51
|
Wang Z, Wilson WA, Fujino MA, Roach PJ. The yeast cyclins Pc16p and Pc17p are involved in the control of glycogen storage by the cyclin-dependent protein kinase Pho85p. FEBS Lett 2001; 506:277-80. [PMID: 11602261 DOI: 10.1016/s0014-5793(01)02914-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pho85p is a yeast cyclin-dependent protein kinase (Cdk) that can interact with 10 cyclins (Pcls) to form multiple protein kinases. The functions of most of the Pcls, including Pc16p and Pc17p, are poorly defined. We report here that Pc16p and Pc17p are involved in the metabolism of the branched storage polysaccharide glycogen under certain conditions and deletion of PCL6 and PCL7 restores glycogen accumulation to a snf1 pcl8 pcl10 triple mutant, paradoxically activating both glycogen synthase and phosphorylase. Pho85p thus affects glycogen accumulation through multiple Cdks composed of different cyclin partners.
Collapse
Affiliation(s)
- Z Wang
- Department of Biochemistry and Molecular Biology and Center for Diabetes Research, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5122, USA.
| | | | | | | |
Collapse
|
52
|
Baetz K, Moffat J, Haynes J, Chang M, Andrews B. Transcriptional coregulation by the cell integrity mitogen-activated protein kinase Slt2 and the cell cycle regulator Swi4. Mol Cell Biol 2001; 21:6515-28. [PMID: 11533240 PMCID: PMC99798 DOI: 10.1128/mcb.21.19.6515-6528.2001] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the heterodimeric transcription factor SBF (for SCB binding factor) is composed of Swi4 and Swi6 and activates gene expression at the G(1)/S-phase transition of the mitotic cell cycle. Cell cycle commitment is associated not only with major alterations in gene expression but also with highly polarized cell growth; the mitogen-activated protein kinase (MAPK) Slt2 is required to maintain cell wall integrity during periods of polarized growth and cell wall stress. We describe experiments aimed at defining the regulatory pathway involving the cell cycle transcription factor SBF and Slt2-MAPK. Gene expression assays and chromatin immunoprecipitation experiments revealed Slt2-dependent recruitment of SBF to the promoters of the G(1) cyclins PCL1 and PCL2 after activation of the Slt2-MAPK pathway. We performed DNA microarray analysis and identified other genes whose expression was reduced in both SLT2 and SWI4 deletion strains. Genes that are sensitive to both Slt2 and Swi4 appear to be uniquely regulated and reveal a role for Swi4, the DNA-binding component of SBF, which is independent of the regulatory subunit Swi6. Some of the Swi4- and Slt2-dependent genes do not require Swi6 for either their expression or for Swi4 localization to their promoters. Consistent with these results, we found a direct interaction between Swi4 and Slt2. Our results establish a new Slt2-dependent mode of Swi4 regulation and suggest roles for Swi4 beyond its prominent role in controlling cell cycle transcription.
Collapse
Affiliation(s)
- K Baetz
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
53
|
McBride HJ, Sil A, Measday V, Yu Y, Moffat J, Maxon ME, Herskowitz I, Andrews B, Stillman DJ. The protein kinase Pho85 is required for asymmetric accumulation of the Ash1 protein in Saccharomyces cerevisiae. Mol Microbiol 2001; 42:345-53. [PMID: 11703659 DOI: 10.1046/j.1365-2958.2001.02601.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Ash1 protein is a daughter cell-specific repressor of HO gene transcription in Saccharomyces cerevisiae. Both ASH1 mRNA and protein are localized to the incipient daughter cell at the end of mitosis; Ash1 then inhibits HO transcription in the daughter cell after cytokinesis. Mother cells, in contrast, contain little or no Ash1 and thus are able to transcribe HO. We show that deletion of PHO85, which encodes a cyclin-dependent protein kinase, causes reduced transcription of HO and that this reduction is dependent on ASH1. In pho85 mutants, Ash1 protein is no longer asymmetrically localized and is present, instead, in both mother and daughter cells. Initially, it appears to be localized properly but then persists as daughter cells mature into mother cells. In contrast, ASH1 mRNA is localized appropriately to daughter cells in pho85 mutants. We observe that Ash1 protein is phosphorylated by Pho85 in vitro and that Ash1 stability increases in a pho85 mutant. These data suggest that phosphorylation of Ash1 by Pho85 governs stability of Ash1 protein.
Collapse
Affiliation(s)
- H J McBride
- Department of Pathology, University of Utah, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Miller ME, Cross FR. Mechanisms controlling subcellular localization of the G(1) cyclins Cln2p and Cln3p in budding yeast. Mol Cell Biol 2001; 21:6292-311. [PMID: 11509671 PMCID: PMC87357 DOI: 10.1128/mcb.21.18.6292-6311.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Different G(1) cyclins confer functional specificity to the cyclin-dependent kinase (Cdk) Cdc28p in budding yeast. The Cln3p G(1) cyclin is localized primarily to the nucleus, while Cln2p is localized primarily to the cytoplasm. Both binding to Cdc28p and Cdc28p-dependent phosphorylation in the C-terminal region of Cln2p are independently required for efficient nuclear depletion of Cln2p, suggesting that this process may be physiologically regulated. The accumulation of hypophosphorylated Cln2 in the nucleus is an energy-dependent process, but may not involve the RAN GTPase. Phosphorylation of Cln2p is inefficient in small newborn cells obtained by elutriation, and this lowered phosphorylation correlates with reduced Cln2p nuclear depletion in newborn cells. Thus, Cln2p may have a brief period of nuclear residence early in the cell cycle. In contrast, the nuclear localization pattern of Cln3p is not influenced by Cdk activity. Cln3p localization requires a bipartite nuclear localization signal (NLS) located at the C terminus of the protein. This sequence is required for nuclear localization of Cln3p and is sufficient to confer nuclear localization to green fluorescent protein in a RAN-dependent manner. Mislocalized Cln3p, lacking the NLS, is much less active in genetic assays specific for Cln3p, but more active in assays normally specific for Cln2p, consistent with the idea that Cln3p localization explains a significant part of Clnp functional specificity.
Collapse
Affiliation(s)
- M E Miller
- The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
55
|
Schier N, Liese R, Fischer R. A Pcl-like cyclin of Aspergillus nidulans is transcriptionally activated by developmental regulators and is involved in sporulation. Mol Cell Biol 2001; 21:4075-88. [PMID: 11359914 PMCID: PMC87069 DOI: 10.1128/mcb.21.12.4075-4088.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous fungus Aspergillus nidulans reproduces asexually through the formation of spores on a multicellular aerial structure, called a conidiophore. A key regulator of asexual development is the TFIIIA-type zinc finger containing transcriptional activator Bristle (BRLA). Besides BRLA, the transcription factor ABAA, which is located downstream of BRLA in the developmental regulation cascade, is necessary to direct later gene expression during sporulation. We isolated a new developmental mutant and identified a leaky brlA mutation and the mutated Saccharomyces cerevisiae cyclin homologue pclA, both contributing to the developmental phenotype of the mutant. pclA was found to be 10-fold transcriptionally upregulated during conidiation, and a pclA deletion strain was reduced three- to fivefold in production of conidia. Expression of pclA was strongly induced by ectopic expression of brlA or abaA under conidiation-suppressing conditions, indicating a direct role for brlA and abaA in pclA regulation. PCLA is homologous to yeast Pcl cyclins, which interact with the Pho85 cyclin-dependent kinase. Although interaction with a PSTAIRE kinase was shown in vivo, PCLA function during sporulation was independent of the A. nidulans Pho85 homologue PHOA. Besides the developmental regulation, pclA expression was cell cycle dependent with peak transcript levels in S phase. Our findings suggest a role for PCLA in mediating cell cycle events during late stages of sporulation.
Collapse
Affiliation(s)
- N Schier
- Laboratorium für Mikrobiologie, Philipps-Universität Marburg and Max-Planck-Institut für Terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | | | | |
Collapse
|
56
|
Nishizawa M, Tanabe M, Yabuki N, Kitada K, Toh-E A. Pho85 kinase, a yeast cyclin-dependent kinase, regulates the expression of UGP1 encoding UDP-glucose pyrophosphorylase. Yeast 2001; 18:239-49. [PMID: 11180457 DOI: 10.1002/1097-0061(200102)18:3<239::aid-yea664>3.0.co;2-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The PHO85 gene is a negative regulator of the PHO system in the yeast Saccharomyces cerevisiae and encodes a protein kinase (Pho85) highly homologous to the Cdc28 kinase (Cdc28). Ten cyclin-like proteins are known to interact with Pho85, and combination with different cyclins is believed to be responsible for distinct Pho85 functions, including phosphate metabolism, carbon source utilization and cell cycle regulation. However, only a limited number of substrates of Pho85 kinase, including Pho4, Gsy2 and Sicl, have so far been identified. To search for more targets of Pho85 and to clarify the genetic control mechanisms by Pho85 kinase in these cellular functions, we carried out a genome-wide analysis of the effect of a pho85Delta mutation on gene expression. We found that expression of various genes involved in carbon metabolism are affected by the mutation and that among them, UGP1 promoter activity was increased in the absence of Pho85 kinase. This increase in the promoter activity was not observed in a pho4Delta mutant or with a mutant UGP1 promoter that is devoid of putative Pho4 and Bas2 binding sites, suggesting that UGP1 expression is modulated by Pho85 through Pho4. We also found that expression of several Pho85-cyclin genes were altered by the carbon source, the growth phase and Pho85 kinase itself.
Collapse
Affiliation(s)
- M Nishizawa
- Department of Microbiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | | | | | | | | |
Collapse
|
57
|
Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 2001; 409:533-8. [PMID: 11206552 DOI: 10.1038/35054095] [Citation(s) in RCA: 780] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2000] [Accepted: 12/01/2000] [Indexed: 11/09/2022]
Abstract
Proteins interact with genomic DNA to bring the genome to life; and these interactions also define many functional features of the genome. SBF and MBF are sequence-specific transcription factors that activate gene expression during the G1/S transition of the cell cycle in yeast. SBF is a heterodimer of Swi4 and Swi6, and MBF is a heterodimer of Mbpl and Swi6 (refs 1, 3). The related Swi4 and Mbp1 proteins are the DNA-binding components of the respective factors, and Swi6 mayhave a regulatory function. A small number of SBF and MBF target genes have been identified. Here we define the genomic binding sites of the SBF and MBF transcription factors in vivo, by using DNA microarrays. In addition to the previously characterized targets, we have identified about 200 new putative targets. Our results support the hypothesis that SBF activated genes are predominantly involved in budding, and in membrane and cell-wall biosynthesis, whereas DNA replication and repair are the dominant functions among MBF activated genes. The functional specialization of these factors may provide a mechanism for independent regulation of distinct molecular processes that normally occur in synchrony during the mitotic cell cycle.
Collapse
Affiliation(s)
- V R Iyer
- Department of Biochemistry, Stanford University Medical Center, California 94305, USA
| | | | | | | | | | | |
Collapse
|
58
|
Lenburg ME, O'Shea EK. Genetic evidence for a morphogenetic function of the Saccharomyces cerevisiae Pho85 cyclin-dependent kinase. Genetics 2001; 157:39-51. [PMID: 11139490 PMCID: PMC1283135 DOI: 10.1093/genetics/157.1.39] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Saccharomyces cerevisiae PHO85 gene encodes a nonessential cyclin-dependent kinase that associates with 10 cyclin subunits. To survey the functions provided by Pho85, we identified mutants that require PHO85 for viability. We identified mutations that define seven Pho Eighty-Five Requiring or Efr loci, six of which are previously identified genes-BEM2 (YER155C), SPT7 (YBR081C), GCR1 (YPL075W), SRB5 (YGR104C), HFI1 (YPL254W), and BCK1 (YJL095W)-with one novel gene (YMR212C). We found that mutations in the EFR genes involved in morphogenesis are specifically inviable when the Pho85-associated G1 cyclins encoded by PCL1 and PCL2 are absent. pcl1 Delta bem2, pcl1 Delta pcl2 Delta cla4 Delta, and pcl1 Delta pcl2 Delta cdc42-1 strains are inviable. pcl1 Delta pcl2 Delta mpk1 Delta, pcl1 Delta pcl2 Delta bck1, and pcl1 Delta pcl2 Delta cln1 Delta cln2 Delta strains are also inviable, but are rescued by osmotic stabilization with 1 m sorbitol. We propose that the G1 cyclins encoded by PCL1 and PCL2 positively regulate CDC42 or another morphogenesis promoting function.
Collapse
Affiliation(s)
- M E Lenburg
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-0448, USA
| | | |
Collapse
|
59
|
Liu C, Yang Z, Yang J, Xia Z, Ao S. Regulation of the yeast transcriptional factor PHO2 activity by phosphorylation. J Biol Chem 2000; 275:31972-8. [PMID: 10884387 DOI: 10.1074/jbc.m003055200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The induction of yeast Saccharomyces cerevisiae gene PHO5 expression is mediated by transcriptional factors PHO2 and PHO4. PHO4 protein has been reported to be phosphorylated and inactivated by a cyclin-CDK (cyclin-dependent kinase) complex, PHO80-PHO85. We report here that PHO2 can also be phosphorylated. A Ser-230 to Ala mutation in the consensus sequence (SPIK) recognized by cdc2/CDC28-related kinase in PHO2 protein led to complete loss of its ability to activate the transcription of PHO5 gene. Further investigation showed that the Pro-231 to Ser mutation inactivated PHO2 protein as well, whereas the Ser-230 to Asp mutation did not affect PHO2 activity. Since the PHO2 Asp-230 mutant mimics Ser-230-phosphorylated PHO2, we postulate that only phosphorylated PHO2 protein could activate the transcription of PHO5 gene. Two hybrid assays showed that yeast CDC28 could interact with PHO2. CDC28 immunoprecipitate derived from the YPH499 strain grown under low phosphate conditions phosphorylated GST-PHO2 in vitro. A phosphate switch regulates the transcriptional activation activity of PHO2, and mutations of the (SPIK) site affect the transcriptional activation activity of PHO2 and the interaction between PHO2 and PHO4. BIAcore(R) analysis indicated that the negative charge in residue 230 of PHO2 was sufficient to help PHO2 interact with PHO4 in vitro.
Collapse
Affiliation(s)
- C Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | | | | | | | | |
Collapse
|
60
|
Lee M, O'Regan S, Moreau JL, Johnson AL, Johnston LH, Goding CR. Regulation of the Pcl7-Pho85 cyclin-cdk complex by Pho81. Mol Microbiol 2000; 38:411-22. [PMID: 11069666 DOI: 10.1046/j.1365-2958.2000.02140.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Saccharomyces cerevisiae strains lacking a functional Pho85 cyclin-dependent kinase (cdk) exhibit a complex phenotype, including deregulation of phosphatase genes controlled by the transcription factor Pho4, slow growth on rich media, failure to grow using galactose, lactate or glycerol as a carbon source and hyperaccumulation of glycogen. The ability of Pho85 to regulate the transcription factor Pho4 is mediated by its association the Pho80 cyclin. Some other regulatory functions of the Pho85 cdk have been shown to be mediated via its interaction with a recently identified family of Pho80-related cyclins (Pcls). Here, we show that the poorly characterized Pho80-like protein Pcl7 forms a functional kinase complex with the Pho85 cdk, and that the activity of this complex is inhibited in response to phosphate starvation. Additionally, we show that Pcl7 interacts with the phosphate-regulated cyclin-cdk inhibitor Pho81, and that the regulation of the Pcl7-Pho85 complex in response to changes in phosphate levels is dependent on Pho81. Thus, we demonstrate for the first time that the Pho81 regulator is not dedicated to regulating Pho80, but may act to co-ordinate the activity of both the Pho80-Pho85 and Pcl7-Pho85 cyclin-cdk complexes in response to phosphate levels. We also demonstrate that expression of Pcl7 is cell cycle regulated, with maximal activity occurring in mid to late S-phase, perhaps suggesting a role for Pcl7 in cell cycle progression. Finally, we describe the phenotype of pcl7Delta and pcl6Delta yeast strains that have defects in carbon source utilization.
Collapse
Affiliation(s)
- M Lee
- Eukaryotic Transcription Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 OTL, UK
| | | | | | | | | | | |
Collapse
|
61
|
Yao S, Neiman A, Prelich G. BUR1 and BUR2 encode a divergent cyclin-dependent kinase-cyclin complex important for transcription in vivo. Mol Cell Biol 2000; 20:7080-7. [PMID: 10982824 PMCID: PMC86248 DOI: 10.1128/mcb.20.19.7080-7087.2000] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2000] [Accepted: 07/11/2000] [Indexed: 11/20/2022] Open
Abstract
BUR1 and BUR2 were previously identified by a genetic selection for mutations that increase transcription from basal promoters in vivo. BUR1 encoded a putative protein kinase with greatest similarity to members of the cyclin-dependent kinase (CDK) family, although that similarity was not sufficient to classify it as a CDK. It was also not known whether Bur1 activity was cyclin dependent and, if so, which cyclins stimulated Bur1. The molecular cloning and characterization of BUR2 presented here sheds light on these issues. Genetic analysis indicates that BUR2 function is intimately related to that of BUR1: bur1 and bur2 mutations cause nearly identical spectra of mutant phenotypes, and overexpression of BUR1 suppresses a bur2 null allele. Biochemical analysis has provided a molecular basis for these genetic observations. We find that BUR2 encodes a cyclin for the Bur1 protein kinase, based on the following evidence. First, the BUR2 amino acid sequence reveals similarity to the cyclins; second, Bur1 and Bur2 coimmunoprecipitate from crude extracts and interact in the two-hybrid system; and third, BUR2 is required for Bur1 kinase activity in vitro. Our combined genetic and biochemical results therefore indicate that Bur1 and Bur2 comprise a divergent CDK-cyclin complex that has an important functional role during transcription in vivo.
Collapse
Affiliation(s)
- S Yao
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
62
|
Tanaka K, Okayama H. A pcl-like cyclin activates the Res2p-Cdc10p cell cycle "start" transcriptional factor complex in fission yeast. Mol Biol Cell 2000; 11:2845-62. [PMID: 10982385 PMCID: PMC14960 DOI: 10.1091/mbc.11.9.2845] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2000] [Revised: 06/02/2000] [Accepted: 06/26/2000] [Indexed: 11/11/2022] Open
Abstract
In the fission yeast Schizosaccharomyces pombe, the "start" of the cell cycle is controlled by the two functionally redundant transcriptional regulator complexes, Res1p-Cdc10p and Res2p-Cdc10p, that activate genes essential for the onset and progression of S phase. The activity of the Res2p-Cdc10p complex is regulated at least by the availability of the Rep2 trans-activator subunit in the mitotic cell cycle. We have recently isolated the pas1(+) gene as a multicopy suppressor of the res1 null mutant. This gene encodes a novel cyclin that shares homology with the Pho85 kinase-associated cyclins of the budding yeast Saccharomyces cerevisiae. Genetic analysis reveals that Pas1 cyclin is unrelated to phosphate metabolism and stimulates the G(1)-S transition by specifically activating the Res2p-Cdc10p complex independently of Rep2p. Pas1 cyclin also controls mating pheromone signaling. Cells lacking pas1(+) are highly sensitive to mating pheromone, responding with facilitated G(1) arrest and premature commitment to conjugation. Pas1 cyclin associates in vivo with both Cdc2 and Pef1 kinases, the latter of which is a fission yeast counterpart of the budding yeast Pho85 kinase, but genetic analysis indicates that the Pef1p-associated Pas1p is responsible for the activation of Res2p-Cdc10p during the G(1)-S transition.
Collapse
Affiliation(s)
- K Tanaka
- Department of Biochemistry and Molecular Biology, The University of Tokyo, Graduate School of Medicine, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
63
|
Liu J, Kipreos ET. Evolution of cyclin-dependent kinases (CDKs) and CDK-activating kinases (CAKs): differential conservation of CAKs in yeast and metazoa. Mol Biol Evol 2000; 17:1061-74. [PMID: 10889219 DOI: 10.1093/oxfordjournals.molbev.a026387] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) function as central regulators of both the cell cycle and transcription. CDK activation depends on phosphorylation by a CDK-activating kinase (CAK). Different CAKs have been identified in budding yeast, fission yeast, and metazoans. All known CAKs belong to the extended CDK family. The sole budding yeast CAK, CAK1, and one of the two CAKs in fission yeast, csk1, have diverged considerably from other CDKs. Cell cycle regulatory components have been largely conserved in eukaryotes; however, orthologs of neither CAK1 nor csk1 have been identified in other species to date. To determine the evolutionary relationships of yeast and metazoan CAKs, we performed a phylogenetic analysis of the extended CDK family in budding yeast, fission yeast, humans, the fruit fly Drosophila melanogaster, and the nematode Caenorhabditis elegans. We observed that there were 10 clades for CDK-related genes, of which seven appeared ancestral, containing both yeast and metazoan genes. The four clades that contain CDKs that regulate transcription by phosphorylating the carboxyl-terminal domain (CTD) of RNA Polymerase II generally have only a single orthologous gene in each species of yeast and metazoans. In contrast, the ancestral cell cycle CDK (analogous to budding yeast CDC28) gave rise to a number of genes in metazoans, as did the ancestor of budding yeast PHO85. One ancestral clade is unique in that there are fission yeast and metazoan members, but there is no budding yeast ortholog, suggesting that it was lost subsequent to evolutionary divergence. Interestingly, CAK1 and csk1 branch together with high bootstrap support values. We used both the relative apparent synapomorphy analysis (RASA) method in combination with the S-F method of sampling reduced character sets and gamma-corrected distance methods to confirm that the CAK1/csk1 association was not an artifact of long-branch attraction. This result suggests that CAK1 and csk1 are orthologs and that a central aspect of CAK regulation has been conserved in budding and fission yeast. Although there are metazoan CDK-family members for which we could not define ancestral lineage, our analysis failed to identify metazoan CAK1/csk1 orthologs, suggesting that if the CAK1/csk1 gene existed in the metazoan ancestor, it has not been conserved.
Collapse
Affiliation(s)
- J Liu
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
64
|
Moffat J, Huang D, Andrews B. Functions of Pho85 cyclin-dependent kinases in budding yeast. PROGRESS IN CELL CYCLE RESEARCH 2000; 4:97-106. [PMID: 10740818 DOI: 10.1007/978-1-4615-4253-7_9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pho85 is a multifunctional cyclin-dependent kinase (Cdk) in Saccharomyces cerevisiae that has emerged as an important model for the role of Cdks in both cell cycle control and other processes. Pho85 was originally discovered as a regulator of phosphate metabolism but roles for Pho85 in glycogen biosynthesis, actin regulation and cell cycle progression have since been discovered. Ten genes encoding known or putative Pho85 cyclins (Pcls) have been identified and the Pcls appear to target Pho85 to specific cellular functions and substrates. In this chapter, we review the functions of the various Pcl-Pho85 complexes in budding yeast. We focus on the known biological roles of Pho85 with an emphasis on Pho85 substrates and cyclin-Cdk specificity.
Collapse
Affiliation(s)
- J Moffat
- Department of Molecular and Medical Genetics, University of Toronto, Canada
| | | | | |
Collapse
|
65
|
Jackson T, Kwon E, Chachulska AM, Hyman LE. Novel roles for elongin C in yeast. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1491:161-76. [PMID: 10760578 DOI: 10.1016/s0167-4781(00)00052-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mammalian Elongin C is a 112-amino acid protein that binds to the von Hippel-Lindau (VHL) tumor suppressor and to Elongin A, the transcriptionally active subunit of the RNA polymerase II elongation factor, SIII. It is conserved in eukaryotic cells, as homologs have been identified in Saccharomyces cerevisiae, Drosophila melanogaster and Caenorhabditis elegans. The mammalian protein is thought to function as part of a ubiquitin targeting E3 ligase, yet the function in yeast has not been determined. In this report we examine the role of Elongin C in yeast and establish that yeast Elongin C may function in a mode distinct from its role as an E3 ligase. The RNA is expressed ubiquitously, albeit at low levels. Two hybrid analyses demonstrate that Elongin C in yeast interacts with a specific set of proteins that are involved in the stress response. This suggests a novel role for Elongin C and provides insights into additional potential functions in mammalian cells.
Collapse
Affiliation(s)
- T Jackson
- Department of Biochemistry SL43, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, USA
| | | | | | | |
Collapse
|
66
|
Grallert B, Kearsey SE, Lenhard M, Carlson CR, Nurse P, Boye E, Labib K. A fission yeast general translation factor reveals links between protein synthesis and cell cycle controls. J Cell Sci 2000; 113 ( Pt 8):1447-58. [PMID: 10725227 DOI: 10.1242/jcs.113.8.1447] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In two independent screens we isolated fission yeast mutations with phenotypes suggesting defects in B-cyclin function or expression. These mutations define a single gene which we call ded1. We show that ded1 encodes a general translation factor that is related in sequence and function to RNA helicases required for translation in other species. Levels of the B-cyclins Cig2 and Cdc13 are dramatically reduced upon inactivation of Ded1, and this reduction is independent of degradation by the anaphase promoting complex. When a ded1 mutant is grown under semi-restrictive conditions, the translation of Cig2 (and to a lesser extent Cdc13), is impaired relative to other proteins. We show that B-cyclin translation is specifically inhibited upon nitrogen starvation of wild-type cells, when B-cyclin/Cdc2 inactivation is a prerequisite for G(1) arrest and subsequent mating. Our data suggest that translational inhibition of B-cyclin expression represents a third mechanism, in addition to cyclin degradation and Rum1 inhibition, that contributes to Cdc2 inactivation as cells exit from the mitotic cell cycle and prepare for meiosis.
Collapse
Affiliation(s)
- B Grallert
- Imperial Cancer Research Fund, Lincoln's Inn Fields, London, WC2A 3PX, UK
| | | | | | | | | | | | | |
Collapse
|
67
|
Patton EE, Peyraud C, Rouillon A, Surdin-Kerjan Y, Tyers M, Thomas D. SCF(Met30)-mediated control of the transcriptional activator Met4 is required for the G(1)-S transition. EMBO J 2000; 19:1613-24. [PMID: 10747029 PMCID: PMC310230 DOI: 10.1093/emboj/19.7.1613] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Progression through the cell cycle requires the coordination of basal metabolism with the cell cycle and growth machinery. Repression of the sulfur gene network is mediated by the ubiquitin ligase SCF(Met30), which targets the transcription factor Met4p for degradation. Met30p is an essential protein in yeast. We have found that a met4Deltamet30Delta double mutant is viable, suggesting that the essential function of Met30p is to control Met4p. In support of this hypothesis, a Met4p mutant unable to activate transcription does not cause inviability in a met30Delta strain. Also, overexpression of an unregulated Met4p mutant is lethal in wild-type cells. Under non-permissive conditions, conditional met30Delta strains arrest as large, unbudded cells with 1N DNA content, at or shortly after the pheromone arrest point. met30Delta conditional mutants fail to accumulate CLN1 and CLN2, but not CLN3 mRNAs, even when CLN1 and CLN2 are expressed from strong heterologous promoters. One or more genes under the regulation of Met4p may delay the progression from G(1) into S phase through specific regulation of critical G(1) phase mRNAs.
Collapse
Affiliation(s)
- E E Patton
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Room 1078, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Canada
| | | | | | | | | | | |
Collapse
|
68
|
Macpherson N, Measday V, Moore L, Andrews B. A yeast taf17 mutant requires the Swi6 transcriptional activator for viability and shows defects in cell cycle-regulated transcription. Genetics 2000; 154:1561-76. [PMID: 10747053 PMCID: PMC1461044 DOI: 10.1093/genetics/154.4.1561] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In Saccharomyces cerevisiae, the Swi6 protein is a component of two transcription factors, SBF and MBF, that promote expression of a large group of genes in the late G1 phase of the cell cycle. Although SBF is required for cell viability, SWI6 is not an essential gene. We performed a synthetic lethal screen to identify genes required for viability in the absence of SWI6 and identified 10 complementation groups of swi6-dependent lethal mutants, designated SLM1 through SLM10. We were most interested in mutants showing a cell cycle arrest phenotype; both slm7-1 swi6Delta and slm8-1 swi6Delta double mutants accumulated as large, unbudded cells with increased 1N DNA content and showed a temperature-sensitive growth arrest in the presence of Swi6. Analysis of the transcript levels of cell cycle-regulated genes in slm7-1 SWI6 mutant strains at the permissive temperature revealed defects in regulation of a subset of cyclin-encoding genes. Complementation and allelism tests showed that SLM7 is allelic with the TAF17 gene, which encodes a histone-like component of the general transcription factor TFIID and the SAGA histone acetyltransferase complex. Sequencing showed that the slm7-1 allele of TAF17 is predicted to encode a version of Taf17 that is truncated within a highly conserved region. The cell cycle and transcriptional defects caused by taf17(slm7-1) are consistent with the role of TAF(II)s as modulators of transcriptional activation and may reflect a role for TAF17 in regulating activation by SBF and MBF.
Collapse
Affiliation(s)
- N Macpherson
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M55 1A8, Canada
| | | | | | | |
Collapse
|
69
|
Meimoun A, Holtzman T, Weissman Z, McBride HJ, Stillman DJ, Fink GR, Kornitzer D. Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCF(CDC4) ubiquitin-ligase complex. Mol Biol Cell 2000; 11:915-27. [PMID: 10712509 PMCID: PMC14820 DOI: 10.1091/mbc.11.3.915] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/1999] [Revised: 11/04/1999] [Accepted: 01/04/2000] [Indexed: 11/11/2022] Open
Abstract
Gcn4, a yeast transcriptional activator that promotes the expression of amino acid and purine biosynthesis genes, is rapidly degraded in rich medium. Here we report that SCF(CDC4), a recently characterized protein complex that acts in conjunction with the ubiquitin-conjugating enzyme Cdc34 to degrade cell cycle regulators, is also necessary for the degradation of the transcription factor Gcn4. Degradation of Gcn4 occurs throughout the cell cycle, whereas degradation of the known cell cycle substrates of Cdc34/SCF(CDC4) is cell cycle regulated. Gcn4 ubiquitination and degradation are regulated by starvation for amino acids, whereas the degradation of the cell cycle substrates of Cdc34/SCF(CDC4) is unaffected by starvation. We further show that unlike the cell cycle substrates of Cdc34/SCF(CDC4), which require phosphorylation by the kinase Cdc28, Gcn4 degradation requires the kinase Pho85. We identify the critical target site of Pho85 on Gcn4; a mutation of this site stabilizes the protein. A specific Pho85-Pcl complex that is able to phosphorylate Gcn4 on that site is inactive under conditions under which Gcn4 is stable. Thus, Cdc34/SCF(CDC4) activity is constitutive, and regulation of the stability of its various substrates occurs at the level of their phosphorylation.
Collapse
Affiliation(s)
- A Meimoun
- Department of Microbiology, Technion-B. Rappaport Faculty of Medicine, Haifa 31096, Israel
| | | | | | | | | | | | | |
Collapse
|
70
|
Measday V, McBride H, Moffat J, Stillman D, Andrews B. Interactions between Pho85 cyclin-dependent kinase complexes and the Swi5 transcription factor in budding yeast. Mol Microbiol 2000; 35:825-34. [PMID: 10692159 DOI: 10.1046/j.1365-2958.2000.01754.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pho85 is a cyclin-dependent protein kinase (Cdk) in budding yeast with roles in cell metabolism and cell cycle progression. Activation of Pho85 occurs through association with Pho85 cyclins (Pcls), of which 10 are known. When complexed with the G1 cyclins, Pcl1 and Pcl2, Pho85 is required for cell cycle progression in the absence of the Cdc28-dependent cyclins, Cln1 and Cln2. To identify potential targets of Pcl2-Pho85, we performed a two-hybrid screen using the Pcl2 cyclin as bait and recovered the transcription factor Swi5 as a Pcl2-interacting protein. We performed both biochemical and genetic tests to discover the biological significance of the interaction between Pcl2 and Swi5 seen in the two-hybrid assay. We found that Swi5 interacts in vitro with Pho85 cyclins and is phosphorylated in vitro by the Pho80-Pho85 kinase. We discovered that a subset of genes that are controlled by Swi5 and a homologous transcription factor, Ace2, was misregulated in a pho85 deletion strain; expression of the ASH1 and CTS1 genes was reduced in an ace2 deletion strain, whereas expression of both genes was increased in an ace2Delta pho85Delta double mutant. We also found that overexpression of SWI5 caused cell lethality in a pho85 deletion strain. Our results are consistent with misregulation of Swi5 activity in vivo in the absence of Pho85 and implicate Swi5 as a potential substrate of Pho85 cyclin-dependent kinase complexes.
Collapse
Affiliation(s)
- V Measday
- Department of Molecular and Medical Genetics, University of Toronto, Rm. 4285 Medical Sciences Building, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | |
Collapse
|
71
|
Miller ME, Cross FR. Distinct subcellular localization patterns contribute to functional specificity of the Cln2 and Cln3 cyclins of Saccharomyces cerevisiae. Mol Cell Biol 2000; 20:542-55. [PMID: 10611233 PMCID: PMC85127 DOI: 10.1128/mcb.20.2.542-555.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The G(1) cyclins of budding yeast drive cell cycle initiation by different mechanisms, but the molecular basis of their specificity is unknown. Here we test the hypothesis that the functional specificity of G(1) cyclins is due to differential subcellular localization. As shown by indirect immunofluorescence and biochemical fractionation, Cln3p localization appears to be primarily nuclear, with the most obvious accumulation of Cln3p to the nuclei of large budded cells. In contrast, Cln2p localizes to the cytoplasm. We were able to shift localization patterns of truncated Cln3p by the addition of nuclear localization and nuclear export signals, and we found that nuclear localization drives a Cln3p-like functional profile, while cytoplasmic localization leads to a partial shift to a Cln2p-like functional profile. Therefore, forcing Cln3p into a Cln2p-like cytoplasmic localization pattern partially alters the functional specificity of Cln3p toward that of Cln2p. These results suggest that there are CLN-dependent cytoplasmic and nuclear events important for cell cycle initiation. This is the first indication of a cytoplasmic function for a cyclin-dependent kinase. The data presented here support the idea that cyclin function is regulated at the level of subcellular localization and that subcellular localization contributes to the functional specificity of Cln2p and Cln3p.
Collapse
Affiliation(s)
- M E Miller
- The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
72
|
The Effects of Bioenergetic Stress and Redox Balance on the Expression of Genes Critical to Mitochondrial Function. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1568-1254(00)80017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
73
|
Huang D, Patrick G, Moffat J, Tsai LH, Andrews B. Mammalian Cdk5 is a functional homologue of the budding yeast Pho85 cyclin-dependent protein kinase. Proc Natl Acad Sci U S A 1999; 96:14445-50. [PMID: 10588725 PMCID: PMC24456 DOI: 10.1073/pnas.96.25.14445] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian Cdk5 is a member of the cyclin-dependent kinase family that is activated by a neuron-specific regulator, p35, to regulate neuronal migration and neurite outgrowth. p35/Cdk5 kinase colocalizes with and regulates the activity of the Pak1 kinase in neuronal growth cones and likely impacts on actin cytoskeletal dynamics through Pak1. Here, we describe a functional homologue of Cdk5 in budding yeast, Pho85. Like Cdk5, Pho85 has been implicated in actin cytoskeleton regulation through phosphorylation of an actin-regulatory protein. Overexpression of CDK5 in yeast cells complemented most phenotypes associated with pho85Delta, including defects in the repression of acid phosphatase expression, sensitivity to salt, and a G(1) progression defect. Consistent with the functional complementation, Cdk5 associated with and was activated by the Pho85 cyclins Pho80 and Pcl2 in yeast cells. In a reciprocal series of experiments, we found that Pho85 associated with the Cdk5 activators p35 and p25 to form an active kinase complex in mammalian and insect cells, supporting our hypothesis that Pho85 and Cdk5 are functionally related. Our results suggest the existence of a functionally conserved pathway involving Cdks and actin-regulatory proteins that promotes reorganization of the actin cytoskeleton in response to regulatory signals.
Collapse
Affiliation(s)
- D Huang
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Canada M5S 1A8
| | | | | | | | | |
Collapse
|
74
|
Nishizawa M, Kanaya Y, Toh-E A. Mouse cyclin-dependent kinase (Cdk) 5 is a functional homologue of a yeast Cdk, pho85 kinase. J Biol Chem 1999; 274:33859-62. [PMID: 10567344 DOI: 10.1074/jbc.274.48.33859] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mouse cyclin-dependent kinase (Cdk) 5 and yeast Pho85 kinase share similarities in structure as well as in the regulation of their activity. We found that mouse Cdk5 kinase produced in pho85Delta mutant cells could suppress some of pho85Delta mutant phenotypes including failure to grow on nonfermentable carbon sources, morphological defects, and growth defect caused by Pho4 or Clb2 overproduction. We also demonstrated that Cdk5 coimmunoprecipitated with Pho85-cyclins including Pcl1, Pcl2, Pcl6, Pcl9, and Pho80, and that the immunocomplex could phosphorylate Pho4, a native substrate of Pho85 kinase. Thus mouse Cdk5 is a functional homologue of yeast Pho85 kinase.
Collapse
Affiliation(s)
- M Nishizawa
- Department of Microbiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
75
|
Nishizawa M, Suzuki K, Fujino M, Oguchi T, Toh-e A. The Pho85 kinase, a member of the yeast cyclin-dependent kinase (Cdk) family, has a regulation mechanism different from Cdks functioning throughout the cell cycle. Genes Cells 1999; 4:627-42. [PMID: 10620010 DOI: 10.1046/j.1365-2443.1999.00290.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The PHO85 gene is a negative regulator of the PHO system in the yeast Saccharomyces cerevisiae and encodes a protein kinase (Pho85p) which is highly homologous to the Cdc28 kinase (Cdc28p). Although the two kinases share a 51% identity and their functional domains are well conserved, PHO85 fails to replace CDC28. Pho85p forms complexes with G1-cyclin homologues, including Pcl1p, Pcl2p and Pcl9p, and is thought to be involved in the cell-cycle regulation at G1 and the end of M. By analysing the genetic and biochemical properties of Pho85p, we studied whether the regulation of Pho85p activity is similar to other cyclin-dependent kinases (Cdks) directly involved in cell cycle regulation. RESULTS A functional analysis of various Pho85 mutants revealed that E53 in the PSTAIRE sequence was important for Pho85p function. On the other hand, residues in the T-loop including S166, S167 and E168, appeared dispensable for Pho85p function, suggesting that the phosphorylation of S166, corresponding to T161 of Cdc2p and T169 of Cdc28p, was not required for the kinase activity of Pho85p. Instead, we found that phosphorylation of Y18, corresponding to Y15 of Cdc2p and Y19 of Cdc28p, may be important for the binding of Pho80p but not of Pcl1p, suggesting that tyrosine phosphorylation may function as a signal which discriminates various Pho85-cyclins. CONCLUSION In Cdks functioning throughout the cell cycle, tyrosine phosphorylation is inhibitory to the activation of kinase, whereas the phosphorylation of threonine in the T-loop is essential for activation. Our finding indicates that the regulation mechanism of Pho85p activation appears to be distinct from these Cdks.
Collapse
Affiliation(s)
- M Nishizawa
- Department of Microbiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan.
| | | | | | | | | |
Collapse
|
76
|
Wilson WA, Mahrenholz AM, Roach PJ. Substrate targeting of the yeast cyclin-dependent kinase Pho85p by the cyclin Pcl10p. Mol Cell Biol 1999; 19:7020-30. [PMID: 10490639 PMCID: PMC84697 DOI: 10.1128/mcb.19.10.7020] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/1999] [Accepted: 07/26/1999] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, PHO85 encodes a cyclin-dependent protein kinase (Cdk) catalytic subunit with multiple regulatory roles thought to be specified by association with different cyclin partners (Pcls). Pcl10p is one of four Pcls with little sequence similarity to cyclins involved in cell cycle control. It has been implicated in specifying the phosphorylation of glycogen synthase (Gsy2p). We report that recombinant Pho85p and Pcl10p produced in Escherichia coli reconstitute an active Gsy2p kinase in vitro. Gsy2p phosphorylation required Pcl10p, occurred at physiologically relevant sites, and resulted in inactivation of Gsy2p. The activity of the reconstituted enzyme was even greater than Pho85p-Pcl10p isolated from yeast, and we conclude that, unlike many Cdks, Pho85p does not require phosphorylation for activity. Pcl10p formed complexes with Gsy2p, as judged by (i) gel filtration of recombinant Pcl10p and Gsy2p, (ii) coimmunoprecipitation from yeast cell lysates, and (iii) enzyme kinetic behavior consistent with Pcl10p binding the substrate. Synthetic peptides modeled on the sequences of known Pho85p sites were poor substrates with high K(m) values, and we propose that Pcl10p-Gsy2p interaction is important for substrate selection. Gel filtration of yeast cell lysates demonstrated that most Pho85p was present as a monomer, although a portion coeluted in high-molecular-weight fractions with Pcl10p and Gsy2p. Overexpression of Pcl10p sequestered most of the Pho85p into association with Pcl10p. We suggest a model for Pho85p function in the cell whereby cyclins like Pcl10p recruit Pho85p from a pool of monomers, both activating the kinase and targeting it to substrate.
Collapse
Affiliation(s)
- W A Wilson
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
77
|
Baetz K, Andrews B. Regulation of cell cycle transcription factor Swi4 through auto-inhibition of DNA binding. Mol Cell Biol 1999; 19:6729-41. [PMID: 10490612 PMCID: PMC84664 DOI: 10.1128/mcb.19.10.6729] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, two transcription factors, SBF (SCB binding factor) and MBF (MCB binding factor), promote the induction of gene expression at the G(1)/S-phase transition of the mitotic cell cycle. Swi4 and Mbp1 are the DNA binding components of SBF and MBF, respectively. The Swi6 protein is a common subunit of both transcription factors and is presumed to play a regulatory role. SBF binding to its target sequences, the SCBs, is a highly regulated event and requires the association of Swi4 with Swi6 through their C-terminal domains. Swi4 binding to SCBs is restricted to the late M and G(1) phases, when Swi6 is localized to the nucleus. We show that in contrast to Swi6, Swi4 remains nuclear throughout the cell cycle. This finding suggests that the DNA binding domain of Swi4 is inaccessible in the full-length protein when not complexed with Swi6. To explore this hypothesis, we expressed Swi4 and Swi6 in insect cells by using the baculovirus system. We determined that partially purified Swi4 cannot bind SCBs in the absence of Swi6. However, Swi4 derivatives carrying point mutations or alterations in the extreme C terminus were able to bind DNA or activate transcription in the absence of Swi6, and the C terminus of Swi4 inhibited Swi4 derivatives from binding DNA in trans. Full-length Swi4 was determined to be monomeric in solution, suggesting an intramolecular mechanism for auto-inhibition of binding to DNA by Swi4. We detected a direct in vitro interaction between a C-terminal fragment of Swi4 and the N-terminal 197 amino acids of Swi4, which contain the DNA binding domain. Together, our data suggest that intramolecular interactions involving the C-terminal region of Swi4 physically prevent the DNA binding domain from binding SCBs. The interaction of the carboxy-terminal region of Swi4 with Swi6 alleviates this inhibition, allowing Swi4 to bind DNA.
Collapse
Affiliation(s)
- K Baetz
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
78
|
Levine K, Kiang L, Jacobson MD, Fisher RP, Cross FR. Directed evolution to bypass cyclin requirements for the Cdc28p cyclin-dependent kinase. Mol Cell 1999; 4:353-63. [PMID: 10518216 DOI: 10.1016/s1097-2765(00)80337-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To identify cyclin-dependent kinase mutants with relaxed cyclin requirements, CDC28 alleles were selected that could rescue a yeast strain expressing as its only CLN G1 cyclin a mutant Cln2p (K129A,E183A) that is defective for Cdc28p binding. Rescue of this strain by mutant CDC28 was dependent upon the mutant cln2-KAEA, but additional mutagenesis and DNA shuffling yielded multiply mutant CDC28-BYC alleles (bypass of CLNs) that could support highly efficient cell cycle initiation in the complete absence of CLN genes. By gel filtration chromatography, one of the mutant Cdc28 proteins exhibited kinase activity associated with cyclin-free monomer. Thus, the mutants' CLN bypass activity might result from constitutive, cyclin-independent activity, suggesting that Cdk targeting by cyclins is not required for cell cycle initiation.
Collapse
Affiliation(s)
- K Levine
- Rockefeller University, New York, New York, USA
| | | | | | | | | |
Collapse
|
79
|
Détivaud L, Pettit GR, Meijer L. Characterization of a novel cdk1-related kinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:55-66. [PMID: 10447673 DOI: 10.1046/j.1432-1327.1999.00576.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The p13suc1/p9CKShs proteins bind tightly to the cyclin-dependent kinases cdk1 and cdk2. The distantly related protein, p15cdk-BP, binds cdk4/6, cdk5 and cdk8. We now show that immobilized p15cdk-BP binds both an HMG-I kinase and a 35-kDa protein that cross-reacts with anti-PSTAIRE antibodies (PSTAIRE is a totally conserved motif located in subdomain III of cdk). This 'cdkX' and the HMG-I kinase also bind to an immobilized inhibitor of cdks (HD). Several properties clearly distinguish cdkX, and its associated HMG-I kinase, from known anti-PSTAIRE cross-reactive cdks: (a) cdkX migrates, in SDS/PAGE, in a position intermediate between prophase phosphorylated cdk1 and metaphase dephosphorylated cdk1; (b) in contrast with cdk1, cdkX and associated HMG-I kinase activity do not decrease following successive depletions on p9CKShs1-sepharose; (c) cdkX and associated HMG-I kinase activity, but not cdk1, decrease following depletions on immobilized inhibitor; (d) cdkX is expressed during the early development of sea urchin embryos; in contrast with cdk1/cyclin B kinase, the p15cdk-BP-bound HMG-I kinase is active throughout the cell cycle; compared with cdk1 it is active later in development; (e) p15cdk-BP-bound HMG-I kinase is essentially insensitive to powerful inhibitors of cdk such as purvalanol, roscovitine, olomoucine, p21cip1 and p16INK4A; HD is only moderately inhibitory. Altogether these results suggest the existence of a new cdk1-related kinase, possibly involved in the regulation of early development. The presence of this kinase in all organisms investigated so far, from plants to mammals, calls for its definitive identification.
Collapse
Affiliation(s)
- L Détivaud
- CNRS, Station Biologique, Roscoff, France
| | | | | |
Collapse
|
80
|
Ho Y, Costanzo M, Moore L, Kobayashi R, Andrews BJ. Regulation of transcription at the Saccharomyces cerevisiae start transition by Stb1, a Swi6-binding protein. Mol Cell Biol 1999; 19:5267-78. [PMID: 10409718 PMCID: PMC84370 DOI: 10.1128/mcb.19.8.5267] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, gene expression in the late G(1) phase is activated by two transcription factors, SBF and MBF. SBF contains the Swi4 and Swi6 proteins and activates the transcription of G(1) cyclin genes, cell wall biosynthesis genes, and the HO gene. MBF is composed of Mbp1 and Swi6 and activates the transcription of genes required for DNA synthesis. Mbp1 and Swi4 are the DNA binding subunits for MBF and SBF, while the common subunit, Swi6, is presumed to play a regulatory role in both complexes. We show that Stb1, a protein first identified in a two-hybrid screen with the transcriptional repressor Sin3, binds Swi6 in vitro. The STB1 transcript was cell cycle periodic and peaked in late G(1) phase. In vivo accumulation of Stb1 phosphoforms was dependent on CLN1, CLN2, and CLN3, which encode G(1)-specific cyclins for the cyclin-dependent kinase Cdc28, and Stb1 was phosphorylated by Cln-Cdc28 kinases in vitro. Deletion of STB1 caused an exacerbated delay in G(1) progression and the onset of Start transcription in a cln3Delta strain. Our results suggest a role for STB1 in controlling the timing of Start transcription that is revealed in the absence of the G(1) regulator CLN3, and they implicate Stb1 as an in vivo target of G(1)-specific cyclin-dependent kinases.
Collapse
Affiliation(s)
- Y Ho
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Canada M5S 1A8
| | | | | | | | | |
Collapse
|
81
|
Colwill K, Field D, Moore L, Friesen J, Andrews B. In vivo analysis of the domains of yeast Rvs167p suggests Rvs167p function is mediated through multiple protein interactions. Genetics 1999; 152:881-93. [PMID: 10388809 PMCID: PMC1460664 DOI: 10.1093/genetics/152.3.881] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Morphological changes during cell division in the yeast Saccharomyces cerevisiae are controlled by cell-cycle regulators. The Pcl-Pho85p kinase complex has been implicated in the regulation of the actin cytoskeleton at least in part through Rvs167p. Rvs167p consists of three domains called BAR, GPA, and SH3. Using a two-hybrid assay, we demonstrated that each region of Rvs167p participates in protein-protein interactions: the BAR domain bound the BAR domain of another Rvs167p protein and that of Rvs161p, the GPA region bound Pcl2p, and the SH3 domain bound Abp1p. We identified Rvs167p as a Las17p/Bee1p-interacting protein in a two-hybrid screen and showed that Las17p/Bee1p bound the SH3 domain of Rvs167p. We tested the extent to which the Rvs167p protein domains rescued phenotypes associated with deletion of RVS167: salt sensitivity, random budding, and endocytosis and sporulation defects. The BAR domain was sufficient for full or partial rescue of all rvs167 mutant phenotypes tested but not required for the sporulation defect for which the SH3 domain was also sufficient. Overexpression of Rvs167p inhibits cell growth. The BAR domain was essential for this inhibition and the SH3 domain had only a minor effect. Rvs167p may link the cell cycle regulator Pcl-Pho85p kinase and the actin cytoskeleton. We propose that Rvs167p is activated by phosphorylation in its GPA region by the Pcl-Pho85p kinase. Upon activation, Rvs167p enters a multiprotein complex, making critical contacts in its BAR domain and redundant or minor contacts with its SH3 domain.
Collapse
Affiliation(s)
- K Colwill
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
82
|
Cherkasova V, Lyons DM, Elion EA. Fus3p and Kss1p control G1 arrest in Saccharomyces cerevisiae through a balance of distinct arrest and proliferative functions that operate in parallel with Far1p. Genetics 1999; 151:989-1004. [PMID: 10049917 PMCID: PMC1460542 DOI: 10.1093/genetics/151.3.989] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Saccharomyces cerevisiae, mating pheromones activate two MAP kinases (MAPKs), Fus3p and Kss1p, to induce G1 arrest prior to mating. Fus3p is known to promote G1 arrest by activating Far1p, which inhibits three Clnp/Cdc28p kinases. To analyze the contribution of Fus3p and Kss1p to G1 arrest that is independent of Far1p, we constructed far1 CLN strains that undergo G1 arrest from increased activation of the mating MAP kinase pathway. We find that Fus3p and Kss1p both control G1 arrest through multiple functions that operate in parallel with Far1p. Fus3p and Kss1p together promote G1 arrest by repressing transcription of G1/S cyclin genes (CLN1, CLN2, CLB5) by a mechanism that blocks their activation by Cln3p/Cdc28p kinase. In addition, Fus3p and Kss1p counteract G1 arrest through overlapping and distinct functions. Fus3p and Kss1p together increase the expression of CLN3 and PCL2 genes that promote budding, and Kss1p inhibits the MAP kinase cascade. Strikingly, Fus3p promotes proliferation by a novel function that is not linked to reduced Ste12p activity or increased levels of Cln2p/Cdc28p kinase. Genetic analysis suggests that Fus3p promotes proliferation through activation of Mcm1p transcription factor that upregulates numerous genes in G1 phase. Thus, Fus3p and Kss1p control G1 arrest through a balance of arrest functions that inhibit the Cdc28p machinery and proliferative functions that bypass this inhibition.
Collapse
Affiliation(s)
- V Cherkasova
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
83
|
Leza MA, Elion EA. POG1, a novel yeast gene, promotes recovery from pheromone arrest via the G1 cyclin CLN2. Genetics 1999; 151:531-43. [PMID: 9927449 PMCID: PMC1460478 DOI: 10.1093/genetics/151.2.531] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the absence of a successful mating, pheromone-arrested Saccharomyces cerevisiae cells reenter the mitotic cycle through a recovery process that involves downregulation of the mating mitogen-activated protein kinase (MAPK) cascade. We have isolated a novel gene, POG1, whose promotion of recovery parallels that of the MAPK phosphatase Msg5. POG1 confers alpha-factor resistance when overexpressed and enhances alpha-factor sensitivity when deleted in the background of an msg5 mutant. Overexpression of POG1 inhibits alpha-factor-induced G1 arrest and transcriptional repression of the CLN1 and CLN2 genes. The block in transcriptional repression occurs at SCB/MCB promoter elements by a mechanism that requires Bck1 but not Cln3. Genetic tests strongly argue that POG1 promotes recovery through upregulation of the CLN2 gene and that the resulting Cln2 protein promotes recovery primarily through an effect on Ste20, an activator of the mating MAPK cascade. A pog1 cln3 double mutant displays synthetic mutant phenotypes shared by cell-wall integrity and actin cytoskeleton mutants, with no synthetic defect in the expression of CLN1 or CLN2. These and other results suggest that POG1 may regulate additional genes during vegetative growth and recovery.
Collapse
Affiliation(s)
- M A Leza
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
84
|
Abstract
Eukaryotic cells respond to intracellular and extracellular cues to direct asymmetric cell growth and division. The yeast Saccharomyces cerevisiae undergoes polarized growth at several times during budding and mating and is a useful model organism for studying asymmetric growth and division. In recent years, many regulatory and cytoskeletal components important for directing and executing growth have been identified, and molecular mechanisms have been elucidated in yeast. Key signaling pathways that regulate polarization during the cell cycle and mating response have been described. Since many of the components important for polarized cell growth are conserved in other organisms, the basic mechanisms mediating polarized cell growth are likely to be universal among eukaryotes.
Collapse
Affiliation(s)
- K Madden
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | |
Collapse
|
85
|
Abstract
Ankyrin (ANK) repeats were first found in the Swi6 transcription factor of Saccharomyces cerevisiae and since then were identified in many proteins of eukaryotes and prokaryotes. These repeats are thought to serve as protein association domains. In Swi6, ANK repeats affect DNA binding of both the Swi4/Swi6 and Mbp1/Swi6 complexes. We have previously described generation of random mutations within the ANK repeats of Swi6 that render the protein temperature sensitive in its ability to activate HO transcription. Two of these SWI6 mutants were used in a screen for high copy suppressors of this phenotype. We found that MSN1, which encodes a transcriptional activator, and NHP6A, which encodes an HMG-like protein, are able to suppress defective Swi6 function. Both of these gene products are involved in HO transcription, and Nhp6A may also be involved in CLN1 transcription. Moreover, because overexpression of NHP6A can suppress caffeine sensitivity of one of the SWI6 ANK mutants, swi6-405, other SWI6-dependent genes may also be affected by Nhp6A. We hypothesize that Nhp6A and Msn1 modulate Swi6-dependent gene transcription indirectly, through effects on chromatin structure or other transcription factors, because we have not been able to demonstrate that either Msn1 or Nhp6A interact with the Swi4/Swi6 complex.
Collapse
Affiliation(s)
- J Sidorova
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
86
|
Silljé HH, Paalman JW, ter Schure EG, Olsthoorn SQ, Verkleij AJ, Boonstra J, Verrips CT. Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae. J Bacteriol 1999; 181:396-400. [PMID: 9882651 PMCID: PMC93391 DOI: 10.1128/jb.181.2.396-400.1999] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trehalose and glycogen accumulate in Saccharomyces cerevisiae when growth conditions deteriorate. It has been suggested that aside from functioning as storage factors and stress protectants, these carbohydrates may be required for cell cycle progression at low growth rates under carbon limitation. By using a mutant unable to synthesize trehalose and glycogen, we have investigated this requirement of trehalose and glycogen under carbon-limited conditions in continuous cultures. Trehalose and glycogen levels increased with decreasing growth rates in the wild-type strain, whereas no trehalose or glycogen was detected in the mutant. However, the mutant was still able to grow and divide at low growth rates with doubling times similar to those for the wild-type strain, indicating that trehalose and glycogen are not essential for cell cycle progression. Nevertheless, upon a slight increase of extracellular carbohydrates, the wild-type strain degraded its reserve carbohydrates and was able to enter a cell division cycle faster than the mutant. In addition, wild-type cells survived much longer than the mutant cells when extracellular carbon was exhausted. Thus, trehalose and glycogen have a dual role under these conditions, serving as storage factors during carbon starvation and providing quickly a higher carbon and ATP flux when conditions improve. Interestingly, the CO2 production rate and hence the ATP flux were higher in the mutant than in the wild-type strain at low growth rates. The possibility that the mutant strain requires this steady higher glycolytic flux at low growth rates for passage through Start is discussed.
Collapse
Affiliation(s)
- H H Silljé
- Department of Molecular Cell Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
87
|
Lee J, Colwill K, Aneliunas V, Tennyson C, Moore L, Ho Y, Andrews B. Interaction of yeast Rvs167 and Pho85 cyclin-dependent kinase complexes may link the cell cycle to the actin cytoskeleton. Curr Biol 1998; 8:1310-21. [PMID: 9843683 DOI: 10.1016/s0960-9822(07)00561-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND . PHO85 encodes the catalytic subunit of a cyclin-dependent kinase (Cdk) in budding yeast and functions in phosphate and glycogen metabolism. Pho85 associated with the G1 cyclins Pcl1 and Pcl2 is also required for cell cycle progression in the absence of the Cdc28 cyclins Cln1 and Cln2. Loss of Pcl1, Pcl2 and related Pho85 cyclins results in budding defects, suggesting that Pcl-Pho85 complexes function in cell morphogenesis early in the cell cycle; their precise role is not clear, however. RESULTS . To identify targets for Pcl-Pho85 kinases, we performed yeast two-hybrid interaction screens using Pcl2 and the related cyclin Pcl9. We identified RVS167, a gene involved in endocytosis, organization of the actin cytoskeleton, and cell survival after starvation. Like rvs167Delta mutants, pho85 mutants or strains deleted for the Pcl1,2-type Pho85 cyclins showed abnormal cell morphology on starvation, sensitivity to salt, random budding in diploids, and defects in endocytosis and in the actin cytoskeleton. Overexpression of Rvs167 in wild-type cells caused morphological abnormalities and growth arrest at high temperatures; these phenotypes were exacerbated by deleting PHO85. Rvs167 has a Src homology 3 (SH3) domain and five potential Pho85 phosphorylation sites; recombinant Rvs167 was phosphorylated by the Pcl2-Pho85 kinase in vitro. Maximal phosphorylation of Rvs167 in vivo required Pho85 and the Pcl1,2-type cyclins. CONCLUSIONS . Rvs167 interacts with Pho85 cyclins and is implicated as a target of Pho85 kinases in vivo. Our results identify a connection between Cdks and the actin cytoskeleton; interaction of Rvs167 and Pcl-Pho85 Cdks might contribute to actin cytoskeleton regulation in response to stresses such as starvation.
Collapse
Affiliation(s)
- J Lee
- Department of Molecular and Medical Genetics University of Toronto Toronto Canada
| | | | | | | | | | | | | |
Collapse
|
88
|
Gustin MC, Albertyn J, Alexander M, Davenport K. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1998; 62:1264-300. [PMID: 9841672 PMCID: PMC98946 DOI: 10.1128/mmbr.62.4.1264-1300.1998] [Citation(s) in RCA: 715] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.
Collapse
Affiliation(s)
- M C Gustin
- Department of Biochemistry and Cell Biology Rice University, Houston, Texas 77251-1892, USA.
| | | | | | | |
Collapse
|
89
|
Mendenhall MD, Hodge AE. Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1998; 62:1191-243. [PMID: 9841670 PMCID: PMC98944 DOI: 10.1128/mmbr.62.4.1191-1243.1998] [Citation(s) in RCA: 308] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyclin-dependent protein kinase (CDK) encoded by CDC28 is the master regulator of cell division in the budding yeast Saccharomyces cerevisiae. By mechanisms that, for the most part, remain to be delineated, Cdc28 activity controls the timing of mitotic commitment, bud initiation, DNA replication, spindle formation, and chromosome separation. Environmental stimuli and progress through the cell cycle are monitored through checkpoint mechanisms that influence Cdc28 activity at key cell cycle stages. A vast body of information concerning how Cdc28 activity is timed and coordinated with various mitotic events has accrued. This article reviews that literature. Following an introduction to the properties of CDKs common to many eukaryotic species, the key influences on Cdc28 activity-cyclin-CKI binding and phosphorylation-dephosphorylation events-are examined. The processes controlling the abundance and activity of key Cdc28 regulators, especially transcriptional and proteolytic mechanisms, are then discussed in detail. Finally, the mechanisms by which environmental stimuli influence Cdc28 activity are summarized.
Collapse
Affiliation(s)
- M D Mendenhall
- L. P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536-0096, USA.
| | | |
Collapse
|
90
|
Nishizawa M, Kawasumi M, Fujino M, Toh-e A. Phosphorylation of sic1, a cyclin-dependent kinase (Cdk) inhibitor, by Cdk including Pho85 kinase is required for its prompt degradation. Mol Biol Cell 1998; 9:2393-405. [PMID: 9725902 PMCID: PMC25506 DOI: 10.1091/mbc.9.9.2393] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, Sic1, an inhibitor of Clb-Cdc28 kinases, must be phosphorylated and degraded in G1 for cells to initiate DNA replication, and Cln-Cdc28 kinase appears to be primarily responsible for phosphorylation of Sic1. The Pho85 kinase is a yeast cyclin-dependent kinase (Cdk), which is not essential for cell growth unless both CLN1 and CLN2 are absent. We demonstrate that Pho85, when complexed with Pcl1, a G1 cyclin homologue, can phosphorylate Sic1 in vitro, and that Sic1 appears to be more stable in pho85Delta cells. Three consensus Cdk phosphorylation sites present in Sic1 are phosphorylated in vivo, and two of them are required for prompt degradation of the inhibitor. Pho85 and other G1 Cdks appear to phosphorylate Sic1 at different sites in vivo. Thus at least two distinct Cdks can participate in phosphorylation of Sic1 and may therefore regulate progression through G1.
Collapse
Affiliation(s)
- M Nishizawa
- Department of Microbiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | | | | | | |
Collapse
|
91
|
Bussink HJ, Osmani SA. A cyclin-dependent kinase family member (PHOA) is required to link developmental fate to environmental conditions in Aspergillus nidulans. EMBO J 1998; 17:3990-4003. [PMID: 9670015 PMCID: PMC1170733 DOI: 10.1093/emboj/17.14.3990] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We addressed the question of whether Aspergillus nidulans has more than one cyclin-dependent kinase gene and identified such a gene, phoA, encoding two PSTAIRE-containing kinases (PHOAM1 and PHOAM47) that probably result from alternative pre-mRNA splicing. PHOAM47 is 66% identical to Saccharomyces cerevisiae Pho85. The function of this gene was studied using phoA null mutants. It functions in a developmental response to phosphorus-limited growth but has no effect on the regulation of enzymes involved in phosphorus acquisition. Aspergillus nidulans shows both asexual and sexual reproduction involving temporal elaboration of different specific cell types. We demonstrate that developmental decisions in confluent cultures depend upon both the initial phosphorus concentration and the inoculation density and that these factors influence development through phoA. In the most impressive cases, absence of phoA resulted in a switch from asexual to sexual development (at pH 8), or the absence of development altogether (at pH 6). The phenotype of phoA deletion strains appears to be specific for phosphorus limitation. We propose that PHOA functions to help integrate environmental signals with developmental decisions to allow ordered differentiation of specific cell types in A.nidulans under varying growth conditions. The results implicate a putative cyclin-dependent kinase in the control of development.
Collapse
Affiliation(s)
- H J Bussink
- Henry Hood Research Program, Weis Center for Research, Pennsylvania State University College of Medicine, Danville, PA 17822, USA
| | | |
Collapse
|
92
|
Huang D, Moffat J, Wilson WA, Moore L, Cheng C, Roach PJ, Andrews B. Cyclin partners determine Pho85 protein kinase substrate specificity in vitro and in vivo: control of glycogen biosynthesis by Pcl8 and Pcl10. Mol Cell Biol 1998; 18:3289-99. [PMID: 9584169 PMCID: PMC108910 DOI: 10.1128/mcb.18.6.3289] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/1998] [Accepted: 03/18/1998] [Indexed: 02/07/2023] Open
Abstract
In Saccharomyces cerevisiae, PHO85 encodes a cyclin-dependent protein kinase (Cdk) with multiple roles in cell cycle and metabolic controls. In association with the cyclin Pho80, Pho85 controls acid phosphatase gene expression through phosphorylation of the transcription factor Pho4. Pho85 has also been implicated as a kinase that phosphorylates and negatively regulates glycogen synthase (Gsy2), and deletion of PHO85 causes glycogen overaccumulation. We report that the Pcl8/Pcl10 subgroup of cyclins directs Pho85 to phosphorylate glycogen synthase both in vivo and in vitro. Disruption of PCL8 and PCL10 caused hyperaccumulation of glycogen, activation of glycogen synthase, and a reduction in glycogen synthase kinase activity in vivo. However, unlike pho85 mutants, pcl8 pcl10 cells had normal morphologies, grew on glycerol, and showed proper regulation of acid phosphatase gene expression. In vitro, Pho80-Pho85 complexes effectively phosphorylated Pho4 but had much lower activity toward Gsy2. In contrast, Pcl10-Pho85 complexes phosphorylated Gsy2 at Ser-654 and Thr-667, two physiologically relevant sites, but only poorly phosphorylated Pho4. Thus, both the in vitro and in vivo substrate specificity of Pho85 is determined by the cyclin partner. Mutation of PHO85 suppressed the glycogen storage deficiency of snf1 or glc7-1 mutants in which glycogen synthase is locked in an inactive state. Deletion of PCL8 and PCL10 corrected the deficit in glycogen synthase activity in both the snf1 and glc7-1 mutants, but glycogen synthesis was restored only in the glc7-1 mutant strain. This genetic result suggests an additional role for Pho85 in the negative regulation of glycogen accumulation that is independent of Pcl8 and Pcl10.
Collapse
Affiliation(s)
- D Huang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5122, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Belenguer P, Pelloquin L, Baldin V, Oustrin ML, Ducommun B. The fission yeast Nim1/Cdr1 kinase: a link between nutritional state and cell cycle control. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:207-14. [PMID: 9552364 DOI: 10.1007/978-1-4615-1809-9_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Close connections appear to exist between extra-cellular signals that regulate cell proliferation and the protein kinases that control the cell cycle machinery. The fission yeast nim1 kinase is an inducer of cdc2 kinase activity acting through the inhibition of wee1 kinase. Nim1 function is required for a correct cellular response to nutritional starvation. In the absence of nim1, starved cells are unable to decrease their size at mitosis, to arrest their cycle in G1 and to enter G0. Here, we review our current knowledge on the role and the regulation of nim1 in connecting cell cycle and nutritional pathways.
Collapse
Affiliation(s)
- P Belenguer
- Laboratoire de Pharmacologie et de Toxicologie Fondamentales, CNRS, Université Paul Sabatier, Toulouse, France
| | | | | | | | | |
Collapse
|
94
|
Levine K, Tinkelenberg AH, Cross F. The CLN gene family: central regulators of cell cycle Start in budding yeast. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:101-14. [PMID: 9552356 DOI: 10.1007/978-1-4615-1809-9_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Start transition in the budding yeast cell cycle is the point of most physiological regulation of cell cycle commitment. This transition is controlled by the CLN1,2,3 gene family. We review what is known about the regulation, inter-regulation and function of these genes in controlling the Start transition.
Collapse
Affiliation(s)
- K Levine
- Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
95
|
Abstract
Cyclin C was originally identified in a genetic screen for metazoan cDNAs that complement a triple knock-out of the CLN genes, involved in G1/S progression in S. cerevisiae. Unlike cyclin Ds and cyclin E, also identified in this screen, cyclin C has not been found to have a cell-cycle role in metazoa. Identified as the catalytic partner of cyclin C, Cdk8 is a novel protein-kinase of the Cdk family structurally related to the yeast Srb10 kinase. Cyclin C, Cdk8 and RNA polymerase II are found in a large multi-protein complex that shows structural as well as functional homologies with the yeast polymerase II holoenzyme. These observations and the sequence similarity to the kinase/cyclin pair Srb10/Srb11 in S. cerevisiae, suggest that cyclin C and Cdk8 control RNA polymerase II function.
Collapse
Affiliation(s)
- V Leclerc
- URA 671 CNRS, Villefranche-sur-mer, France
| | | |
Collapse
|
96
|
Mendenhall MD, al-Jumaily W, Nugroho TT. The Cdc28 inhibitor p40SIC1. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:173-85. [PMID: 9552362 DOI: 10.1007/978-1-4615-1809-9_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sic1 inhibits the activity of Cdc28.Clb5 complexes in late G1, creating a delay between cell cycle commitment and S phase initiation. The ultimate purpose of this delay is unknown but loss of Sic1 activity negatively affects genomic stability and cellular viability. Sic1 levels are controlled by periodic changes in transcription rates and protein stability. The latter control is mediated through the Cdc34 ubiquitin transferase and, possibly, Cdc28.Cln activity. Possible roles of Sic1 in the G1/S and the M/G1 transitions are discussed.
Collapse
Affiliation(s)
- M D Mendenhall
- Department of Biochemistry, Chandler Medical Center, University of Kentucky, Lexington 40536-0096, USA
| | | | | |
Collapse
|
97
|
Tennyson CN, Lee J, Andrews BJ. A role for the Pcl9-Pho85 cyclin-cdk complex at the M/G1 boundary in Saccharomyces cerevisiae. Mol Microbiol 1998; 28:69-79. [PMID: 9593297 DOI: 10.1046/j.1365-2958.1998.00773.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PHO85 is a cyclin-dependent kinase (CDK) with roles in phosphate and glycogen metabolism and cell cycle progression. As a CDK, Pho85 is activated by association with Pho85 cyclins (Pcls), of which 10 are known. PCL1, PCL2 and PCL9 are the only members of the Pho85 cyclin family that are expressed in a cell cycle-regulated pattern. We found that PCL9 is expressed in late M/early G1 phase of the cell cycle and is activated by the transcription factor, Swi5. This pattern of regulation is different from PCL1 and PCL2, which are expressed later in G1 phase and are regulated primarily by the transcription factor SBF. Co-immunoprecipitation experiments using in vitro translated proteins showed that Pcl9 and Pho85 form a complex. Furthermore, immunoprecipitated Pcl9 complexes from yeast lysates were capable of phosphorylating the exogenous substrate Pho4. The Pcl9-associated kinase activity was dependent on PHO85, showing that Pcl9 and Pho85 form a functionally active kinase complex in vivo. Deletion of PCL9 in diploid cells caused random, rather than bipolar, budding in 18% of cells. In contrast, deletion of PCL2, the closest relative of PCL9, had no effect on the budding pattern. Deleting more members of the PCL1,2 subfamily (which includes PCL9) increased the percentage of random budding in the cell population. When all members of the PCL1,2 subfamily were deleted, 73% of cells budded randomly, a value similar to that obtained when the CDK partner PHO85 was deleted. Our results show that PCL9 and PHO85 form a functional kinase complex and suggest a role for Pho85 CDKs at the M/G1 boundary.
Collapse
Affiliation(s)
- C N Tennyson
- Department of Molecular and Medical Genetics, University of Toronto, Canada
| | | | | |
Collapse
|
98
|
Aerne BL, Johnson AL, Toyn JH, Johnston LH. Swi5 controls a novel wave of cyclin synthesis in late mitosis. Mol Biol Cell 1998; 9:945-56. [PMID: 9529390 PMCID: PMC25320 DOI: 10.1091/mbc.9.4.945] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have shown previously that the Swi5 transcription factor regulates the expression of the SIC1 Cdk inhibitor in late mitosis. This suggests that Swi5 might control other genes with roles in ending mitosis. We identified a gene with a Swi5-binding site in the promoter that encoded a protein with high homology to Pcl2, a cyclin-like protein that associates with the Cdk Pho85. This gene, PCL9, is indeed regulated by Swi5 in late M phase, the only cyclin known to be expressed at this point in the cell cycle. The Pcl9 protein is associated with a Pho85-dependent protein kinase activity, and the protein is unstable with peak levels occurring in late M phase. PCL2 is already known to be expressed in late G1 and we find that, in addition, it is also regulated by Swi5 in telophase. The expression of PCL2 and PCL9 at this stage of the cell cycle implies a role for the Pho85 Cdk at the end of mitosis. Consistent with this a synthetic interaction was observed between pho85delta and strains deleted for SIC1, SWI5, and SPO12. These and other studies support the notion that the M/G1 switch is a major cell cycle transition.
Collapse
Affiliation(s)
- B L Aerne
- Division of Yeast Genetics, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | |
Collapse
|
99
|
Wickert S, Finck M, Herz B, Ernst JF. A small protein (Ags1p) and the Pho80p-Pho85p kinase complex contribute to aminoglycoside antibiotic resistance of the yeast Saccharomyces cerevisiae. J Bacteriol 1998; 180:1887-94. [PMID: 9537389 PMCID: PMC107104 DOI: 10.1128/jb.180.7.1887-1894.1998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We identified the AGS1 and AGS3 genes by their ability to partially complement an ags mutant (RC1707) which is supersensitive to various aminoglycoside antibiotics (J. F. Ernst and R. K. Chan, J. Bacteriol. 163:8-14, 1985). AGS1 is located in proximity to the centromere of chromosome III and encodes a small protein of 88 amino acids. The size of the AGS1 transcript, which in wild-type cells is 1 kb, is reduced to 0.75 kb in mutant RC1707. Disruption of AGS1 rendered strains supersensitive to hygromycin B and increased their resistance to vanadate. In addition, ags1delta strains underglycosylated invertase but had normal carboxypeptidase Y glycosylation, suggesting that Ags1p is required for the elaboration of outer N-glycosyl chains. AGS3 was found to be identical to PHO80 (TUP7), which encodes a cyclin activating the Pho85p protein kinase. Deletion of either PHO80 or PHO85 led to aminoglycoside supersensitivity; pho80delta ags1delta strains showed an enhanced-sensitivity phenotype compared to single mutants. pho80 and pho85 mutants were rendered resistant by deletion of PHO4, indicating that activation of the Pho4p transcription factor is required for increased aminoglycoside sensitivity. Thus, both the Pho80p-Pho85p kinase complex (by Pho4p phosphorylation) and a novel component of the N glycosylation pathway contribute to basal levels of aminoglycoside resistance in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- S Wickert
- Institut für Mikrobiologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | | | |
Collapse
|
100
|
Erdman S, Lin L, Malczynski M, Snyder M. Pheromone-regulated genes required for yeast mating differentiation. J Cell Biol 1998; 140:461-83. [PMID: 9456310 PMCID: PMC2140177 DOI: 10.1083/jcb.140.3.461] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/1997] [Revised: 11/14/1997] [Indexed: 02/06/2023] Open
Abstract
Yeast cells mate by an inducible pathway that involves agglutination, mating projection formation, cell fusion, and nuclear fusion. To obtain insight into the mating differentiation of Saccharomyces cerevisiae, we carried out a large-scale transposon tagging screen to identify genes whose expression is regulated by mating pheromone. 91,200 transformants containing random lacZ insertions were screened for beta-galactosidase (beta-gal) expression in the presence and absence of alpha factor, and 189 strains containing pheromone-regulated lacZ insertions were identified. Transposon insertion alleles corresponding to 20 genes that are novel or had not previously been known to be pheromone regulated were examined for effects on the mating process. Mutations in four novel genes, FIG1, FIG2, KAR5/ FIG3, and FIG4 were found to cause mating defects. Three of the proteins encoded by these genes, Fig1p, Fig2p, and Fig4p, are dispensible for cell polarization in uniform concentrations of mating pheromone, but are required for normal cell polarization in mating mixtures, conditions that involve cell-cell communication. Fig1p and Fig2p are also important for cell fusion and conjugation bridge shape, respectively. The fourth protein, Kar5p/Fig3p, is required for nuclear fusion. Fig1p and Fig2p are likely to act at the cell surface as Fig1:: beta-gal and Fig2::beta-gal fusion proteins localize to the periphery of mating cells. Fig4p is a member of a family of eukaryotic proteins that contain a domain homologous to the yeast Sac1p. Our results indicate that a variety of novel genes are expressed specifically during mating differentiation to mediate proper cell morphogenesis, cell fusion, and other steps of the mating process.
Collapse
Affiliation(s)
- S Erdman
- Department of Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | | | |
Collapse
|