light increased their relative phycocyanin levels compared with cells cultured under white light. Energy-transfer processes to photosystem I (PSI) were sensitive to yellow and red light. The contribution of direct energy transfer from PBS to PSI increased only under yellow light, while red light induced a reduction in energy transfer from photosystem II to PSI and an increase in energy transfer from light-harvesting chlorophyll protein complex I to PSI. Differences in pigment composition, growth, and energy transfer under different light qualities are discussed.
Collapse
Affiliation(s)
- Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | | | | | | |
Collapse
|
80
|
Sarsekeyeva F, Zayadan BK, Usserbaeva A, Bedbenov VS, Sinetova MA, Los DA. Cyanofuels: biofuels from cyanobacteria. Reality and perspectives. PHOTOSYNTHESIS RESEARCH 2015; 125:329-40. [PMID: 25702086 DOI: 10.1007/s11120-015-0103-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/16/2015] [Indexed: 05/04/2023]
Abstract
Cyanobacteria are represented by a diverse group of microorganisms that, by virtue of being a part of marine and freshwater phytoplankton, significantly contribute to the fixation of atmospheric carbon via photosynthesis. It is assumed that ancient cyanobacteria participated in the formation of earth's oil deposits. Biomass of modern cyanobacteria may be converted into bio-oil by pyrolysis. Modern cyanobacteria grow fast; they do not compete for agricultural lands and resources; they efficiently convert excessive amounts of CO2 into biomass, thus participating in both carbon fixation and organic chemical production. Many cyanobacterial species are easier to genetically manipulate than eukaryotic algae and other photosynthetic organisms. Thus, the cyanobacterial photosynthesis may be directed to produce carbohydrates, fatty acids, or alcohols as renewable sources of biofuels. Here we review the recent achievements in the developments and production of cyanofuels-biofuels produced from cyanobacterial biomass.
Collapse
Affiliation(s)
- Fariza Sarsekeyeva
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
81
|
Montgomery BL. Light-dependent governance of cell shape dimensions in cyanobacteria. Front Microbiol 2015; 6:514. [PMID: 26074902 PMCID: PMC4443024 DOI: 10.3389/fmicb.2015.00514] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/09/2015] [Indexed: 12/15/2022] Open
Abstract
The regulation of cellular dimension is important for the function and survival of cells. Cellular dimensions, such as size and shape, are regulated throughout the life cycle of bacteria and can be adapted in response to environmental changes to fine-tune cellular fitness. Cell size and shape are generally coordinated with cell growth and division. Cytoskeletal regulation of cell shape and cell wall biosynthesis and/or deposition occurs in a range of organisms. Photosynthetic organisms, such as cyanobacteria, particularly exhibit light-dependent regulation of morphogenes and generation of reactive oxygen species and other signals that can impact cellular dimensions. Environmental signals initiate adjustments of cellular dimensions, which may be vitally important for optimizing resource acquisition and utilization or for coupling the cellular dimensions with the regulation of subcellular organization to maintain optimal metabolism. Although the involvement of cytoskeletal components in the regulation of cell shape is widely accepted, the signaling factors that regulate cytoskeletal and other distinct components involved in cell shape control, particularly in response to changes in external light cues, remain to be fully elucidated. In this review, factors impacting the inter-coordination of growth and division, the relationship between the regulation of cellular dimensions and central carbon metabolism, and consideration of the effects of specific environment signals, primarily light, on cell dimensions in cyanobacteria will be discussed. Current knowledge about the molecular bases of the light-dependent regulation of cellular dimensions and cell shape in cyanobacteria will be highlighted.
Collapse
Affiliation(s)
- Beronda L. Montgomery
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
82
|
Complete Genome Sequence of Cyanobacterium Geminocystis sp. Strain NIES-3708, Which Performs Type II Complementary Chromatic Acclimation. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00357-15. [PMID: 25953174 PMCID: PMC4424290 DOI: 10.1128/genomea.00357-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To explore the variation of the light-regulated genes during complementary chromatic acclimation (CCA), we determined the complete genome sequence of the cyanobacterium Geminocystis sp. strain NIES-3708. Within the light-regulated operon for CCA, we found genes for phycoerythrin but not phycocyanin, suggesting that this cyanobacterium modulates phycoerythrin composition only (type II CCA).
Collapse
|
83
|
Complete Genome Sequence of Cyanobacterium Geminocystis sp. Strain NIES-3709, Which Harbors a Phycoerythrin-Rich Phycobilisome. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00385-15. [PMID: 25931605 PMCID: PMC4417701 DOI: 10.1128/genomea.00385-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The cyanobacterium Geminocystis sp. strain NIES-3709 accumulates a larger amount of phycoerythrin than the related NIES-3708 strain does. Here, we determined the complete genome sequence of the NIES-3709 strain. Our genome data suggest that the different copy number of rod linker genes for phycoerythrin leads to the different phycoerythrin contents between the two strains.
Collapse
|
84
|
Rockwell NC, Martin SS, Lim S, Lagarias JC, Ames JB. Characterization of Red/Green Cyanobacteriochrome NpR6012g4 by Solution Nuclear Magnetic Resonance Spectroscopy: A Protonated Bilin Ring System in Both Photostates. Biochemistry 2015; 54:2581-600. [DOI: 10.1021/bi501548t] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular
and Cellular Biology and ‡Department of Chemistry, University of California, Davis, California 95616, United States
| | - Shelley S. Martin
- Department of Molecular
and Cellular Biology and ‡Department of Chemistry, University of California, Davis, California 95616, United States
| | - Sunghyuk Lim
- Department of Molecular
and Cellular Biology and ‡Department of Chemistry, University of California, Davis, California 95616, United States
| | - J. Clark Lagarias
- Department of Molecular
and Cellular Biology and ‡Department of Chemistry, University of California, Davis, California 95616, United States
| | - James B. Ames
- Department of Molecular
and Cellular Biology and ‡Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
85
|
Buchberger T, Lamparter T. Streptophyte phytochromes exhibit an N-terminus of cyanobacterial origin and a C-terminus of proteobacterial origin. BMC Res Notes 2015; 8:144. [PMID: 25886068 PMCID: PMC4422448 DOI: 10.1186/s13104-015-1082-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background Phytochromes are red light-sensitive photoreceptors that control a variety of developmental processes in plants, algae, bacteria and fungi. Prototypical phytochromes exhibit an N-terminal tridomain (PGP) consisting of PAS, GAF and PHY domains and a C-terminal histidine kinase (HK). Results The mode of evolution of streptophyte, fungal and diatom phytochromes from bacteria is analyzed using two programs for sequence alignment and six programs for tree construction. Our results suggest that Bacteroidetes present the most ancient types of phytochromes. We found many examples of lateral gene transfer and rearrangements of PGP and HK sequences. The PGP and HK of streptophyte phytochromes seem to have different origins. In the most likely scenario, PGP was inherited from cyanobacteria, whereas the C-terminal portion originated from a proteobacterial protein with multiple PAS domains and a C-terminal HK. The plant PhyA and PhyB lineages go back to an early gene duplication event before the diversification of streptophytes. Fungal and diatom PGPs could have a common prokaryotic origin within proteobacteria. Early gene duplication is also obvious in fungal phytochromes. Conclusions The dominant question of the origin of plant phytochromes is difficult to tackle because the patterns differ among phylogenetic trees. We could partially overcome this problem by combining several alignment and tree construction algorithms and comparing many trees. A rearrangement of PGP and HK can directly explain the insertion of the two PAS domains by which streptophyte phytochromes are distinguished from all other phytochromes. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1082-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thorsten Buchberger
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, Karlsruhe, D-76128, Germany.
| | - Tilman Lamparter
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, Karlsruhe, D-76128, Germany.
| |
Collapse
|
86
|
Rockwell NC, Martin SS, Gan F, Bryant DA, Lagarias JC. NpR3784 is the prototype for a distinctive group of red/green cyanobacteriochromes using alternative Phe residues for photoproduct tuning. Photochem Photobiol Sci 2015; 14:258-69. [DOI: 10.1039/c4pp00336e] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report chromophore–protein interactions used by cyanobacteriochrome NpR3784 and related proteins for spectral tuning of the green-absorbing photoproduct state. These interactions are distinct from those used by canonical red/green cyanobacteriochromes.
Collapse
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular and Cell Biology
- University of California at Davis
- Davis
- USA
| | - Shelley S. Martin
- Department of Molecular and Cell Biology
- University of California at Davis
- Davis
- USA
| | - Fei Gan
- Department of Biochemistry and Molecular Biology
- The Pennsylvania State University
- University Park
- USA
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology
- The Pennsylvania State University
- University Park
- USA
- Department of Chemistry and Biochemistry
| | - J. Clark Lagarias
- Department of Molecular and Cell Biology
- University of California at Davis
- Davis
- USA
| |
Collapse
|
87
|
Algae hold clues to eukaryotic origins of plant phytochromes. Proc Natl Acad Sci U S A 2014; 111:15608-9. [PMID: 25349430 DOI: 10.1073/pnas.1417990111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
88
|
Walters KJ, Whitaker MJ, Singh SP, Montgomery BL. Light intensity and reactive oxygen species are centrally involved in photoregulatory responses during complementary chromatic adaptation inFremyella diplosiphon. Commun Integr Biol 2014. [DOI: 10.4161/cib.25005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
89
|
Singh SP, Montgomery BL. Temporal responses of wild-type pigmentation and RcaE-deficient strains ofFremyelladiplosiphonduring light transitions. Commun Integr Biol 2014. [DOI: 10.4161/cib.16788] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
90
|
Montgomery BL. The Regulation of Light Sensing and Light-Harvesting Impacts the Use of Cyanobacteria as Biotechnology Platforms. Front Bioeng Biotechnol 2014; 2:22. [PMID: 25023122 PMCID: PMC4090899 DOI: 10.3389/fbioe.2014.00022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/13/2014] [Indexed: 12/22/2022] Open
Abstract
Light is harvested in cyanobacteria by chlorophyll-containing photosystems embedded in the thylakoid membranes and phycobilisomes (PBSs), photosystem-associated light-harvesting antennae. Light absorbed by the PBSs and photosystems can be converted to chemical energy through photosynthesis. Photosynthetically fixed carbon pools, which are constrained by photosynthetic light capture versus the dissipation of excess light absorbed, determine the available organismal energy budget. The molecular bases of the environmental regulation of photosynthesis, photoprotection, and photomorphogenesis are still being elucidated in cyanobacteria. Thus, the potential impacts of these phenomena on the efficacy of developing cyanobacteria as robust biotechnological platforms require additional attention. Current advances and persisting needs for developing cyanobacterial production platforms that are related to light sensing and harvesting include the development of tools to balance the utilization of absorbed photons for conversion to chemical energy and biomass versus light dissipation in photoprotective mechanisms. Such tools can be used to direct energy to more effectively support the production of desired bioproducts from sunlight.
Collapse
Affiliation(s)
- Beronda L. Montgomery
- Plant Research Laboratory, Department of Energy, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
91
|
Singh SP, Montgomery BL. Morphogenes bolA and mreB mediate the photoregulation of cellular morphology during complementary chromatic acclimation in Fremyella diplosiphon. Mol Microbiol 2014; 93:167-82. [PMID: 24823920 DOI: 10.1111/mmi.12649] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2014] [Indexed: 11/29/2022]
Abstract
Photoregulation of pigmentation during complementary chromatic acclimation (CCA) is well studied in Fremyella diplosiphon; however, mechanistic insights into the CCA-associated morphological changes are still emerging. F. diplosiphon cells are rectangular under green light (GL), whereas cells are smaller and spherical under red light (RL). Here, we investigate the role of morphogenes bolA and mreB during CCA using gene expression and gene function analyses. The F. diplosiphon bolA gene is essential as its complete removal from the genome was unsuccessful. Depletion of bolA resulted in slow growth, morphological defects and the accumulation of high levels of reactive oxygen species in a partially segregated ΔbolA strain. Higher expression of bolA was observed under RL and was correlated with lower expression of mreB and mreC genes in wild type. In a ΔrcaE strain that lacks the red-/green-responsive RcaE photoreceptor, the expression of bolA and mre genes was altered under both RL and GL. Observed gene expression relationships suggest that mreB and mreC expression is controlled by RcaE-dependent photoregulation of bolA expression. Expression of F. diplosiphon bolA and mreB homologues in Escherichia coli demonstrated functional conservation of the encoded proteins. Together, these studies establish roles for bolA and mreB in RcaE-dependent regulation of cellular morphology.
Collapse
Affiliation(s)
- Shailendra P Singh
- Department of Energy - Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, 612 Wilson Road, Room 106, East Lansing, MI, 48824-1312, USA
| | | |
Collapse
|
92
|
Rockwell NC, Martin SS, Gulevich AG, Lagarias JC. Conserved Phenylalanine Residues Are Required for Blue-Shifting of Cyanobacteriochrome Photoproducts. Biochemistry 2014; 53:3118-30. [DOI: 10.1021/bi500037a] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular and
Cellular Biology, University of California, Davis, California 95616, United States
| | - Shelley S. Martin
- Department of Molecular and
Cellular Biology, University of California, Davis, California 95616, United States
| | - Alexander G. Gulevich
- Department of Molecular and
Cellular Biology, University of California, Davis, California 95616, United States
| | - J. Clark Lagarias
- Department of Molecular and
Cellular Biology, University of California, Davis, California 95616, United States
| |
Collapse
|
93
|
Gottlieb SM, Chang CW, Martin SS, Rockwell NC, Lagarias JC, Larsen DS. Optically Guided Photoactivity: Coordinating Tautomerization, Photoisomerization, Inhomogeneity, and Reactive Intermediates within the RcaE Cyanobacteriochrome. J Phys Chem Lett 2014; 5:1527-1533. [PMID: 26270091 DOI: 10.1021/jz500378n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The RcaE cyanobacteriochrome uses a linear tetrapyrrole chromophore to sense the ratio of green and red light to enable the Fremyella diplosiphon cyanobacterium to control the expression of the photosynthetic infrastructure for efficient utilization of incident light. The femtosecond photodynamics of the embedded phycocyanobilin chromophore within RcaE were characterized with dispersed femtosecond pump-dump-probe spectroscopy, which resolved a complex interplay of excited-state proton transfer, photoisomerization, multilayered inhomogeneity, and reactive intermediates. These reactions were integrated within a central model that incorporated a rapid (200 fs) excited-state Le Châtelier redistribution between parallel evolving populations ascribed to different tautomers. Three photoproducts were resolved and originates from four independent subpopulations, each with different dump-induced behavior: Lumi-Go was depleted, Lumi-Gr was unaffected, and Lumi-Gf was enhanced. This suggests that RcaE may be engineered to act either as an in vivo fluorescent probe (after single-pump excitation) or as an in vivo optogenetic sample (after pump and dump excitation).
Collapse
Affiliation(s)
- Sean M Gottlieb
- †Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis One Shields Avenue, Davis, California 95616, United States
| | - Che-Wei Chang
- †Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis One Shields Avenue, Davis, California 95616, United States
| | - Shelley S Martin
- †Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis One Shields Avenue, Davis, California 95616, United States
| | - Nathan C Rockwell
- †Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis One Shields Avenue, Davis, California 95616, United States
| | - J Clark Lagarias
- †Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis One Shields Avenue, Davis, California 95616, United States
| | - Delmar S Larsen
- †Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
94
|
Pattanaik B, Busch AWU, Hu P, Chen J, Montgomery BL. Responses to iron limitation are impacted by light quality and regulated by RcaE in the chromatically acclimating cyanobacterium Fremyella diplosiphon. Microbiology (Reading) 2014; 160:992-1005. [DOI: 10.1099/mic.0.075192-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic organisms adapt to environmental fluctuations of light and nutrient availability. Iron is critical for photosynthetic organismal growth, as many cellular processes depend upon iron cofactors. Whereas low iron levels can have deleterious effects, excess iron can lead to damage, as iron is a reactive metal that can result in the production of damaging radicals. Therefore, organisms regulate cellular iron levels to maintain optimal iron homeostasis. In particular, iron is an essential factor for the function of photosystems associated with photosynthetic light-harvesting complexes. Photosynthetic organisms, including cyanobacteria, generally respond to iron deficiency by reduced growth, degradation of non-essential proteins and in some cases alterations of cellular morphology. In response to fluctuations in ambient light quality, the cyanobacterium Fremyella diplosiphon undergoes complementary chromatic adaptation (CCA). During CCA, phycobiliprotein composition of light-harvesting antennae is altered in response to green light (GL) and red light (RL) for efficient utilization of light energy for photosynthesis. We observed light-regulated responses to iron limitation in F. diplosiphon. RL-grown cells exhibited significant reductions in growth and pigment levels, and alterations in iron-associated proteins, which impact the accumulation of reactive oxygen species under iron-limiting conditions, whereas GL-grown cells exhibited partial resistance to iron limitation. We investigated the roles of known CCA regulators RcaE, RcaF and RcaC in this light-dependent iron-acclimation response. Through comparative analyses of wild-type and CCA mutant strains, we determined that photoreceptor RcaE has a central role in light-induced oxidative stress associated with iron limitation, and impacts light-regulated iron-acclimation responses, physiologically and morphologically.
Collapse
Affiliation(s)
- Bagmi Pattanaik
- Department of Energy – Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Andrea W. U. Busch
- Department of Energy – Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Pingsha Hu
- Department of Energy – Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Jin Chen
- Department of Energy – Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Beronda L. Montgomery
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Energy – Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
95
|
Signal amplification and transduction in phytochrome photosensors. Nature 2014; 509:245-248. [PMID: 24776794 PMCID: PMC4015848 DOI: 10.1038/nature13310] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/07/2014] [Indexed: 11/25/2022]
Abstract
Sensory proteins must relay structural signals from the sensory site over large distances to regulatory output domains. Phytochromes are a major family of red-light sensing kinases that control diverse cellular functions in plants, bacteria, and fungi.1-9 Bacterial phytochromes consist of a photosensory core and a C-terminal regulatory domain.10,11 Structures of photosensory cores are reported in the resting state12-18 and conformational responses to light activation have been proposed in the vicinity of the chromophore.19-23 However, the structure of the signalling state and the mechanism of downstream signal relay through the photosensory core remain elusive. Here, we report crystal and solution structures of the resting and active states of the photosensory core of the bacteriophytochrome from Deinococcus radiodurans. The structures reveal an open and closed form of the dimeric protein for the signalling and resting state, respectively. This nanometre scale rearrangement is controlled by refolding of an evolutionarily conserved “tongue”, which is in contact with the chromophore. The findings reveal an unusual mechanism where atomic scale conformational changes around the chromophore are first amplified into an Ångström scale distance change in the tongue, and further grow into a nanometre scale conformational signal. The structural mechanism is a blueprint for understanding how the sensor proteins connect to the cellular signalling network.
Collapse
|
96
|
Kim TL, Yoo J, Sangsawang K, Cho MH, Yang SH, Suh JW, Hahn TR, Bhoo SH. Epitope mapping of monoclonal antibodies for the Deinococcus radiodurans bacteriophytochome. Protein Sci 2014; 23:812-8. [PMID: 24677487 DOI: 10.1002/pro.2464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 11/06/2022]
Abstract
Bacteriophytochromes (BphP) are phytochrome-like light sensing proteins in bacteria, which use biliverdin as a chromophore. In order to study the biochemical properties of the DrBphP protein, five (2B8, 2C11, 3B2, 3D2, and 3H7) anti-DrBphP monoclonal antibodies were produced through the immunization of mice with purified full-length DrBphP and DrBphN (1-321 amino acid) proteins, and epitope mapping was then carried out. Among the five antibodies, 2B8 and 2C11 preferentially recognized the N-terminal region of BphP whereas 3B2, 3D2, and 3H7 showed preference for the C-terminal region. We performed further epitope mapping using recombinant truncated BphP proteins to narrow down their target sequences. The results demonstrated that each of the five monoclonal antibodies recognized different regions on the DrBphP protein. Additionally, epitopes of 2B8 and 3H7 antibodies were discovered to be shorter than 10 amino acids (2B8: RDPLPFFPP, 3H7: PGEIEEA). These two antibodies with such specific recognition epitopes could be especially valuable for developing new peptide tags for protein detection and purification.
Collapse
Affiliation(s)
- Tae-Lim Kim
- Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Yongin, 446-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Shahri W, Tahir I. Flower senescence: some molecular aspects. PLANTA 2014; 239:277-97. [PMID: 24178586 DOI: 10.1007/s00425-013-1984-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 10/14/2013] [Indexed: 05/08/2023]
|
98
|
Gottlieb SM, Kim PW, Rockwell NC, Hirose Y, Ikeuchi M, Lagarias JC, Larsen DS. Primary Photodynamics of the Green/Red-Absorbing Photoswitching Regulator of the Chromatic Adaptation E Domain from Fremyella diplosiphon. Biochemistry 2013; 52:8198-208. [DOI: 10.1021/bi400946q] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sean M. Gottlieb
- Department
of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Peter W. Kim
- Department
of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Nathan C. Rockwell
- Department
of Molecular and Cell Biology, University of California, One Shields
Avenue, Davis, California 95616, United States
| | - Yuu Hirose
- Electronics-Inspired
Interdisciplinary Research Institute, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Masahiko Ikeuchi
- Electronics-Inspired
Interdisciplinary Research Institute, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku, Toyohashi, Aichi 441-8580, Japan
- Department
of Life Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - J. Clark Lagarias
- Department
of Molecular and Cell Biology, University of California, One Shields
Avenue, Davis, California 95616, United States
| | - Delmar S. Larsen
- Department
of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
99
|
Singh SP, Miller HL, Montgomery BL. Temporal dynamics of changes in reactive oxygen species (ROS) levels and cellular morphology are coordinated during complementary chromatic acclimation in Fremyella diplosiphon. PHOTOSYNTHESIS RESEARCH 2013; 118:95-104. [PMID: 24122367 DOI: 10.1007/s11120-013-9938-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 10/01/2013] [Indexed: 06/02/2023]
Abstract
Fremyella diplosiphon alters the phycobiliprotein composition of its light-harvesting complexes, i.e., phycobilisomes, and its cellular morphology in response to changes in the prevalent wavelengths of light in the external environment in a phenomenon known as complementary chromatic acclimation (CCA). The organism primarily responds to red light (RL) and green light (GL) during CCA to maximize light absorption for supporting optimal photosynthetic efficiency. Recently, we found that RL-characteristic spherical cell morphology is associated with higher levels of reactive oxygen species (ROS) compared to growth under GL where lower ROS levels and rectangular cell shape are observed. The RL-dependent association of increased ROS levels with cellular morphology was demonstrated by treating cells with a ROS-scavenging antioxidant which resulted in the observation of GL-characteristic rectangular morphology under RL. To gain additional insights into the involvement of ROS in impacting cellular morphology changes during CCA, we conducted experiments to study the temporal dynamics of changes in ROS levels and cellular morphology during transition to growth under RL or GL. Alterations in ROS levels and cell morphology were found to be correlated with each other at early stages of acclimation of low white light-grown cells to growth under high RL or cells transitioned between growth in RL and GL. These results provide further general evidence that significant RL-dependent increases in ROS levels are temporally correlated with changes in morphology toward spherical. Future studies will explore the light-dependent mechanisms by which ROS levels may be regulated and the direct impacts of ROS on the observed morphology changes.
Collapse
Affiliation(s)
- Shailendra P Singh
- Department of Energy-Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, 612 Wilson Road, Room 106, East Lansing, MI, 48824-1312, USA
| | | | | |
Collapse
|
100
|
Unique role for translation initiation factor 3 in the light color regulation of photosynthetic gene expression. Proc Natl Acad Sci U S A 2013; 110:16253-8. [PMID: 24048028 DOI: 10.1073/pnas.1306332110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Light-harvesting antennae are critical for collecting energy from sunlight and providing it to photosynthetic reaction centers. Their abundance and composition are tightly regulated to maintain efficient photosynthesis in changing light conditions. Many cyanobacteria alter their light-harvesting antennae in response to changes in ambient light-color conditions through the process of chromatic acclimation. The control of green light induction (Cgi) pathway is a light-color-sensing system that controls the expression of photosynthetic genes during chromatic acclimation, and while some evidence suggests that it operates via transcription attenuation, the components of this pathway have not been identified. We provide evidence that translation initiation factor 3 (IF3), an essential component of the prokaryotic translation initiation machinery that binds the 30S subunit and blocks premature association with the 50S subunit, is part of the control of green light induction pathway. Light regulation of gene expression has not been previously described for any translation initiation factor. Surprisingly, deletion of the IF3-encoding gene infCa was not lethal in the filamentous cyanobacterium Fremyella diplosiphon, and its genome was found to contain a second, redundant, highly divergent infC gene which, when deleted, had no effect on photosynthetic gene expression. Either gene could complement an Escherichia coli infC mutant and thus both encode bona fide IF3s. Analysis of prokaryotic and eukaryotic genome databases established that multiple infC genes are present in the genomes of diverse groups of bacteria and land plants, most of which do not undergo chromatic acclimation. This suggests that IF3 may have repeatedly evolved important roles in the regulation of gene expression in both prokaryotes and eukaryotes.
Collapse
|